
Laravel

#laravel

Table of Contents

About 1

Chapter 1: Getting started with Laravel 2

Remarks 2

Laravel StackOverflow Slack Community 2

Featured Tutorial 2

Contribution Guidelines 2

Contribution Style Guide 2

About Laravel 2

Main Features 2

MVC 2

Blade Templating Engine 3

Routing & Middleware 3

Artisan 3

Eloquent ORM 3

Event Handling 3

Versions 3

Examples 4

Welcome to Laravel tag documentation! 4

Starter Guide 4

Getting Started 4

Laravel Views 5

Chapter 2: Artisan 6

Syntax 6

Parameters 6

Examples 8

Introduction 8

List all registered routes filtered by multiple methods 8

Running Laravel Artisan commands using PHP code 9

Creating and registering new artisan command 9

Chapter 3: Authentication 10

Examples 10

Multi Authentication 10

Chapter 4: Authorization 14

Introduction 14

Examples 14

Using Gates 14

Authorizing Actions with Gates 14

Policies 15

Writing Policies 15

Authorizing Actions with Policies 15

Chapter 5: Blade Templates 17

Introduction 17

Examples 17

Views: Introduction 17

Control Structures 18

Conditionals 18

'If' statements 18

'Unless' statements 18

Loops 18

'While' loop 19

'Foreach' loop 19

'Forelse' Loop 19

Echoing PHP expressions 20

Echoing a variable 20

Echoing an element in an array 20

Echoing an object property 21

Echoing the result of a function call 21

Checking for Existence 21

Raw echos 21

Including Partial Views 21

Layout Inheritance 22

Sharing data to all views 24

Using View::share 24

Using View::composer 24

Closure-based composer 24

Class-based composer 24

Execute arbitrary PHP code 25

Chapter 6: Cashier 26

Remarks 26

Examples 26

Stripe Setup 26

Chapter 7: Change default routing behaviour in Laravel 5.2.31 + 28

Syntax 28

Parameters 28

Remarks 28

Examples 28

Adding api-routes with other middleware and keep default web middleware 28

Chapter 8: Collections 30

Syntax 30

Remarks 30

Examples 30

Creating Collections 30

where() 30

Nesting 30

Additions 31

Using Get to lookup value or return default 31

Using Contains to check if a collection satisfies certain condition 32

Using Pluck to extract certain values from a collection 32

Using Map to manipulate each element in a collection 33

Using sum, avg, min or max on a collection for statistical calculations 33

Sorting a collection 33

Sort() 33

SortBy() 34

SortByDesc() 35

Using reduce() 35

Using macro() to extend collections 36

Using Array Syntax 37

Chapter 9: Common Issues & Quick Fixes 39

Introduction 39

Examples 39

TokenMisMatch Exception 39

Chapter 10: Constants 40

Examples 40

Example 40

Chapter 11: Controllers 41

Introduction 41

Examples 41

Basic Controllers 41

Controller Middleware 41

Resource Controller 42

Example of how a Resource Controller look 42

Actions Handled By Resource Controller 44

Chapter 12: Cron basics 45

Introduction 45

Examples 45

Create Cron Job 45

Chapter 13: Cross Domain Request 46

Examples 46

Introduction 46

CorsHeaders 46

Chapter 14: Custom Helper function 48

Introduction 48

Remarks 48

Examples 48

document.php 48

HelpersServiceProvider.php 48

Use 49

Chapter 15: CustomException class in Laravel 50

Introduction 50

Examples 50

CustomException class in laravel 50

Chapter 16: Database 51

Examples 51

Multiple database connections 51

Chapter 17: Database Migrations 55

Examples 55

Migrations 55

The migration files 56

Generating migration files 56

Inside a database migration 57

Running migrations 58

Rolling Back Migrations 58

Chapter 18: Database Seeding 60

Examples 60

Running a Seeder 60

Creating a Seed 60

Inserting Data using a Seeder 60

Inserting data with a Model Factory 61

Seeding with MySQL Dump 61

Using faker And ModelFactories to generate Seeds 62

Chapter 19: Deploy Laravel 5 App on Shared Hosting on Linux Server 65

Remarks 65

Examples 65

Laravel 5 App on Shared Hosting on Linux Server 65

Chapter 20: Directory Structure 68

Examples 68

Change default app directory 68

Override Application class 68

Calling the new class 68

Composer 69

Change the Controllers directory 69

Chapter 21: Eloquent 70

Introduction 70

Remarks 70

Examples 70

Introduction 70

Sub-topic Navigation 71

Persisting 71

Deleting 72

Soft Deleting 73

Change primary key and timestamps 74

Throw 404 if entity not found 75

Cloning Models 75

Chapter 22: Eloquent : Relationship 76

Examples 76

Querying on relationships 76

Inserting Related Models 76

Introduction 77

Relationship Types 77

One to Many 77

One to One 78

How to associate between two models (example: User and Phone model) 78

Explanation 79

Many to Many 79

Polymorphic 80

Many To Many 82

Chapter 23: Eloquent: Accessors & Mutators 85

Introduction 85

Syntax 85

Examples 85

Defining An Accessors 85

Getting Accessor: 85

Defining a Mutator 86

Chapter 24: Eloquent: Model 87

Examples 87

Making a Model 87

Model creation 87

Model File Location 88

Model configuration 89

Update an existing model 90

Chapter 25: Error Handling 91

Remarks 91

Examples 91

Send Error report email 91

Catching application wide ModelNotFoundException 92

Chapter 26: Events and Listeners 93

Examples 93

Using Event and Listeners for sending emails to a new registered user 93

Chapter 27: Filesystem / Cloud Storage 95

Examples 95

Configuration 95

Basic Usage 95

Custom Filesystems 97

Creating symbolic link in a web server using SSH 98

Chapter 28: Form Request(s) 99

Introduction 99

Syntax 99

Remarks 99

Examples 99

Creating Requests 99

Using Form Request 99

Handling Redirects after Validation 100

Chapter 29: Getting started with laravel-5.3 102

Remarks 102

Examples 102

Installing Laravel 102

Via Laravel Installer 102

Via Composer Create-Project 103

Setup 103

Server Requirements 103

Local Development Server 104

Hello World Example (Basic) and with using a view 104

Hello World Example (Basic) 105

Web Server Configuration for Pretty URLs 105

Chapter 30: Helpers 107

Introduction 107

Examples 107

Array methods 107

String methods 107

Path mehods 107

Urls 108

Chapter 31: HTML and Form Builder 109

Examples 109

Installation 109

Chapter 32: Installation 110

Examples 110

Installation 110

Via Composer 110

Via the Laravel installer 110

Running the application 111

Using a different server 111

Requirements 112

Hello World Example (Using Controller and View) 113

Hello World Example (Basic) 114

Installation using LaraDock (Laravel Homestead for Docker) 114

Installation 114

Basic Usage 115

Chapter 33: Installation Guide 116

Remarks 116

Examples 116

Installation 116

Hello World Example (Basic) 117

Hello World Example With Views and Controller 117

The view 117

The controller 117

The router 118

Chapter 34: Introduction to laravel-5.2 119

Introduction 119

Remarks 119

Examples 119

Installation or Setup 119

Install Laravel 5.1 Framework on Ubuntu 16.04, 14.04 & LinuxMint 119

Chapter 35: Introduction to laravel-5.3 123

Introduction 123

Examples 123

The $loop variable 123

Chapter 36: Laravel Docker 124

Introduction 124

Examples 124

Using Laradock 124

Chapter 37: Laravel Packages 125

Examples 125

laravel-ide-helper 125

laravel-datatables 125

Intervention Image 125

Laravel generator 125

Laravel Socialite 125

Official Packages 125

Cashier 125

Envoy 126

Passport 126

Scout 126

Socialite 126

Chapter 38: lumen framework 127

Examples 127

Getting started with Lumen 127

Chapter 39: Macros In Eloquent Relationship 128

Introduction 128

Examples 128

We can fetch one instance of hasMany relationship 128

Chapter 40: Mail 129

Examples 129

Basic example 129

Chapter 41: Middleware 130

Introduction 130

Remarks 130

Examples 130

Defining a Middleware 130

Before vs. After Middleware 131

Route Middleware 131

Chapter 42: Multiple DB Connections in Laravel 133

Examples 133

Initial Steps 133

Using Schema builder 133

Using DB query builder 134

Using Eloquent 134

From Laravel Documentation 134

Chapter 43: Naming Files when uploading with Laravel on Windows 136

Parameters 136

Examples 136

Generating timestamped file names for files uploaded by users. 136

Chapter 44: Observer 138

Examples 138

Creating an observer 138

Chapter 45: Pagination 140

Examples 140

Pagination in Laravel 140

Changing pagination views 141

Chapter 46: Permissions for storage 142

Introduction 142

Examples 142

Example 142

Chapter 47: Policies 143

Examples 143

Creating Policies 143

Chapter 48: Queues 144

Introduction 144

Examples 144

Use-cases 144

Queue Driver Configuration 144

sync 144

database 144

sqs 144

iron 145

redis 145

beanstalkd 145

null 145

Chapter 49: Remove public from URL in laravel 146

Introduction 146

Examples 146

How to do that? 146

Remove the public from url 146

Chapter 50: Requests 147

Examples 147

Getting input 147

Chapter 51: Requests 148

Examples 148

Obtain an Instance of HTTP Request 148

Request Instance with other Parameters from routes in controller method 148

Chapter 52: Route Model Binding 150

Examples 150

Implicit Binding 150

Explicit Binding 150

Chapter 53: Routing 152

Examples 152

Basic Routing 152

Routes pointing to a Controller method 152

A route for multiple verbs 152

Route Groups 153

Named Route 153

Generate URL using named route 153

Route Parameters 154

Optional Parameter 154

Required Parameter 154

Accessing the parameter in controller 154

Catch all routes 154

Catching all routes except already defined 154

Routes are matched in the order they are declared 155

Case-insensitive routes 155

Chapter 54: Seeding 157

Remarks 157

Examples 157

Inserting data 157

Using the DB Facade 157

Via Instantiating a Model 157

Using the create method 157

Using factory 158

Seeding && deleting old data and reseting auto-increment 158

Calling other seeders 158

Creating a Seeder 158

Safe reseeding 159

Chapter 55: Services 161

Examples 161

Introduction 161

Chapter 56: Services 166

Examples 166

Binding an Interface To Implementation 166

Binding an Instance 166

Binding a Singleton to the Service Container 166

Introduction 167

Using the Service Container as a Dependency Injection Container 167

Chapter 57: Socialite 168

Examples 168

Installation 168

Configuration 168

Basic Usage - Facade 168

Basic Usage - Dependency Injection 169

Socialite for API - Stateless 169

Chapter 58: Sparkpost integration with Laravel 5.4 171

Introduction 171

Examples 171

SAMPLE .env file data 171

Chapter 59: Task Scheduling 172

Examples 172

Creating a task 172

Making a task available 173

Scheduling your task 174

Setting the scheduler to run 174

Chapter 60: Testing 176

Examples 176

Introduction 176

Test without middleware and with a fresh database 176

Database transactions for mutliple database connection 177

Testing setup, using in memory database 177

Configuration 178

Chapter 61: Token Mismatch Error in AJAX 179

Introduction 179

Examples 179

Setup Token on Header 179

Set token on tag 179

Check session storage path & permission 179

Use _token field on Ajax 180

Chapter 62: use fields aliases in Eloquent 181

Chapter 63: Useful links 182

Introduction 182

Examples 182

Laravel Ecosystem 182

Education 182

Podcasts 182

Chapter 64: Valet 183

Introduction 183

Syntax 183

Parameters 183

Remarks 183

Examples 183

Valet link 183

Valet park 184

Valet links 184

Installation 184

Valet domain 185

Installation (Linux) 185

Chapter 65: Validation 186

Parameters 186

Examples 187

Basic Example 187

Array Validation 188

Other Validation Approaches 189

Single Form Request Class for POST, PUT, PATCH 191

Error messages 192

Customizing error messages 192

Customising error messages within a Request class 193

Displaying error messages 193

Custom Validation Rules 194

Credits 196

About

You can share this PDF with anyone you feel could benefit from it, downloaded the latest version
from: laravel

It is an unofficial and free Laravel ebook created for educational purposes. All the content is
extracted from Stack Overflow Documentation, which is written by many hardworking individuals at
Stack Overflow. It is neither affiliated with Stack Overflow nor official Laravel.

The content is released under Creative Commons BY-SA, and the list of contributors to each
chapter are provided in the credits section at the end of this book. Images may be copyright of
their respective owners unless otherwise specified. All trademarks and registered trademarks are
the property of their respective company owners.

Use the content presented in this book at your own risk; it is not guaranteed to be correct nor
accurate, please send your feedback and corrections to info@zzzprojects.com

https://riptutorial.com/ 1

http://riptutorial.com/ebook/laravel
https://archive.org/details/documentation-dump.7z
mailto:info@zzzprojects.com

Chapter 1: Getting started with Laravel

Remarks

Laravel StackOverflow Slack Community

Coming soon

Featured Tutorial

Getting Started With Laravel

Contribution Guidelines

Coming soon

Contribution Style Guide

Coming soon

About Laravel

Created by Taylor Otwell as a free open-source PHP web framework, Laravel is meant to ease
and accelerate the development process of web applications with a great taste for simplicity.

It follows the model–view–controller (MVC) architectural pattern as well as the PSR-2 coding
standard, and the PSR-4 autoloading standard.

Running a Test Driven Development (TDD) in Laravel is fun and easy to implement.

Hosted on GitHub and available at https://github.com/laravel/laravel, Laravel boasts of a micro-
services architecture, making it tremendously extendable and this, with ease, with the use of
custom-made and or existing third-party packages.

Main Features

MVC

Laravel uses the MVC model, therefore there are three core-parts of the framework which work

https://riptutorial.com/ 2

http://www.riptutorial.com/laravel/topic/7961/installation
http://www.riptutorial.com/laravel/topic/7961/installation
https://en.wikipedia.org/wiki/Category:PHP_frameworks
https://en.wikipedia.org/wiki/Web_framework/
https://laravel.com/
https://en.wikipedia.org/wiki/Model%E2%80%93view%E2%80%93controller/
https://github.com/php-fig/fig-standards/blob/master/accepted/PSR-2-coding-style-guide.md/
https://github.com/php-fig/fig-standards/blob/master/accepted/PSR-4-autoloader.md/
https://en.wikipedia.org/wiki/Test-driven_development/
https://github.com/
https://github.com/laravel/laravel
https://en.wikipedia.org/wiki/Microservices/
https://en.wikipedia.org/wiki/Microservices/

together: models, views and controllers. Controllers are the main part where most of the work is
done. They connect to models to get, create or update data and display the results on views,
which contain the actual HTML structure of the application.

Blade Templating Engine

Laravel is shipped with a templating engine known as Blade. Blade is quite easy to use, yet,
powerful. One feature the Blade templating engine does not share with other popular ones is her
permissiveness; allowing the use of plain PHP code in Blade templating engine files.

It is important to note that Blade templating engine files have .blade appended to file names right
before the usual .php which is nothing other than the actual file extension. As such, .blade.php is
the resulting file extension for Blade template files. Blade template engine files are stored in the
resources/views directory.

Routing & Middleware

You can define the URLs of your application with the help of routes. These routes can contain
variable data, connect to controllers or can be wrapped into middlewares. Middelware is a
mechanism for filtering HTTP requests. They can be used to interact with requests before they
reach the controllers and can thus modify or reject requests.

Artisan

Artisan is the command line tool you can use to control parts of Laravel. There are a lot of
commands available to create models, controllers and other resources needed for development.
You can also write your own commands to extend the Artisan command line tool.

Eloquent ORM

To connect your models to various types of databases, Laravel offers its own ORM with a large set
of functions to work with. The framework also provides migration and seeding and also features
rollbacks.

Event Handling

The framework is capable of handling events across the application. You can create event
listeners and event handlers that are similar to the ones from NodeJs.

Versions

Version Release Date

1.0 2011-06-09

2.0 2011-11-24

https://riptutorial.com/ 3

Version Release Date

3.0 2012-02-22

3.1 2012-03-27

3.2 2012-05-22

4.0 2013-05-28

4.1 2013-12-12

4.2 2014-06-01

5.0 2015-02-04

5.1 (LTS) 2015-06-09

5.2 2015-12-21

5.3 2016-08-24

5.4 2017-01-24

Examples

Welcome to Laravel tag documentation!

Laravel is a well-known PHP Framework. Here, you will learn all-about Laravel. Starting from as-
simple-as knowing what Object-Oriented Programming is, to the advanced Laravel package
development topic.

This, like every other Stackoverflow documentation tag, is community-driven documentation, so if
you already have experiences on Laravel, share your knowledge by add your own topics or
examples! Just don't forget to consult our Contribution style guide on this topic remarks to know
more about how to contribute and the style guide that we made to make sure we can give the best
experience towards people that want to learn more about Laravel.

More than that, we are very glad that you come, hope we can see you often here!

Starter Guide

Starter guide is custom navigation that we ordered by ourselves to make topic browsing easier
especially for beginner. This navigation is ordered by level of difficulty.

Getting Started

Installation

https://riptutorial.com/ 4

https://laravel.com/docs/4.2/
https://laravel.com/docs/5.0/
https://laravel.com/docs/5.1/
https://laravel.com/docs/5.2/
https://laravel.com/docs/5.3/
https://laravel.com/docs/5.4/
http://www.riptutorial.com/laravel/topic/7961/installation
http://www.riptutorial.com/laravel/topic/7961/installation

Laravel Views

Blade : Introduction

Blade : Variables and Control Structures

Or

Installation from here

Get composer from here and install it1.

Get Wamp from here, install it and set environment variable of PHP2.

Get path to www and type command:3.

composer create-project --prefer-dist laravel/laravel projectname

To install a specific Laravel version, get path to www and type command:

composer create-project --prefer-dist laravel/laravel=DESIRED_VERSION projectname

Or

Via Laravel Installer

First, download the Laravel installer using Composer:

composer global require "laravel/installer"

Make sure to place the $HOME/.composer/vendor/bin directory (or the equivalent directory for your
OS) in your $PATH so the laravel executable can be located by your system.

Once installed, the laravel new command will create a fresh Laravel installation in the directory you
specify. For instance, laravel new blog will create a directory named blog containing a fresh
Laravel installation with all of Laravel's dependencies already installed:

laravel new blog

Read Getting started with Laravel online: https://riptutorial.com/laravel/topic/794/getting-started-
with-laravel

https://riptutorial.com/ 5

http://stackoverflow.com/documentation/laravel/1251/views
http://www.riptutorial.com/laravel/topic/1407/blade-templates
https://getcomposer.org/
http://www.wampserver.com/en/
https://riptutorial.com/laravel/topic/794/getting-started-with-laravel
https://riptutorial.com/laravel/topic/794/getting-started-with-laravel

Chapter 2: Artisan

Syntax

php artisan [command] [options] [arguments]•

Parameters

Command Description

clear-compiled Remove the compiled class file

down Put the application into maintenance mode

env Display the current framework environment

help Displays help for a command

list Lists commands

migrate Run the database migrations

optimize Optimize the framework for better performance

serve Serve the application on the PHP development server

tinker Interact with your application

up Bring the application out of maintenance mode

app:name Set the application namespace

auth:clear-resets Flush expired password reset tokens

cache:clear Flush the application cache

cache:table Create a migration for the cache database table

config:cache Create a cache file for faster configuration loading

config:clear Remove the configuration cache file

db:seed Seed the database with records

event:generate Generate the missing events and listeners based on registration

key:generate Set the application key

https://riptutorial.com/ 6

Command Description

make:auth Scaffold basic login and registration views and routes

make:console Create a new Artisan command

make:controller Create a new controller class

make:event Create a new event class

make:job Create a new job class

make:listener Create a new event listener class

make:middleware Create a new middleware class

make:migration Create a new migration file

make:model Create a new Eloquent model class

make:policy Create a new policy class

make:provider Create a new service provider class

make:request Create a new form request class

make:seeder Create a new seeder class

make:test Create a new test class

migrate:install Create the migration repository

migrate:refresh Reset and re-run all migrations

migrate:reset Rollback all database migrations

migrate:rollback Rollback the last database migration

migrate:status Show the status of each migration

queue:failed List all of the failed queue jobs

queue:failed-table Create a migration for the failed queue jobs database table

queue:flush Flush all of the failed queue jobs

queue:forget Delete a failed queue job

queue:listen Listen to a given queue

queue:restart Restart queue worker daemons after their current job

https://riptutorial.com/ 7

Command Description

queue:retry Retry a failed queue job

queue:table Create a migration for the queue jobs database table

queue:work Process the next job on a queue

route:cache Create a route cache file for faster route registration

route:clear Remove the route cache file

route:list List all registered routes

schedule:run Run the scheduled commands

session:table Create a migration for the session database table

vendor:publish Publish any publishable assets from vendor packages

view:clear Clear all compiled view files

Examples

Introduction

Artisan is a utility that can help you do specific repetitive tasks with bash commands. It covers
many tasks, including: working with database migrations and seeding, clearing cache, creating
necessary files for Authentication setup, making new controllers, models, event classes, and a
lot more.

Artisan is the name of the command-line interface included with Laravel. It provides a
number of helpful commands for your use while developing your application.

To view a list of all available Artisan commands, you may use the list command:

php artisan list

To know more about the any available command, just precede its name with help keyword:

php artisan help [command-name]

List all registered routes filtered by multiple methods

php artisan route:list --method=GET --method=POST

This will include all routes that accept GET and POST methods simultaneously.

https://riptutorial.com/ 8

http://www.riptutorial.com/laravel/example/3508/migrations
http://www.riptutorial.com/laravel/topic/3272/seeding

Running Laravel Artisan commands using PHP code

You can also use Laravel Artisan commands from your routes or controllers.

To run a command using PHP code:

Artisan::call('command-name');

For example,

Artisan::call('db:seed');

Creating and registering new artisan command

You can create new commands via

php artisan make:command [commandName]

So this will create [commandName] command class inside app/Console/Commands directory.

inside this class you will find protected $signature and protected $description variables, it
represents name and discription of your command which will be used to describe your command.

after creating command you can register your command inside app/Console/Kernel.php class where
you will find commands property.

so you can add your command inside the $command array like :

protected $commands = [
 Commands\[commandName]::class
];

and then i can use my command via console.

so as example i have named my command like

protected $signature = 'test:command';

So whenever i will run

php artisan test:command

it will call the handle method inside the class having signature test:command.

Read Artisan online: https://riptutorial.com/laravel/topic/1140/artisan

https://riptutorial.com/ 9

https://riptutorial.com/laravel/topic/1140/artisan

Chapter 3: Authentication

Examples

Multi Authentication

Laravel allows you to use multiple Authentication types with specific guards.

In laravel 5.3 multiple authentication is little different from Laravel 5.2

I will explain how to implement multiauthentication feature in 5.3

First you need two different user Model

cp App/User.php App/Admin.php

change class name to Admin and set namespace if you use models different. it should look like

App\Admin.php

<?php

namespace App;

use Illuminate\Foundation\Auth\User as Authenticatable;
use Illuminate\Notifications\Notifiable;

class Admin extends Authenticatable
{
 use Notifiable;

 protected $fillable = ['name', 'email', 'password'];
 protected $hidden = ['password', 'remember_token'];

}

Also you need create a migration for admin

php artisan make:migration create_admins_table

then edit migration file with contents of default user migration. Looks like this

<?php

use Illuminate\Database\Migrations\Migration;
use Illuminate\Database\Schema\Blueprint;
use Illuminate\Support\Facades\Schema;

class CreateAdminsTable extends Migration
{
 /**

https://riptutorial.com/ 10

 * Run the migrations.
 *
 * @return void
 */
 public function up()
 {
 Schema::create('admins', function (Blueprint $table) {
 $table->increments('id');
 $table->string('name');
 $table->string('email')->unique();
 $table->string('password');
 $table->rememberToken();
 $table->timestamps();

 $table->softDeletes();
 });
 }

 /**
 * Reverse the migrations.
 *
 * @return void
 */
 public function down()
 {
 Schema::drop('admins');
 }
}

edit config/auth.php

'guards' => [
 'web' => [
 'driver' => 'session',
 'provider' => 'users',
],

 'api' => [
 'driver' => 'token',
 'provider' => 'users',
],
 //Add Admin Guard
 'admin' => [
 'driver' => 'session',
 'provider' => 'admins',
],
],

and

'providers' => [
 'users' => [
 'driver' => 'eloquent',
 'model' => App\User::class,
],
 //Add Admins Provider
 'admins' => [
 'driver' => 'eloquent',
 'model' => App\Admin::class,

https://riptutorial.com/ 11

],
],

Notice that we add two entry. one in guards variable one in providers variable.

And this is how you use the other guard then "web"

My App\Http\Controllers\Admin\LoginController

<?php

namespace App\Http\Controllers\Admin;

use App\Http\Controllers\Controller;
use Illuminate\Foundation\Auth\AuthenticatesUsers;
use Illuminate\Support\Facades\Auth;

class AuthController extends Controller
{

 use AuthenticatesUsers;

 protected $guard = 'admin';

 protected $redirectTo = '/admin/';

 public function showLoginForm()
 {
 return view('admin.login');
 }

 protected function guard()
 {
 return Auth::guard($this->guard);
 }

}

this needs little explanation.

in a nutshell Auth::guard('admin') will allow you to use auth methods (such as login, logout,
register etc.) with your admin guard.

For example

Auth::guard('admin')->login($user)

will search $user in admins table and login with the user while

Auth::login($user)

will works normally with users table. Default guard is specified in config/auth.php with defaults
array. In fresh laravel it is "web" .

https://riptutorial.com/ 12

In controller you have to implement methods from AuthenticatesUsers to show your custom view
paths. And you need implement other functions such as guard to use your new user guards.

In this example my admin login is admin/login.blade

And by implementing guard() function to return Auth::guard('admin') all AuthenticatesUsers trait
methods works with "admin" guard.

In earlier versions of laravel, this is little different from 5.3

in 5.2 getGuard function returns $guard variable from class and main function (login) use it in

Auth::guard($guard)->attempt(...)

in 5.3 guard function returns whole Auth::guard() and main function use it like

$this->guard()->attempt(...)

Read Authentication online: https://riptutorial.com/laravel/topic/7051/authentication

https://riptutorial.com/ 13

https://riptutorial.com/laravel/topic/7051/authentication

Chapter 4: Authorization

Introduction

Laravel provides a simple way to authorise user actions on specific resources. With Authorization,
you can selectively allow users access to certain resources while denying access to others.
Laravel provides a simple API for managing user authorizations by using Gates and Policies. Gates
provide a simple closure based approach to authorisation using the AuthServiceProvider while
Policies allow you to organise authorisation logic around models using classes.

Examples

Using Gates

Gates are closures that determine if a user is allowed to perform a certain action on a resource.
Gates are typically defined in the boot method of AuthServiceProvider and succinctly named to
reflect what it's doing. An example of a gate that allows only premium users to view some content
will look like this:

Gate::define('view-content', function ($user, $content){
 return $user->isSubscribedTo($content->id);
});

A Gate always receives a user instance as the first argument, you don't need to pass it when using
the gate, and may optionally receive additional arguments such as the eloquent model in concern.

Authorizing Actions with Gates

To use the example above on a blade template to hide content from the user, you would typically
do something like this:

@can('view-content', $content)
 <! -- content here -->
@endcan

To completely prevent navigation to the content, you can do the following in your controller:

if(Gate::allows('view-content', $content)){
 /* user can view the content */
}

 OR

if(Gate::denies('view-content', $content)){
 /* user cannot view content */
}

https://riptutorial.com/ 14

Note: You are not required to pass the currently authenticated user to these method, Laravel takes
care of that for you.

Policies

Policies are classes that help you organise authorisation logic around a model resource. Using our
previous example, we might have a ContentPolicy that manages user access to the Content model.

To make ContentPolicy, laravel provides an artisan command. Simply run

php artisan make:policy ContentPolicy

This will make an empty policy class and place in app/Policies folder. If the folder does not exist,
Laravel will create it and place the class inside.

Once created, policies need to be registered to help Laravel know which policies to use when
authorising actions on models. Laravel's AuthServiceProvider, which comes with all fresh Laravel
installations, has a policies property which maps your eloquent models to their authorisation
policies. All you need to do add the mapping to the array.

protected $policies = [
 Content::class => ContentPolicy::class,
];

Writing Policies

Writing Policies follows much the same pattern as writing Gates. The content permission gate can
be rewritten as a Policy like this:

function view($user, $content)
{
 return $user->isSubscribedTo($content->id);
}

Policies can contain more methods as needed to take care of all authorisation cases for a model.

Authorizing Actions with Policies

Via The User model

The Laravel User model contains two methods that help with authorisations using Policies; can
and can't. These two can be used to determine if a user has authorisation or not on a model
respectively.

To check if a user can view a content or not, you can do the following:

if($user->can('view', $content)){
 /* user can view content */
}

https://riptutorial.com/ 15

 OR

if($user->cant('view', $content)){
 /* user cannot view content */
}

Via Middleware

Route::get('/contents/{id}, function(Content $content){
 /* user can view content */
})->middleware('can:view,content');

Via Controllers

Laravel provides a helper method, called authorize that takes the name of the policy and the
associated model as arguments, and either authorizes the action based on your authorisation logic
or denies the action and throws an AuthorizationException which the Laravel Exception handler
converts to a 403 HTTP response.

pubic function show($id)
{
 $content = Content::find($id);

 $this->authorize('view', $content);

 /* user can view content */
}

Read Authorization online: https://riptutorial.com/laravel/topic/9360/authorization

https://riptutorial.com/ 16

https://riptutorial.com/laravel/topic/9360/authorization

Chapter 5: Blade Templates

Introduction

Laravel supports Blade templating engine out of the box. The Blade templating engine allows us to
create master templates and child templating loading content from master templates, we can have
variables, loops and conditional statements inside the blade file.

Examples

Views: Introduction

Views, in an MVC pattern, contain the logic on how to present data to the user. In a web
application, typically they are used to generate the HTML output that is sent back to users with
each response. By default, views in Laravel are stored in the resources/views directory.

A view can be called using the view helper function:

view(string $path, array $data = [])

The first parameter of the helper is the path to a view file, and the second parameter is an optional
array of data to pass to the view.

Therefore, to call the resources/views/example.php, you would use:

view('example');

View files in subfolders within the resources/views directory, such as
resources/views/parts/header/navigation.php, can be called using dot notation:
view('parts.header.navigation');

Within a view file, such as resources/views/example.php, you're free to include both HTML and PHP
together:

<html>
 <head>
 <title>Hello world!</title>
 </head>
 <body>
 <h1>Welcome!</h1>
 <p>Your name is: <?php echo $name; ?></p>
 </body>
</html>

In the previous example (which doesn't use any Blade specific syntax), we output the $name
variable. To pass this value to our view, we would pass an array of values when calling the view
helper:

https://riptutorial.com/ 17

view('example', ['name' => $name]);

or alternatively, use the compact() helper. In this case, the string passed to compact() corresponds
to the name of the variable we want to pass to the view.

view('example', compact('name'));

NAMING CONVENTION FOR BLADE VARIABLES

While sending data back to view. You can use underscore for multi-words variablebut with - laravel
gives error.

Like this one will give error (notice hyphen (-) within the user-address

view('example',['user-address' => 'Some Address']);

The correct way of doing this will be

view('example', ['user_address' => 'Some Address']);

Control Structures

Blade provides convenient syntax for common PHP control structures.

Each of the control structures begins with @[structure] and ends with @[endstructure]. Notice that
within the tags, we are just typing normal HTML and including variables with the Blade syntax.

Conditionals

'If' statements

@if ($i > 10)
 <p>{{ $i }} is large.</p>
@elseif ($i == 10)
 <p>{{ $i }} is ten.</p>
@else
 <p>{{ $i }} is small.</p>
@endif

'Unless' statements

(Short syntax for 'if not'.)

@unless ($user->hasName())
 <p>A user has no name.</p>
@endunless

https://riptutorial.com/ 18

Loops

'While' loop

@while (true)
 <p>I'm looping forever.</p>
@endwhile

'Foreach' loop

@foreach ($users as $id => $name)
 <p>User {{ $name }} has ID {{ $id }}.</p>
@endforeach

'Forelse' Loop

(Same as 'foreach' loop, but adds a special @empty directive, which is executed when the array
expression iterated over is empty, as a way to show default content .)

@forelse($posts as $post)
 <p>{{ $post }} is the post content.</p>
@empty
 <p>There are no posts.</p>
@endforelse

Within loops, a special $loop variable will be available, containing information about the state of the
loop:

Property Description

$loop->index The index of the current loop iteration (starts at 0).

$loop->iteration The current loop iteration (starts at 1).

$loop->remaining The remaining loop iterations.

$loop->count The total number of items in the array being iterated.

$loop->first Whether this is the first iteration through the loop.

$loop->last Whether this is the last iteration through the loop.

$loop->depth The nesting level of the current loop.

$loop->parent When in a nested loop, the parent's loop variable.

https://riptutorial.com/ 19

Example:

@foreach ($users as $user)
 @foreach ($user->posts as $post)
 @if ($loop->parent->first)
 This is first iteration of the parent loop.
 @endif
 @endforeach
@endforeach

Since Laravel 5.2.22, we can also use the directives @continue and @break

Property Description

@continue Stop the current iteration and start the next one.

@break Stop the current loop.

Example :

@foreach ($users as $user)
 @continue ($user->id == 2)
 <p>{{ $user->id }} {{ $user->name }}</p>
 @break ($user->id == 4)
@endforeach

Then (assuming 5+ users are sorted by ID and no ID is missing) the page will render

1 Dave
3 John
4 William

Echoing PHP expressions

Any PHP expression within double curly braces {{ $variable }} will be echoed after being run
through the e helper function. (So html special characters (<, >, ", ', &) are safely replaced for the
corresponding html entities.) (The PHP expression must evaluate to string, otherwise an exception
will be thrown.)

Echoing a variable

{{ $variable }}

Echoing an element in an array

{{ $array["key"] }}

https://riptutorial.com/ 20

https://laravel.com/docs/5.3/helpers#method-e
https://laravel.com/docs/5.3/helpers#method-e

Echoing an object property

{{ $object->property }}

Echoing the result of a function call

{{ strtolower($variable) }}

Checking for Existence

Normally, in PHP, to check if a variable is set and print it you would do

Before PHP 7•

<?php echo isset($variable) ? $variable : 'Default'; ?>

After PHP 7 (using the "Null coalescing operator")•

<?php echo $variable ?? 'Default'; ?>

Blade operator or makes this easier:

{{ $variable or 'Default' }}

Raw echos

As mentioned, regular double braces syntax {{ }}, are filtered through PHP's htmlspecialchars
function, for security (preventing malicious injection of HTML in the view). If you would like to
bypass this behavior, for example if you're trying to output a block of HTML content resulting from
a PHP expression, use the following syntax:

{!! $myHtmlString !!}

Note that it is considered a best practice to use the standard {{ }} syntax to escape your data,
unless absolutely necessary. In addition, when echoing untrusted content (ie. content supplied by
users of your site), you should avoid using the {!! !!} syntax.

Including Partial Views

With Blade, you can also include partial views (called 'partials') directly into a page like so:

@include('includes.info', ['title' => 'Information Station'])

https://riptutorial.com/ 21

The code above will include the view at 'views/includes/info.blade.php'. It will also pass in a
variable $title having value 'Information Station'.

In general, an included page will have access to any variable that the calling page has access to.
For instance, if we have:

{{$user}} // Outputs 'abc123'
@include('includes.info')

And 'includes/info.blade.php' has the following:

<p>{{$user}} is the current user.</p>

Then the page will render:

abc123
abc123 is the current user.

Include Each

Sometimes, you will want to combine an include statement with a foreach statement, and access
the variables from within the foreach loop in the include. In this case, use Blade's @each directive:

@each('includes.job', $jobs, 'job')

The first parameter is the page to include. The second parameter is the array to iterate over. The
third parameter is the variable assigned to the elements of the array. The statement above is
equivalent to:

@foreach($jobs as $job)
 @include('includes.job', ['job' => $job])
@endforeach

You can also pass an optional fourth argument to the @each directive to specify the view to show
when the array is empty.

@each('includes.job', $jobs, 'job', 'includes.jobsEmpty')

Layout Inheritance

A layout is a view file, which is extended by other views which inject blocks of code into their
parent. For example:

parent.blade.php:

<html>
 <head>
 <style type='text/css'>

https://riptutorial.com/ 22

 @yield('styling')
 </style>
 </head>
 <body>
 <div class='main'>
 @yield('main-content')
 </div>
 </body>
</html>

child.blade.php:

@extends('parent')

@section('styling')
.main {
 color: red;
}
@stop

@section('main-content')
This is child page!
@stop

otherpage.blade.php:

@extends('parent')

@section('styling')
.main {
 color: blue;
}
@stop

@section('main-content')
This is another page!
@stop

Here you see two example child pages, which each extend the parent. The child pages define a
@section, which is inserted in the parent at the appropriate @yield statement.

So the view rendered by View::make('child') will say "This is child page!" in red, while
View::make('otherpage') will produce the same html, except with the text "This is another page!"
in blue instead.

It is common to separate the view files, e.g. having a layouts folder specifically for the layout files,
and a separate folder for the various specific individual views.

The layouts are intended to apply code that should appear on every page, e.g. adding a sidebar or
header, without having to write out all the html boilerplate in every individual view.

Views can be extended repeatedly - i.e. page3 can @extend('page2'), and page2 can
@extend('page1').

https://riptutorial.com/ 23

The extend command uses the same syntax as used for View::make and @include, so the file
layouts/main/page.blade.php is accessed as layouts.main.page.

Sharing data to all views

Sometimes you need to set the same data in many of your views.

Using View::share

// "View" is the View Facade
View::share('shareddata', $data);

After this, the contents of $data will be available in all views under the name $shareddata.

View::share is typically called in a service provider, or perhaps in the constructor of a controller, so
the data will be shared in views returned by that controller only.

Using View::composer

View composers are callbacks or class methods that are called when a view is rendered. If you
have data that you want to be bound to a view each time that view is rendered, a view composer
can help you organize that logic into a single location. You can directly bind variable to a specific
view or to all views.

Closure-based composer

use Illuminate\Support\Facades\View;

// ...

View::composer('*', function ($view) {
 $view->with('somedata', $data);
});

Class-based composer

use Illuminate\Support\Facades\View;

// ...

View::composer('*', 'App\Http\ViewComposers\SomeComposer');

As with View::share, it's best to register the composers in a service provider.

If going with the composer class approach, then you would have
App/Http/ViewComposers/SomeComposer.php with:

https://riptutorial.com/ 24

use Illuminate\Contracts\View\View;

class SomeComposer
{
 public function compose(View $view)
 {
 $view->with('somedata', $data);
 }
}

These examples use '*' in the composer registration. This parameter is a string that matches the
view names for which to register the composer (* being a wildcard). You can also select a single
view (e.g. 'home') of a group of routes under a subfolder (e.g. 'users.*').

Execute arbitrary PHP code

Although it might not be proper to do such thing in a view if you intend to separate concerns
strictly, the php Blade directive allows a way to execute PHP code, for instance, to set a variable:

@php($varName = 'Enter content ')

(same as:)

@php
 $varName = 'Enter content ';
@endphp

later:

{{ $varName }}

Result:

Enter content

Read Blade Templates online: https://riptutorial.com/laravel/topic/1407/blade-templates

https://riptutorial.com/ 25

https://riptutorial.com/laravel/topic/1407/blade-templates

Chapter 6: Cashier

Remarks

Laravel Cashier can be used for subscription billing by providing an interface into the subscription
services of both Braintree and Stripe. In addition to basic subscription management it can be used
to handle coupons, exchanging subscriptions, quantities, cancellation grace periods and PDF
invoice generation.

Examples

Stripe Setup

Initial Setup

To use Stripe for handling payments we need to add the following to the composer.json then run
composer update:

"laravel/cashier": "~6.0"

The following line then needs to be added to config/app.php, the service provider:

Laravel\Cashier\CashierServiceProvider

Databse Setup

In order to use cashier we need to configure the databases, if a users table does not already exist
we need to create one and we also need to create a subscriptions table. The following example
amends an existing users table. See Eloquent Models for more information about models.

To use cashier create a new migration and add the following which will achieve the above:

// Adjust users table

Schema::table('users', function ($table) {
 $table->string('stripe_id')->nullable();
 $table->string('card_brand')->nullable();
 $table->string('card_last_four')->nullable();
 $table->timestamp('trial_ends_at')->nullable();
});

//Create subscriptions table

Schema::create('subscriptions', function ($table) {
 $table->increments('id');
 $table->integer('user_id');
 $table->string('name');
 $table->string('stripe_id');

https://riptutorial.com/ 26

http://www.riptutorial.com/laravel/topic/865/eloquent

 $table->string('stripe_plan');
 $table->integer('quantity');
 $table->timestamp('trial_ends_at')->nullable();
 $table->timestamp('ends_at')->nullable();
 $table->timestamps();
});

We then need to run php artisan migrate to update our database.

Model Setup

We then have to add the billable trait to the User model found in app/User.php and change it to the
following:

use Laravel\Cashier\Billable;

class User extends Authenticatable
{
 use Billable;
}

Stripe Keys

In order to ensure that we ares ending the money to our own Stripe account we have to set it up in
the config/services.php file by adding the following line:

'stripe' => [
 'model' => App\User::class,
 'secret' => env('STRIPE_SECRET'),
],

Replacing the STRIPE_SECRET with your own stripe secret key.

After completing this Cashier and Strip is setup so you can continue with setting up subscriptions.

Read Cashier online: https://riptutorial.com/laravel/topic/7474/cashier

https://riptutorial.com/ 27

https://riptutorial.com/laravel/topic/7474/cashier

Chapter 7: Change default routing behaviour
in Laravel 5.2.31 +

Syntax

public function map(Router $router) // Define the routes for the application.•
protected function mapWebRoutes(Router $router) // Define the "web" routes for the
application.

•

Parameters

Parameter Header

Router $router \Illuminate\Routing\Router $router

Remarks

Middleware means that every call to a route will go through the middleware before actually hitting
your route specific code. In Laravel the web middleware is used to ensure session handling or the
csrf token check for example.

There are other middlewares like auth or api by default. You can also easily create your own
middleware.

Examples

Adding api-routes with other middleware and keep default web middleware

Since Laravel version 5.2.31 the web middleware is applied by default within the
RouteServiceProvider (
https://github.com/laravel/laravel/commit/5c30c98db96459b4cc878d085490e4677b0b67ed)

In app/Providers/RouteServiceProvider.php you will find the following functions which apply the
middleware on every route within your app/Http/routes.php

public function map(Router $router)
{
 $this->mapWebRoutes($router);
}

// ...

protected function mapWebRoutes(Router $router)
{

https://riptutorial.com/ 28

https://github.com/laravel/laravel/commit/5c30c98db96459b4cc878d085490e4677b0b67ed)

 $router->group([
 'namespace' => $this->namespace, 'middleware' => 'web',
], function ($router) {
 require app_path('Http/routes.php');
 });
}

As you can see the middleware web is applied. You could change this here. However, you can
also easily add another entry to be able to put your api routes for example into another file (e.g.
routes-api.php)

public function map(Router $router)
{
 $this->mapWebRoutes($router);
 $this->mapApiRoutes($router);
}

protected function mapWebRoutes(Router $router)
{
 $router->group([
 'namespace' => $this->namespace, 'middleware' => 'web',
], function ($router) {
 require app_path('Http/routes.php');
 });
}

protected function mapApiRoutes(Router $router)
{
 $router->group([
 'namespace' => $this->namespace, 'middleware' => 'api',
], function ($router) {
 require app_path('Http/routes-api.php');
 });
}

With this you can easily seperate you api routes from your application routes without the messy
group wrapper within your routes.php

Read Change default routing behaviour in Laravel 5.2.31 + online:
https://riptutorial.com/laravel/topic/4285/change-default-routing-behaviour-in-laravel-5-2-31-plus

https://riptutorial.com/ 29

https://riptutorial.com/laravel/topic/4285/change-default-routing-behaviour-in-laravel-5-2-31-plus

Chapter 8: Collections

Syntax

$collection = collect(['Value1', 'Value2', 'Value3']); // Keys default to 0, 1, 2, ...,•

Remarks

Illuminate\Support\Collection provides a fluent and convenient interface to deal with arrays of
data. You may well have used these without knowing, for instance Model queries that fetch
multiple records return an instance of Illuminate\Support\Collection.

For up to date documentation on Collections you can find the official documentation here

Examples

Creating Collections

Using the collect() helper, you can easily create new collection instances by passing in an array
such as:

$fruits = collect(['oranges', 'peaches', 'pears']);

If you don't want to use helper functions, you can create a new Collection using the class directly:

$fruits = new Illuminate\Support\Collection(['oranges', 'peaches', 'pears']);

As mentioned in the remarks, Models by default return a Collection instance, however you are free
to create your own collections as needed. If no array is specified on creation, an empty Collection
will be created.

where()

You can select certain items out of a collection by using the where() method.

$data = [
 ['name' => 'Taylor', 'coffee_drinker' => true],
 ['name' => 'Matt', 'coffee_drinker' => true]
];

$matt = collect($data)->where('name', 'Matt');

This bit of code will select all items from the collection where the name is 'Matt'. In this case, only
the second item is returned.

https://riptutorial.com/ 30

https://laravel.com/docs/master/collections

Nesting

Just like most array methods in Laravel, where() supports searching for nested elements as well.
Let's extend the example above by adding a second array:

$data = [
 ['name' => 'Taylor', 'coffee_drinker' => ['at_work' => true, 'at_home' => true]],
 ['name' => 'Matt', 'coffee_drinker' => ['at_work' => true, 'at_home' => false]]
];

$coffeeDrinkerAtHome = collect($data)->where('coffee_drinker.at_home', true);

This will only return Taylor, as he drinks coffee at home. As you can see, nesting is supported
using the dot-notation.

Additions

When creating a Collection of objects instead of arrays, those can be filtered using where() as well.
The Collection will then try to receive all desired properties.

5.3

Please note, that since Laravel 5.3 the where() method will try to loosely compare the values by
default. That means when searching for (int)1, all entries containing '1' will be returned as well. If
you don't like that behaviour, you may use the whereStrict() method.

Using Get to lookup value or return default

You often find yourself in a situation where you need to find a variables corresponding value, and
collections got you covered.

In the example below we got three different locales in an array with a corresponding calling code
assigned. We want to be able to provide a locale and in return get the associated calling code.
The second parameter in get is a default parameter if the first parameter is not found.

function lookupCallingCode($locale)
{
 return collect([
 'de_DE' => 49,
 'en_GB' => 44,
 'en_US' => 1,
])->get($locale, 44);
}

In the above example we can do the following

lookupCallingCode('de_DE'); // Will return 49
lookupCallingCode('sv_SE'); // Will return 44

https://riptutorial.com/ 31

You may even pass a callback as the default value. The result of the callback will be returned if
the specified key does not exist:

 return collect([
 'de_DE' => 49,
 'en_GB' => 44,
 'en_US' => 1,
])->get($locale, function() {
 return 44;
 });

Using Contains to check if a collection satisfies certain condition

A common problem is having a collection of items that all need to meet a certain criteria. In the
example below we have collected two items for a diet plan and we want to check that the diet
doesn't contain any unhealthy food.

// First we create a collection
$diet = collect([
 ['name' => 'Banana', 'calories' => '89'],
 ['name' => 'Chocolate', 'calories' => '546']
]);

// Then we check the collection for items with more than 100 calories
$isUnhealthy = $diet->contains(function ($i, $snack) {
 return $snack["calories"] >= 100;
});

In the above case the $isUnhealthy variable will be set to true as Chocolate meets the condition,
and the diet is thus unhealthy.

Using Pluck to extract certain values from a collection

You will often find yourself with a collection of data where you are only interested in parts of the
data.

In the example below we got a list of participants at an event and we want to provide a the tour
guide with a simple list of names.

// First we collect the participants
$participants = collect([
 ['name' => 'John', 'age' => 55],
 ['name' => 'Melissa', 'age' => 18],
 ['name' => 'Bob', 'age' => 43],
 ['name' => 'Sara', 'age' => 18],
]);

// Then we ask the collection to fetch all the names
$namesList = $partcipants->pluck('name')
// ['John', 'Melissa', 'Bob', 'Sara'];

You can also use pluck for collections of objects or nested arrays/objects with dot notation.

https://riptutorial.com/ 32

$users = User::all(); // Returns Eloquent Collection of all users
$usernames = $users->pluck('username'); // Collection contains only user names

$users->load('profile'); // Load a relationship for all models in collection

// Using dot notation, we can traverse nested properties
$names = $users->pluck('profile.first_name'); // Get all first names from all user profiles

Using Map to manipulate each element in a collection

Often you need to change the way a set of data is structured and manipulate certain values.

In the example below we got a collection of books with an attached discount amount. But we much
rather have a list of books with a price that's already discounted.

$books = [
 ['title' => 'The Pragmatic Programmer', 'price' => 20, 'discount' => 0.5],
 ['title' => 'Continuous Delivery', 'price' => 25, 'discount' => 0.1],
 ['title' => 'The Clean Coder', 'price' => 10, 'discount' => 0.75],
];

$discountedItems = collect($books)->map(function ($book) {
 return ['title' => $book["title"], 'price' => $book["price"] * $book["discount"]];
});

//[
// ['title' => 'The Pragmatic Programmer', 'price' => 10],
// ['title' => 'Continuous Delivery', 'price' => 12.5],
// ['title' => 'The Clean Coder', 'price' => 5],
//]

This could also be used to change the keys, let's say we wanted to change the key title to name
this would be a suitable solution.

Using sum, avg, min or max on a collection for statistical calculations

Collections also provide you with an easy way to do simple statistical calculations.

$books = [
 ['title' => 'The Pragmatic Programmer', 'price' => 20],
 ['title' => 'Continuous Delivery', 'price' => 30],
 ['title' => 'The Clean Coder', 'price' => 10],
]

$min = collect($books)->min('price'); // 10
$max = collect($books)->max('price'); // 30
$avg = collect($books)->avg('price'); // 20
$sum = collect($books)->sum('price'); // 60

Sorting a collection

There are a several different ways of sorting a collection.

https://riptutorial.com/ 33

Sort()

The sort method sorts the collection:

$collection = collect([5, 3, 1, 2, 4]);

$sorted = $collection->sort();

echo $sorted->values()->all();

returns : [1, 2, 3, 4, 5]

The sort method also allows for passing in a custom callback with your own algorithm. Under the
hood sort uses php's usort.

$collection = $collection->sort(function ($a, $b) {
 if ($a == $b) {
 return 0;
 }
 return ($a < $b) ? -1 : 1;
});

SortBy()

The sortBy method sorts the collection by the given key:

$collection = collect([
['name' => 'Desk', 'price' => 200],
['name' => 'Chair', 'price' => 100],
['name' => 'Bookcase', 'price' => 150],
]);

$sorted = $collection->sortBy('price');

echo $sorted->values()->all();

returns: [
 ['name' => 'Chair', 'price' => 100],
 ['name' => 'Bookcase', 'price' => 150],
 ['name' => 'Desk', 'price' => 200],
]

The sortBy method allows using dot notation format to access deeper key in order to sort a multi-
dimensional array.

$collection = collect([
 ["id"=>1,"product"=>['name' => 'Desk', 'price' => 200]],
 ["id"=>2, "product"=>['name' => 'Chair', 'price' => 100]],
 ["id"=>3, "product"=>['name' => 'Bookcase', 'price' => 150]],
]);

https://riptutorial.com/ 34

http://php.net/manual/en/function.usort.php#refsect1-function.usort-parameters

$sorted = $collection->sortBy("product.price")->toArray();

return: [
 ["id"=>2, "product"=>['name' => 'Chair', 'price' => 100]],
 ["id"=>3, "product"=>['name' => 'Bookcase', 'price' => 150]],
 ["id"=>1,"product"=>['name' => 'Desk', 'price' => 200]],
]

SortByDesc()

This method has the same signature as the sortBy method, but will sort the collection in the
opposite order.

Using reduce()

The reduce method reduces the collection to a single value, passing the result of each iteration into
the subsequent iteration. Please see reduce method.

The reduce method loops through each item with a collection and produces new result to the next
iteration. Each result from the last iteration is passed through the first parameter (in the following
examples, as $carry).

This method can do a lot of processing on large data sets. For example the following examples,
we will use the following example student data:

 $student = [
 ['class' => 'Math', 'score' => 60],
 ['class' => 'English', 'score' => 61],
 ['class' => 'Chemistry', 'score' => 50],
 ['class' => 'Physics', 'score' => 49],
];

Sum student's total score

$sum = collect($student)
 ->reduce(function($carry, $item){
 return $carry + $item["score"];
 }, 0);

Result: 220

Explanation:

$carry is the result from the last iteration.•
The second parameter is the default value for the $carry in the first round of iteration. This
case, the default value is 0

•

Pass a student if all their scores are >= 50

$isPass = collect($student)

https://riptutorial.com/ 35

https://laravel.com/docs/5.2/collections#method-reduce

 ->reduce(function($carry, $item){
 return $carry && $item["score"] >= 50;
 }, true);

Result: false

Explanation:

Default value of $carry is true•
If all score is greater than 50, the result will return true; if any less than 50, return false.•

Fail a student if any score is < 50

$isFail = collect($student)
 ->reduce(function($carry, $item){
 return $carry || $item["score"] < 50;
 }, false);

Result: true

Explain:

the default value of $carry is false•
if any score is less than 50, return true; if all scores are greater than 50, return false.•

Return subject with the highest score

$highestSubject = collect($student)
 ->reduce(function($carry, $item){
 return $carry === null || $item["score"] > $carry["score"] ? $item : $carry;
 });

result: ["subject" => "English", "score" => 61]

Explain:

The second parameter is not provided in this case.•

The default value of $carry is null, thus we check for that in our conditional.•

Using macro() to extend collections

The macro() function allows you to add new functionality to Illuminate\Support\Collection objects

Usage:

Collection::macro("macro_name", function ($parameters) {
 // Your macro
});

For example:

https://riptutorial.com/ 36

Collection::macro('uppercase', function () {
 return $this->map(function ($item) {
 return strtoupper($item);
 });
});

collect(["hello", "world"])->uppercase();

Result: ["HELLO", "WORLD"]

Using Array Syntax

The Collection object implements the ArrayAccess and IteratorAggregate interface, allowing it to be
used like an array.

Access collection element:

 $collection = collect([1, 2, 3]);
 $result = $collection[1];

Result: 2

Assign new element:

$collection = collect([1, 2, 3]);
$collection[] = 4;

Result: $collection is [1, 2, 3, 4]

Loop collection:

$collection = collect(["a" => "one", "b" => "two"]);
$result = "";
foreach($collection as $key => $value){
 $result .= "(".$key.": ".$value.") ";
}

Result: $result is (a: one) (b: two)

Array to Collection conversion:

To convert a collection to a native PHP array, use:

$array = $collection->all();
//or
$array = $collection->toArray()

To convert an array into a collection, use:

$collection = collect($array);

https://riptutorial.com/ 37

Using Collections with Array Functions

Please be aware that collections are normal objects which won't be converted properly when used
by functions explicitly requiring arrays, like array_map($callback).

Be sure to convert the collection first, or, if available, use the method provided by the Collection
class instead: $collection->map($callback)

Read Collections online: https://riptutorial.com/laravel/topic/2358/collections

https://riptutorial.com/ 38

https://riptutorial.com/laravel/topic/2358/collections

Chapter 9: Common Issues & Quick Fixes

Introduction

This section lists the common issues & quick fixes developers (especially beginners) face.

Examples

TokenMisMatch Exception

You get this exception mostly with form submissions. Laravel protects application from CSRF and
validates every request and ensures the request originated from within the application. This
validation is done using a token. If this token mismatches this exception is generated.

Quick Fix

Add this within your form element. This sends csrf_token generated by laravel along with other
form data so laravel knows that your request is valid

<input type="hidden" name="_token" value="{{ csrf_token() }}">

Read Common Issues & Quick Fixes online: https://riptutorial.com/laravel/topic/9971/common-
issues---quick-fixes

https://riptutorial.com/ 39

https://riptutorial.com/laravel/topic/9971/common-issues---quick-fixes
https://riptutorial.com/laravel/topic/9971/common-issues---quick-fixes

Chapter 10: Constants

Examples

Example

First you have to create a file constants.php and it is a good practice to create this file inside
app/config/ folder. You can also add constants.php file in compose.json file.

Example File:

app/config/constants.php

Array based constants inside the file:

return [
 'CONSTANT' => 'This is my first constant.'
];

And you can get this constant by including the facade Config :

use Illuminate\Support\Facades\Config;

Then get the value by constant name CONSTANT like below :

echo Config::get('constants.CONSTANT');

And the result would be the value :

This is my first constant.

Read Constants online: https://riptutorial.com/laravel/topic/9192/constants

https://riptutorial.com/ 40

https://riptutorial.com/laravel/topic/9192/constants

Chapter 11: Controllers

Introduction

Instead of defining all of your request handling logic as Closures in route files, you may wish to
organise this behaviour using Controller classes. Controllers can group related request handling
logic into a single class. Controllers are stored in the app/Http/Controllers directory by default.

Examples

Basic Controllers

<?php

namespace App\Http\Controllers;

use App\User;
use App\Http\Controllers\Controller;

class UserController extends Controller
{
 /**
 * Show the profile for the given user.
 *
 * @param int $id
 * @return Response
 */
 public function show($id)
 {
 return view('user.profile', ['user' => User::findOrFail($id)]);
 }
}

You can define a route to this controller action like so:

Route::get('user/{id}', 'UserController@show');

Now, when a request matches the specified route URI, the show method on the UserController
class will be executed. Of course, the route parameters will also be passed to the method.

Controller Middleware

Middleware may be assigned to the controller's routes in your route files:

Route::get('profile', 'UserController@show')->middleware('auth');

However, it is more convenient to specify middleware within your controller's constructor. Using
the middleware method from your controller's constructor, you may easily assign middleware to
the controller's action.

https://riptutorial.com/ 41

class UserController extends Controller
{
 /**
 * Instantiate a new controller instance.
 *
 * @return void
 */
 public function __construct()
 {
 $this->middleware('auth');

 $this->middleware('log')->only('index');

 $this->middleware('subscribed')->except('store');
 }
}

Resource Controller

Laravel resource routing assigns the typical "CRUD" routes to a controller with a single line of
code. For example, you may wish to create a controller that handles all HTTP requests for
"photos" stored by your application. Using the make:controller Artisan command, we can quickly
create such a controller:

php artisan make:controller PhotoController --resource

This command will generate a controller at app/Http/Controllers/PhotoController.php. The
controller will contain a method for each of the available resource operations.

Example of how a Resource Controller look

<?php

namespace App\Http\Controllers;

use Illuminate\Http\Request;

class PhotoController extends Controller
{
 /**
 * Display a listing of the resource.
 *
 * @return \Illuminate\Http\Response
 */
 public function index()
 {
 //
 }

 /**
 * Show the form for creating a new resource.
 *
 * @return \Illuminate\Http\Response
 */
 public function create()
 {

https://riptutorial.com/ 42

 //
 }

 /**
 * Store a newly created resource in storage.
 *
 * @param \Illuminate\Http\Request $request
 * @return \Illuminate\Http\Response
 */
 public function store(Request $request)
 {
 //
 }

 /**
 * Display the specified resource.
 *
 * @param int $id
 * @return \Illuminate\Http\Response
 */
 public function show($id)
 {
 //
 }

 /**
 * Show the form for editing the specified resource.
 *
 * @param int $id
 * @return \Illuminate\Http\Response
 */
 public function edit($id)
 {
 //
 }

 /**
 * Update the specified resource in storage.
 *
 * @param \Illuminate\Http\Request $request
 * @param int $id
 * @return \Illuminate\Http\Response
 */
 public function update(Request $request, $id)
 {
 //
 }

 /**
 * Remove the specified resource from storage.
 *
 * @param int $id
 * @return \Illuminate\Http\Response
 */
 public function destroy($id)
 {
 //
 }
}

The example of the resource controller shares the method name of those in the table below.

https://riptutorial.com/ 43

Next, you may register a resourceful route to the controller:

Route::resource('photos', 'PhotoController');

This single route declaration creates multiple routes to handle a variety of actions on the resource.
The generated controller will already have methods stubbed for each of these actions, including
notes informing you of the HTTP verbs and URIs they handle.

Actions Handled By Resource Controller

Verb URI Action Route Name

GET /photos index photos.index

GET /photos/create create photos.create

POST /photos store photos.store

GET /photos/{photo} show photos.show

GET /photos/{photo}/edit edit photos.edit

PUT/PATCH /photos/{photo} update photos.update

DELETE /photos/{photo} destroy photos.destroy

Read Controllers online: https://riptutorial.com/laravel/topic/10604/controllers

https://riptutorial.com/ 44

https://riptutorial.com/laravel/topic/10604/controllers

Chapter 12: Cron basics

Introduction

Cron is a task scheduler daemon which runs scheduled tasks at certain intervals. Cron uses a
configuration file called crontab, also known as cron table, to manage the scheduling process.

Examples

Create Cron Job

Crontab contains cron jobs, each related to a specific task. Cron jobs are composed of two parts,
the cron expression, and a shell command to be run:

* * * * * command/to/run

Each field in the above expression * * * * * is an option for setting the schedule frequency. It is
composed of minute, hour, day of month, month and day of week in order of the placement. The
asterisk symbol refers to all possible values for the respective field. As a result, the above cron job
will be run every minute in the day.

The following cron job is executed at 12:30 every day:

30 12 * * * command/to/run

Read Cron basics online: https://riptutorial.com/laravel/topic/9891/cron-basics

https://riptutorial.com/ 45

https://riptutorial.com/laravel/topic/9891/cron-basics

Chapter 13: Cross Domain Request

Examples

Introduction

Sometimes we need cross domain request for our API's in laravel. We need to add appropriate
headers to complete the cross domain request successfully. So we need to make sure that
whatever headers we are adding should be accurate otherwise our API's become vulnerable. In
order to add headers we need to add middleware in laravel which will add the appropriate headers
and forward the requests.

CorsHeaders

<?php

namespace laravel\Http\Middleware;

class CorsHeaders
{
 /**
 * This must be executed _before_ the controller action since _after_ middleware isn't
executed when exceptions are thrown and caught by global handlers.
 *
 * @param $request
 * @param \Closure $next
 * @param string [$checkWhitelist] true or false Is a string b/c of the way the arguments
are supplied.
 * @return mixed
 */
 public function handle($request, \Closure $next, $checkWhitelist = 'true')
 {
 if ($checkWhitelist == 'true') {
 // Make sure the request origin domain matches one of ours before sending CORS response
headers.
 $origin = $request->header('Origin');
 $matches = [];
 preg_match('/^(https?:\/\/)?([a-zA-Z\d]+\.)*(?<domain>[a-zA-Z\d-\.]+\.[a-z]{2,10})$/',
$origin, $matches);

 if (isset($matches['domain']) && in_array($matches['domain'], ['yoursite.com']) {
 header('Access-Control-Allow-Origin: ' . $origin);
 header('Access-Control-Expose-Headers: Location');
 header('Access-Control-Allow-Credentials: true');

 // If a preflight request comes then add appropriate headers
 if ($request->method() === 'OPTIONS') {
 header('Access-Control-Allow-Methods: GET, POST, PUT, OPTIONS, DELETE, PATCH');
 header('Access-Control-Allow-Headers: ' . $request->header('Access-Control-Request-
Headers'));
 // 20 days
 header('Access-Control-Max-Age: 1728000');
 }
 }

https://riptutorial.com/ 46

 } else {
 header('Access-Control-Allow-Origin: *');
 }

 return $next($request);
 }
}

Read Cross Domain Request online: https://riptutorial.com/laravel/topic/7425/cross-domain-
request

https://riptutorial.com/ 47

https://riptutorial.com/laravel/topic/7425/cross-domain-request
https://riptutorial.com/laravel/topic/7425/cross-domain-request

Chapter 14: Custom Helper function

Introduction

Adding custom helpers can assist you with your development speed. There are a few things to
take into consideration while writing such helper functions though, hence this tutorial.

Remarks

Just a few pointers:

We've put the function definitions within a check (function_exists) to prevent exceptions
when the service provider is called twice.

•

An alternative way is registering the helpers file from the composer.json file. You can copy the
logic from the laravel framework itself.

•

Examples

document.php

<?php

if (!function_exists('document')) {
 function document($text = '') {
 return $text;
 }
}

Create a helpers.php file, let's assume for now it lives in app/Helpers/document.php. You can put
many helpers in one file (this is how Laravel does it) or you can split them up by name.

HelpersServiceProvider.php

Now let's create a service provider. Let's put it under app/Providers:

<?php

namespace App\Providers;

class HelpersServiceProvider extends ServiceProvider
{
 public function register()
 {
 require_once __DIR__ . '/../Helpers/document.php';
 }
}

The above service provider load the helpers file and registers your custom function automatically.

https://riptutorial.com/ 48

https://github.com/laravel/framework/blob/5.3/src/Illuminate/Support/composer.json#L31

Please make sure you register this HelpersServiceProvider in your config/app.php under providers:

'providers' => [
 // [..] other providers
 App\Providers\HelpersServiceProvider::class,
]

Use

Now you can use the function document() everywhere in your code, for example in blade templates.
This example only returns the same string it receives as an argument

<?php
Route::get('document/{text}', function($text) {
 return document($text);
});

Now go to /document/foo in your browser (use php artisan serve or valet), which will return foo.

Read Custom Helper function online: https://riptutorial.com/laravel/topic/8347/custom-helper-
function

https://riptutorial.com/ 49

https://riptutorial.com/laravel/topic/8347/custom-helper-function
https://riptutorial.com/laravel/topic/8347/custom-helper-function

Chapter 15: CustomException class in
Laravel

Introduction

PHP Exceptions are thrown when an unprecedented event or error occurs.

As a rule of thumb, an exception should not be used to control the application logic such as if-
statements and should be a subclass of the Exception class.

One main advantage of having all exceptions caught by a single class is that we are able to create
custom exception handlers that return different response messages depending on the exception.

Examples

CustomException class in laravel

all errors and exceptions, both custom and default, are handled by the Handler class in
app/Exceptions/Handler.php with the help of two methods.

report()•

render()

public function render($request, Exception $e)
{
 //check if exception is an instance of ModelNotFoundException.
 if ($e instanceof ModelNotFoundException)
 {
 // ajax 404 json feedback
 if ($request->ajax())
 {
 return response()->json(['error' => 'Not Found'], 404);
 }
 // normal 404 view page feedback
 return response()->view('errors.missing', [], 404);
 }
 return parent::render($request, $e);
}

•

then create view related to error in errors folder named 404.blade.php

User not found.

You broke the balance of the internet

Read CustomException class in Laravel online:
https://riptutorial.com/laravel/topic/9550/customexception-class-in-laravel

https://riptutorial.com/ 50

https://riptutorial.com/laravel/topic/9550/customexception-class-in-laravel

Chapter 16: Database

Examples

Multiple database connections

Laravel allows user work on multiple database connections. If you need to connect to multiple
databases and make them work together, you are beware of the connection setup.

You also allow using different types of database in the same application if you required.

Default connection In config/database.php, you can see the configuration item call:

'default' => env('DB_CONNECTION', 'mysql'),

This name references the connections' name mysql below:

'connections' => [

 'sqlite' => [
 'driver' => 'sqlite',
 'database' => database_path('database.sqlite'),
 'prefix' => '',
],

 'mysql' => [
 'driver' => 'mysql',
 'host' => env('DB_HOST', 'localhost'),
 'port' => env('DB_PORT', '3306'),
 'database' => env('DB_DATABASE', 'forge'),
 'username' => env('DB_USERNAME', 'forge'),
 'password' => env('DB_PASSWORD', ''),
 'charset' => 'utf8',
 'collation' => 'utf8_unicode_ci',
 'prefix' => '',
 'strict' => false,
 'engine' => null,
],
],

If you did not mention the name of database connection in other codes or commands, Laravel will
pick up the default database connection name. however, in multiple database connections, even
you setup the default connection, you've better setup everywhere which database connection you
used.

Migration file

In migration file, if single database connection, you can use:

 Schema::create("table",function(Blueprint $table){
 $table->increments('id');

https://riptutorial.com/ 51

});

In multiple database connection, you will use the connection() method to tell Laravel which
database connection you use:

 Schema::connection("sqlite")->create("table",function(Blueprint $table){
 $table->increments('id');
});

Artisan Migrate

if you use single database connection, you will run:

php artisan migrate

However, for multiple database connection, you've better tell which database connection
maintains the migration data. so you will run the following command:

php artisan migrate:install --database=sqlite

This command will install migration table in the target database to prepare migration.

php artisan migrate --database=sqlite

This command will run migration and save the migration data in the target database

php artisan migrate:rollback --database=sqlite

This command will rollback migration and save the migration data in the target database

Eloquent Model

To specify a database connection using Eloquent, you need to define the $connection property:

namespace App\Model\Sqlite;
class Table extends Model
{
 protected $table="table";
 protected $connection = 'sqlite';
}

To specify another (second) database connection using Eloquent:

namespace App\Model\MySql;
class Table extends Model
{
 protected $table="table";
 protected $connection = 'mysql';
}

https://riptutorial.com/ 52

Laravel will use $connection property defined in a model to utilize the specified connection defined
in config/database.php. If the $connection property is not defined in a model the default will be used.

You may also specify another connection using the static on method:

// Using the sqlite connection
Table::on('sqlite')->select(...)->get()
// Using the mysql connection
Table::on('mysql')->select(...)->get()

Database/Query Builder

You may also specify another connection using the query builder:

// Using the sqlite connection
DB::connection('sqlite')->table('table')->select(...)->get()
// Using the mysql connection
DB::connection('mysql')->table('table')->select(...)->get()

Unit Test

Laravel provide seeInDatabase($table,$fielsArray,$connection) to test database connection code.
In Unit test file, you need to do like:

$this
 ->json(
 'GET',
 'result1/2015-05-08/2015-08-08/a/123'
)
 ->seeInDatabase("log", ["field"=>"value"], 'sqlite');

In this way, Laravel will know which database connection to test.

Database Transactions in Unit Test

Laravel allows database to rollback all the change during the tests. For testing multiple database
connections, you need to set $connectionsToTransact properties

use Illuminate\Foundation\Testing\DatabaseMigrations;

class ExampleTest extends TestCase
{
 use DatabaseTransactions;

 $connectionsToTransact =["mysql","sqlite"] //tell Laravel which database need to rollBack

 public function testExampleIndex()
 {
 $this->visit('/action/parameter')
 ->see('items');
 }
}

https://riptutorial.com/ 53

Read Database online: https://riptutorial.com/laravel/topic/1093/database

https://riptutorial.com/ 54

https://riptutorial.com/laravel/topic/1093/database

Chapter 17: Database Migrations

Examples

Migrations

To control your database in Laravel is by using migrations. Create migration with artisan:

php artisan make:migration create_first_table --create=first_table

This will generate the class CreateFirstTable. Inside the up method you can create your columns:

<?php

use Illuminate\Database\Schema\Blueprint;
use Illuminate\Database\Migrations\Migration;

class CreateFirstTable extends Migration
{
 public function up()
 {
 Schema::create('first_table', function (Blueprint $table) {
 $table->increments('id');
 $table->string('first_string_column_name');
 $table->integer('secont_integer_column_name');
 $table->timestamps();
 });
 }

 public function down()
 {
 Schema::drop('first_table');
 }
}

At the end to run all of your migrations classes you can run the artisan command:

php artisan migrate

This will create your tables and your columns in your database. Other useful migrate command
are:

php artisan migrate:rollback - Rollback the last database migration•
php artisan migrate:reset - Rollback all database migrations•
php artisan migrate:refresh - Reset and re-run all migrations•
php artisan migrate:status - Show the status of each migration•

Modifying existing tables

Sometimes, you need to change your existing table structure like renaming/deleting columns.

https://riptutorial.com/ 55

Which you can accomplish by creating a new migration.And In the up method of your migration.

//Renaming Column.

public function up()
{
 Schema::table('users', function (Blueprint $table) {
 $table->renameColumn('email', 'username');
 });
}

Above example will rename email column of users table to username. While the below code drops a
column username from users table.

IMPROTANT : For modifying columns you need to add doctrine/dbal dependency to project's
composer.json file and run composer update to reflect changes.

//Droping Column
public function up()
{
 Schema::table('users', function (Blueprint $table) {
 $table->dropColumn('username');
 });
}

The migration files

Migrations in a Laravel 5 application live in the database/migrations directory. Their filenames
conform to a particular format:

<year>_<month>_<day>_<hour><minute><second>_<name>.php

One migration file should represent a schema update to solve a particular problem. For example:

2016_07_21_134310_add_last_logged_in_to_users_table.php

Database migrations are kept in chronological order so that Laravel knows in which order to
execute them. Laravel will always execute migrations from oldest to newest.

Generating migration files

Creating a new migration file with the correct filename every time you need to change your
schema would be a chore. Thankfully, Laravel's artisan command can generate the migration for
you:

php artisan make:migration add_last_logged_in_to_users_table

You can also use the --table and --create flags with the above command. These are optional and
just for convenience, and will insert the relevant boilerplate code into the migration file.

https://riptutorial.com/ 56

php artisan make:migration add_last_logged_in_to_users_table --table=users

php artisan make:migration create_logs_table --create=logs

You can specify a custom output path for the generated migration using the --path option. The
path is relative to the application's base path.

php artisan make:migration --path=app/Modules/User/Migrations

Inside a database migration

Each migration should have an up() method and a down() method. The purpose of the up() method
is to perform the required operations to put the database schema in its new state, and the purpose
of the down() method is to reverse any operations performed by the up() method. Ensuring that the
down() method correctly reverses your operations is critical to being able to rollback database
schema changes.

An example migration file may look like this:

<?php

use Illuminate\Database\Schema\Blueprint;
use Illuminate\Database\Migrations\Migration;

class AddLastLoggedInToUsersTable extends Migration
{
 /**
 * Run the migrations.
 *
 * @return void
 */
 public function up()
 {
 Schema::table('users', function (Blueprint $table) {
 $table->dateTime('last_logged_in')->nullable();
 });
 }

 /**
 * Reverse the migrations.
 *
 * @return void
 */
 public function down()
 {
 Schema::table('users', function (Blueprint $table) {
 $table->dropColumn('last_logged_in');
 });
 }
}

When running this migration, Laravel will generate the following SQL to run against your database:

ALTER TABLE `users` ADD `last_logged_in` DATETIME NULL

https://riptutorial.com/ 57

Running migrations

Once your migration is written, running it will apply the operations to your database.

php artisan migrate

If all went well, you'll see an output similar to the below:

Migrated: 2016_07_21_134310_add_last_logged_in_to_users_table

Laravel is clever enough to know when you're running migrations in the production environment. If
it detects that you're performing a destructive migration (for example, one that removes a column
from a table), the php artisan migrate command will ask you for confirmation. In continuous
delivery environments this may not be wanted. In that case, use the --force flag to skip the
confirmation:

php artisan migrate --force

If you've only just run migrations, you may be confused to see the presence of a migrations table
in your database. This table is what Laravel uses to keep track of what migrations have already
been run. When issuing the migrate command, Laravel will determine what migrations have yet to
run, and then execute them in chronological order, and then update the migrations table to suit.

You should never manually edit the migrations table unless you absolutely know what you're
doing. It's very easy to inadvertently leave your database in a broken state where your migrations
will fail.

Rolling Back Migrations

What if you want to rollback the latest migration i.e recent operation, you can use the awesome
rollback command. But remember that this command rolls back only the last migration, which may
include multiple migration files

php artisan migrate:rollback

If you are interested in rolling back all of your application migrations, you may use the following
command

php artisan migrate:reset

Moreover if you are lazy like me and want to rollback and migrate with one command, you may
use this command

php artisan migrate:refresh
php artisan migrate:refresh --seed

You can also specify number of steps to rollback with step option. Like this will rollback 1 step.

https://riptutorial.com/ 58

php artisan migrate:rollback --step=1

Read Database Migrations online: https://riptutorial.com/laravel/topic/1131/database-migrations

https://riptutorial.com/ 59

https://riptutorial.com/laravel/topic/1131/database-migrations

Chapter 18: Database Seeding

Examples

Running a Seeder

You may add your new Seeder to the DatabaseSeeder class.

 /**
 * Run the database seeds.
 *
 * @return void
 */
 public function run()
 {
 $this->call(UserTableSeeder::class);
 }

To run a database seeder, use the Artisan command

php artisan db:seed

This will run the DatabaseSeeder class. You can also choose to use the --class= option to
manually specify which seeder to run.

*Note, you may need to run composer dumpautoload if your Seeder class cannot be found. This
typically happens if you manually create a seeder class instead of using the artisan command.

Creating a Seed

Database seeds are stored in the /database/seeds directory. You can create a seed using an
Artisan command.

php artisan make:seed UserTableSeeder

Alternatively you can create a new class which extends Illuminate\Database\Seeder. The class
must a public function named run().

Inserting Data using a Seeder

You can reference models in a seeder.

use DB;
use App\Models\User;

class UserTableSeeder extends Illuminate\Database\Seeder{

 public function run(){

https://riptutorial.com/ 60

 # Remove all existing entrie
 DB::table('users')->delete() ;
 User::create([
 'name' => 'Admin',
 'email' => 'admin@example.com',
 'password' => Hash::make('password')
]);

 }
}

Inserting data with a Model Factory

You may wish to use Model Factories within your seeds. This will create 3 new users.

use App\Models\User;

class UserTableSeeder extends Illuminate\Database\Seeder{

 public function run(){
 factory(User::class)->times(3)->create();
 }
}

You may also want to define specific fields on your seeding like a password, for instance. This will
create 3 users with the same password.

factory(User::class)->times(3)->create(['password' => '123456']);

Seeding with MySQL Dump

Follow previous example of creating a seed. This example uses a MySQL Dump to seed a table in
the project database. The table must be created before seeding.

<?php

use Illuminate\Database\Seeder;

class UserTableSeeder extends Seeder
{

 /**
 * Run the database seeds.
 *
 * @return void
 */
 public function run()
 {
 $sql = file_get_contents(database_path() . '/seeds/users.sql');

 DB::statement($sql);
 }
}

https://riptutorial.com/ 61

Our $sql is going to be the contents of our users.sql dump. The dump should have an INSERT
INTO statement. It will be up to you where you store your dumps. In the above example, it is
stored in the project directory \database\seeds. Using laravel's helper function database_path() and
appending the directory and file name of the dump.

INSERT INTO `users` (`id`, `name`, `email`, `password`, `remember_token`, `created_at`,
`updated_at`) VALUES
(1, 'Jane', 'janeDoe@fakemail.com', 'superSecret', NULL, '2016-07-21 00:00:00', '2016-07-21
00:00:00'),
(2, 'John', 'johnny@fakemail.com', 'sup3rS3cr3t', NULL, '2016-07-21 00:00:00', '2016-07-21
00:00:00');

DB::statement($sql) will execute the inserts once the Seeder is run. As in previous examples, you
can put the UserTableSeeder in the DatabaseSeeder class provided by laravel:

<?php

use Illuminate\Database\Seeder;

class DatabaseSeeder extends Seeder
{
 /**
 * Run the database seeds.
 *
 * @return void
 */
 public function run()
 {
 $this->call(UserTableSeeder::class);
 }
}

and run from CLI in project directory php artisan db:seed. Or you can run the Seeder for a single
class using php artisan db:seed --class=UsersTableSeeder

Using faker And ModelFactories to generate Seeds

1) BASIC SIMPLE WAY

Database-driven applications often need data pre-seeded into the system for testing and demo
purposes.

To make such data, first create the seeder class

ProductTableSeeder

use Faker\Factory as Faker;
use App\Product;

class ProductTableSeeder extends DatabaseSeeder {

public function run()
{
 $faker = $this->getFaker();

https://riptutorial.com/ 62

 for ($i = 0; $i < 10; $i++)
 {
 $name = $faker->word;
 $image = $faker->imageUrl;

 Modelname::create([
 'name' => $name,
 'image' => $image,
]);
 }
 }
 }

To call a be able to execute a seeder class, you have call it from the DatabaseSeeder class,
Simply by passing the name of the seeder you wish to run:

use Illuminate\Database\Seeder;

class DatabaseSeeder extends Seeder {

 protected $faker;

 public function getFaker() {
 if (empty($this->faker)) {
 $faker = Faker\Factory::create();
 $faker->addProvider(new Faker\Provider\Base($faker));
 $faker->addProvider(new Faker\Provider\Lorem($faker));
 }
 return $this->faker = $faker;
 }
 public function run() {
 $this->call(ProductTableSeeder::class);
 }
}

Do not forget to run $ composer dump-autoload after you create the Seeder, since they are not
automatically autoloaded by composer (unless you created seeder by artisan command $ php
artisan make:seeder Name)

Now you are ready to seed by running this artisan command php artisan db:seed

2) USING Model Factories

First of all you to define a default set of attributes for each Model in
App/database/factories/ModelFactory.php

Taking a User model as an exemple, This how a ModelFactory looks like

$factory->define(App\User::class, function (Faker\Generator $faker) {
 return [
 'name' => $faker->name,
 'email' => $faker->email,
 'password' => bcrypt(str_random(10)),
 'remember_token' => str_random(10),
];

https://riptutorial.com/ 63

});

Now Create a table seeder php artisan make:seeder UsersTableSeeder

And add this

public function run()
{
 factory(App\User::class, 100)->create()
}

then add this to the DatabaseSeeder

public function run()
{
 $this->call(UsersTableSeeder::class);
}

This will seed the table with 100 records.

Read Database Seeding online: https://riptutorial.com/laravel/topic/1118/database-seeding

https://riptutorial.com/ 64

https://riptutorial.com/laravel/topic/1118/database-seeding

Chapter 19: Deploy Laravel 5 App on Shared
Hosting on Linux Server

Remarks

To get more information on deploying Laravel project on shared hosting, visit this Github repo.

Examples

Laravel 5 App on Shared Hosting on Linux Server

By default Laravel project's public folder exposes the content of the app which can be requested
from anywhere by anyone, the rest of the app code is invisible or inaccessible to anyone without
proper permissions.

After developing the application on your development machine, it needs to be pushed to a
production server so that it can be accessed through the internet from anywhere - right?

For most apps/websites the first choice is to use shared hosting package from hosting service
providers like GoDaddy, HostGator etc. mainly due to low cost.

note: you may ask your provider to manually change document_root, so all you have
to do is upload your Laravel application to server (via FTP), request change of root to
{app}/public and you should be good.

Such shared hosting packages, however do have limitations in terms of terminal access and file
permissions. By default one has to upload their app/code to the public_html folder on their shared
hosting account.

So if you want to upload a Laravel project to a shared hosting account how would you go about it?
Should you upload the entire app (folder) to the public_html folder on your shared hosting
account? - Certainly NO

Because everything in the public_html folder is accessible "publically i.e. by anyone" which would
be a big security risk.

Steps to upload a project to shared hosting account - the Laravel way

Step 1
Create a folder called laravel (or anything you like) on the same level as the public_html folder.

Eg:
/
|--var
 |---www
 |----laravel //create this folder in your shared hosting account

https://riptutorial.com/ 65

https://github.com/petehouston/laravel-deploy-on-shared-hosting

 |----public_html
 |----log

Step 2
Copy every thing except the public folder from your laravel project (on development machine) in
the laravel folder (on server host - shared hosting account).
You can use:

C-panel : which would be the slowest option•
FTP Client: like FileZilla to connect to you shared hosting account and transfer your files
and folders through FTP upload

•

Map Network Drive: you can also create a mapped network drive on your development
machine to connect to your shared hosting account's root folder using "ftp://your-domain-
name" as the network address.

•

Step 3
Open the public folder of your laravel project (on development machine), copy everything and
paste in the public_html folder (on server host - shared hosting account).
Step 4
Now open the index.php file in the public_html folder on the shared hosting account (in cpanel
editor or any other connected editor) and:

Change:

require __DIR__.'/../bootstrap/autoload.php';

To:

require __DIR__.'/../laravel/bootstrap/autoload.php';

And Change:

$app = require_once __DIR__.'/../bootstrap/app.php';

To:

$app = require_once __DIR__.'/../laravel/bootstrap/app.php';

Save and close.

Step 5
Now go to the laravel folder (on shared hosting account -server) and open server.php file
Change

require_once __DIR__.'/public/index.php';

To:

https://riptutorial.com/ 66

ftp://your-domain-name
ftp://your-domain-name

require_once __DIR__.'../public_html/index.php';

Save and close.

Step 6
Set file permissions for the laravel/storage folder (recursively) and all files, sub-folders and file
within them on shared hosting account - server to 777.
Note: Be careful with the file permissions in linux, they are like double edged sword, if not used
correctly, they may make your app vulnerable to attacks. For understanding Linux file permissions
you can read https://www.linux.com/learn/tutorials/309527-understanding-linux-file-permissions

Step 7

As .env file of local/development server is Ignored by git and it should be ignored as it has all the
environment variables including the APP_KEY and it should not be exposed to public by pushing it
into the repositories'. You can also see that .gitignore file has .env mentioned thus it will not
upload it to repositories.

After following all the above steps make a .env file in the laravel folder and add all the environment
variable which you have used from the local/development server's .env file to the .env file of
production server.

Even there are configuration files like app.php, database.php in config folder of laravel application
which defines this variables as by default in second parameter of env() but don't hard-code the
values in these files as it will affect the configuration files of the users who pulls your repository. So
it is recommended to create .env file manually!

Also laravel gives .env-example file that you can use as a reference.

That's it.

Now when you visit the url which you configured as the domain with your server, your laravel app
should work just as it worked on your localhost - development machine, while still the application
code is safe and not accessible by anyone without proper file permissions.

Read Deploy Laravel 5 App on Shared Hosting on Linux Server online:
https://riptutorial.com/laravel/topic/2410/deploy-laravel-5-app-on-shared-hosting-on-linux-server

https://riptutorial.com/ 67

https://www.linux.com/learn/tutorials/309527-understanding-linux-file-permissions
https://riptutorial.com/laravel/topic/2410/deploy-laravel-5-app-on-shared-hosting-on-linux-server

Chapter 20: Directory Structure

Examples

Change default app directory

There are use cases when you might want to rename your app directory to something else. In
Laravel4 you could just change a config entry, here's one way to do it in Laravel5.

In this example we'll be renaming the app directory to src.

Override Application class

The directories name app is hardcoded into the core Application class, so it has to be overridden.
Create a new file Application.php. I prefer to keep mine in the src directory (the one we'll be
replacing app with), but you can place it elsewhere.

Here's how the overridden class should look like. If you want a different name, just change the
string src to something else.

namespace App;

class Application extends \Illuminate\Foundation\Application
{
 /**
 * @inheritdoc
 */
 public function path($path = '')
 {
 return $this->basePath . DIRECTORY_SEPARATOR . 'src' . ($path ? DIRECTORY_SEPARATOR .
$path : $path);
 }
}

Save the file. We're done with it.

Calling the new class

Open up bootstrap/app.php and locate

$app = new Illuminate\Foundation\Application(
 realpath(__DIR__.'/../')
);

We'll be replacing it with this

$app = new App\Application(
 realpath(__DIR__.'/../')

https://riptutorial.com/ 68

);

Composer

Open up your composer.json file and change autoloading to match your new location

"psr-4": {
 "App\\": "src/"
}

And finally, in the command line run composer dump-autoload and your app should be served from
the src directory.

Change the Controllers directory

if we want to change the Controllers directory we need:

Move and/or rename the default Controllers directory where we want it. For example from
app/Http/Controllers to app/Controllers

1.

Update all the namespaces of the files inside the Controllers folder, making they adhere to
the new path, respecting the PSR-4 specific.

2.

Change the namespace that is applied to the routes.php file, by editing
app\Providers\RouteServiceProvider.php and change this:

3.

protected $namespace = 'App\Http\Controllers';

to this:

protected $namespace = 'App\Controllers';

Read Directory Structure online: https://riptutorial.com/laravel/topic/3153/directory-structure

https://riptutorial.com/ 69

https://riptutorial.com/laravel/topic/3153/directory-structure

Chapter 21: Eloquent

Introduction

The Eloquent is an ORM (Object Relational Model) included with the Laravel. It implements the
active record pattern and is used to interact with relational databases.

Remarks

Table naming

The convention is to use pluralised “snake_case” for table names and singular “StudlyCase” for
model names. For example:

A cats table would have a Cat model•
A jungle_cats table would have a JungleCat model•
A users table would have a User model•
A people table would have a Person model•

Eloquent will automatically try to bind your model with a table that has the plural of the name of the
model, as stated above.

You can, however, specify a table name to override the default convention.

class User extends Model
{
 protected $table = 'customers';
}

Examples

Introduction

Eloquent is the ORM built into the Laravel framework. It allows you to interact with your database
tables in an object-oriented manner, by use of the ActiveRecord pattern.

A single model class usually maps to a single database table, and also relationships of different
types (one-to-one, one-to-many, many-to-many, polymorphic) can be defined between different
model classes.

Section Making a Model describes the creation and definition of model classes.

Before you can start using Eloquent models, make sure at least one database connection has
been configured in your config/database.php configuration file.

To understand usage of eloquent query builder during development you may use php artisan ide-

https://riptutorial.com/ 70

https://en.wikipedia.org/wiki/Object-relational_mapping
https://en.wikipedia.org/wiki/Active_record_pattern
http://stackoverflow.com/documentation/laravel/7960/eloquent-relationship/25764/one-to-one#t=201705171503347387636
http://www.riptutorial.com/laravel/example/27340/relationship-types
http://www.riptutorial.com/laravel/example/27341/many-to-many
http://www.riptutorial.com/laravel/example/4292/making-a-model

helper:generate command. Here is the link.

Sub-topic Navigation

Eloquent Relationship

Persisting

In addition to reading data with Eloquent, you can also use it to insert or update data with the
save() method. If you have created a new model instance then the record will be inserted;
otherwise, if you have retrieved a model from the database and set new values, it will be updated.

In this example we create a new User record:

$user = new User();
$user->first_name = 'John';
$user->last_name = 'Doe';
$user->email = 'john.doe@example.com';
$user->password = bcrypt('my_password');
$user->save();

You can also use the create method to populate fields using an array of data:

User::create([
 'first_name'=> 'John',
 'last_name' => 'Doe',
 'email' => 'john.doe@example.com',
 'password' => bcrypt('changeme'),
]);

When using the create method your attributes should be declared in the fillable array within your
model:

class User extends Model
{
 protected $fillable = [
 'first_name',
 'last_name',
 'email',
 'password',
];
}

Alternatively, if you would like to make all attributes mass assignable, you may define the
$guarded property as an empty array:

class User extends Model
{
 /**
 * The attributes that aren't mass assignable.
 *

https://riptutorial.com/ 71

https://github.com/barryvdh/laravel-ide-helper
http://www.riptutorial.com/laravel/topic/7960/eloquent---relationship

 * @var array
 */
 protected $guarded = [];
}

But you can also create a record without even changing fillable attribute in your model by using
forceCreate method rather than create method

User::forceCreate([
 'first_name'=> 'John',
 'last_name' => 'Doe',
 'email' => 'john.doe@example.com',
 'password' => bcrypt('changeme'),
]);

The following is an example of updating an existing User model by first loading it (by using find),
modifying it, and then saving it:

$user = User::find(1);
$user->password = bcrypt('my_new_password');
$user->save();

To accomplish the same feat with a single function call, you may use the update method:

$user->update([
 'password' => bcrypt('my_new_password'),
]);

The create and update methods make working with large sets of data much simpler than having to
set each key/value pair individually, as shown in the following examples:

Note the use of only and except when gathering request data. It's important you specify
the exact keys you want to allow/disallow to be updated, otherwise it's possible for an
attacker to send additional fields with their request and cause unintended updates.

// Updating a user from specific request data
$data = Request::only(['first_name', 'email']);
$user->find(1);
$user->update($data);

// Create a user from specific request data
$data = Request::except(['_token', 'profile_picture', 'profile_name']);
$user->create($data);

Deleting

You can delete data after writing it to the database. You can either delete a model instance if you
have retrieved one, or specify conditions for which records to delete.

To delete a model instance, retrieve it and call the delete() method:

https://riptutorial.com/ 72

$user = User::find(1);
$user->delete();

Alternatively, you can specify a primary key (or an array of primary keys) of the records you wish
to delete via the destroy() method:

User::destroy(1);
User::destroy([1, 2, 3]);

You can also combine querying with deleting:

User::where('age', '<', 21)->delete();

This will delete all users who match the condition.

Note: When executing a mass delete statement via Eloquent, the deleting and deleted
model events will not be fired for the deleted models. This is because the models are
never actually retrieved when executing the delete statement.

Soft Deleting

Some times you don’t want to permanently delete a record, but keep it around for auditing or
reporting purposes. For this, Eloquent provides soft deleting functionality.

To add soft deletes functionality to your model, you need to import the SoftDeletes trait and add it
to your Eloquent model class:

namespace Illuminate\Database\Eloquent\Model;
namespace Illuminate\Database\Eloquent\SoftDeletes;

class User extends Model
{
 use SoftDeletes;
}

When deleting a model, it will set a timestamp on a deleted_at timestamp column in the table for
your model, so be sure to create the deleted_at column in your table first. Or in migration you
should call softDeletes() method on your blueprint to add the deleted_at timestamp. Example:

Schema::table('users', function ($table) {
 $table->softDeletes();
});

Any queries will omit soft-deleted records. You can force-show them if you wish by using the
withTrashed() scope:

User::withTrashed()->get();

If you wish to allow users to restore a record after soft-deleting (i.e. in a trash can-type area) then

https://riptutorial.com/ 73

you can use the restore() method:

$user = User::find(1);
$user->delete();
$user->restore();

To forcefully delete a record use the forceDelete() method which will truly remove the record from
the database:

$user = User::find(1);
$user->forceDelete();

Change primary key and timestamps

By default, Eloquent models expect for the primary key to be named 'id'. If that is not your case,
you can change the name of your primary key by specifying the $primaryKey property.

class Citizen extends Model
{
 protected $primaryKey = 'socialSecurityNo';

 // ...
}

Now, any Eloquent methods that use your primary key (e.g. find or findOrFail) will use this new
name.

Additionally, Eloquent expects the primary key to be an auto-incrementing integer. If your primary
key is not an auto-incrementing integer (e.g. a GUID), you need to tell Eloquent by updating the
$incrementing property to false:

class Citizen extends Model
{
 protected $primaryKey = 'socialSecurityNo';

 public $incrementing = false;

 // ...
}

By default, Eloquent expects created_at and updated_at columns to exist on your tables. If you do
not wish to have these columns automatically managed by Eloquent, set the $timestamps property
on your model to false:

class Citizen extends Model
{
 public $timestamps = false;

 // ...
}

https://riptutorial.com/ 74

If you need to customize the names of the columns used to store the timestamps, you may set the
CREATED_AT and UPDATED_AT constants in your model:

class Citizen extends Model
{
 const CREATED_AT = 'date_of_creation';
 const UPDATED_AT = 'date_of_last_update';

 // ...
}

Throw 404 if entity not found

If you want to automatically throw an exception when searching for a record that isn't found on a
modal, you can use either

Vehicle::findOrFail(1);

or

Vehicle::where('make', 'ford')->firstOrFail();

If a record with the primary key of 1 is not found, a ModelNotFoundException is thrown. Which is
essentially the same as writing (view source):

$vehicle = Vehicle::find($id);

if (!$vehicle) {
 abort(404);
}

Cloning Models

You may find yourself needing to clone a row, maybe change a few attributes but you need an
efficient way to keep things DRY. Laravel provides a sort of 'hidden' method to allow you to do this
functionality. Though it is completely undocumented, you need to search through the API to find it.

Using $model->replicate() you can easily clone a record

$robot = Robot::find(1);
$cloneRobot = $robot->replicate();
// You can add custom attributes here, for example he may want to evolve with an extra arm!
$cloneRobot->arms += 1;
$cloneRobot->save();

The above would find a robot that has an ID of 1, then clones it.

Read Eloquent online: https://riptutorial.com/laravel/topic/865/eloquent

https://riptutorial.com/ 75

https://laravel.com/api/5.2/Illuminate/Database/Eloquent/ModelNotFoundException.html
https://github.com/laravel/framework/blob/a5e56a5cd11983b0b67740a6af2f25e23cd9b8e8/src/Illuminate/Database/Eloquent/Builder.php#L297-L304
https://riptutorial.com/laravel/topic/865/eloquent

Chapter 22: Eloquent : Relationship

Examples

Querying on relationships

Eloquent also lets you query on defined relationships, as show below:

User::whereHas('articles', function (Builder $query) {
 $query->where('published', '!=', true);
})->get();

This requires that your relationship method name is articles in this case. The argument passed
into the closure is the Query Builder for the related model, so you can use any queries here that
you can elsewhere.

Eager Loading

Suppose User model has a relationship with Article model and you want to eager load the related
articles. This means the articles of the user will be loaded while retrieving user.

articles is the relationship name (method) in User model.

User::with('articles')->get();

if you have multiple relationship. for example articles and posts.

User::with('articles','posts')->get();

and to select nested relationships

User::with('posts.comments')->get();

Call more than one nested relationship

User::with('posts.comments.likes')->get()

Inserting Related Models

Suppose you have a Post model with a hasMany relationship with Comment. You may insert a Comment
object related to a post by doing the following:

$post = Post::find(1);

$commentToAdd = new Comment(['message' => 'This is a comment.']);

https://riptutorial.com/ 76

$post->comments()->save($commentToAdd);

You can save multiple models at once using the saveMany function:

$post = Post::find(1);

$post->comments()->saveMany([
 new Comment(['message' => 'This a new comment']),
 new Comment(['message' => 'Me too!']),
 new Comment(['message' => 'Eloquent is awesome!'])
]);

Alternatively, there's also a create method which accepts a plain PHP array instead of an Eloquent
model instance.

$post = Post::find(1);

$post->comments()->create([
 'message' => 'This is a new comment message'
]);

Introduction

Eloquent relationships are defined as functions on your Eloquent model classes. Since, like
Eloquent models themselves, relationships also serve as powerful query builders, defining
relationships as functions provides powerful method chaining and querying capabilities. For
example, we may chain additional constraints on this posts relationship:

$user->posts()->where('active', 1)->get();

Navigate to parent topic

Relationship Types

One to Many

Lets say that each Post may have one or many comments and each comment belongs to just a
single Post.

so the comments table will be having post_id. In this case the relationships will be as follows.

Post Model

public function comments()
{
 return $this->belongsTo(Post::class);
}

If the foreign key is other than post_id, for example the foreign key is example_post_id.

https://riptutorial.com/ 77

http://www.riptutorial.com/laravel/topic/865/eloquent

public function comments()
{
 return $this->belongsTo(Post::class, 'example_post_id');
}

and plus, if the local key is other than id, for example the local key is other_id

public function comments()
{
 return $this->belongsTo(Post::class, 'example_post_id', 'other_id');
}

Comment Model

defining inverse of one to many

public function post()
{
 return $this->hasMany(Comment::class);
}

One to One

How to associate between two models (example: User and Phone
model)

App\User

<?php

namespace App;

use Illuminate\Database\Eloquent\Model;

class User extends Model
{
 /**
 * Get the phone record associated with the user.
 */
 public function phone()
 {
 return $this->hasOne('Phone::class', 'foreign_key', 'local_key');
 }
}

App\Phone

<?php

namespace App;

use Illuminate\Database\Eloquent\Model;

https://riptutorial.com/ 78

class Phone extends Model
{
 /**
 * Get the user that owns the phone.
 */
 public function user()
 {
 return $this->belongsTo('User::class', 'foreign_key', 'local_key');
 }
}

foreign_key : By default Eloquent will assume this value to be other_model_name_id (in this case
user_id and phone_id), change it if it isn't the case.

local_key : By default Eloquent will assume this value to be id (current model primary key), change
it if it isn't the case.

If your database filed name as per laravel standard, you don't need to provide foreign
key and local key in relationship declaration

Explanation

Many to Many

Lets say there is roles and permissions. Each role may belongs to many permissions and each
permission may belongs to many role. so there will be 3 tables. two models and one pivot table. a
roles, users and permission_role table.

Role Model

public function permissions()
{
 return $this->belongsToMany(Permission::class);
}

Permission Model

public function roles()
{
 return $this->belongsToMany(Roles::class);
}

Note: 1

consider following while using different table name for pivot table.

Suppose if you want to use role_permission instead of permission_role, as eloquent uses
alphabetic order for building the pivot key names. you will need to pass pivot table name as
second parameter as follows.

Role Model

https://riptutorial.com/ 79

public function permissions()
{
 return $this->belongsToMany(Permission::class, 'role_permission');
}

Permission Model

public function roles()
{
 return $this->belongsToMany(Roles::class, 'role_permission');
}

Note: 2

consider following while using different key names in pivot table.

Eloquent assumes that if no keys are passed as third and fourth parameters that it will be the
singular table names with _id. so it assumes that the pivot will be having role_id and permission_id
fields. If keys other than these are to be used it should be passed as third and fourth parameters.

Lets say if other_role_id instead of role_id and other_permission_id instead of permission_id is to
be used. So it would be as follows.

Role Model

public function permissions()
{
 return $this->belongsToMany(Permission::class, 'role_permission', 'other_role_id',
'other_permission_id');
}

Permission Model

public function roles()
{
 return $this->belongsToMany(Roles::class, 'role_permission', 'other_permission_id',
'other_role_id');
}

Polymorphic

Polymorphic relations allow a model to belong to more than one other model on a single
association. A good example would be images, both a user and a product can have an image. The
table structure might look as follows:

user
 id - integer
 name - string
 email - string

product

https://riptutorial.com/ 80

 id - integer
 title - string
 SKU - string

image
 id - integer
 url - string
 imageable_id - integer
 imageable_type - string

The important columns to look at are in the images table. The imageable_id column will contain the
ID value of the user or product, while the imageable_type column will contain the class name of the
owning model. In your models, you setup the relations as follows:

<?php

namespace App;

use Illuminate\Database\Eloquent\Model;

class Image extends Model
{
 /**
 * Get all of the owning imageable models.
 */
 public function imageable()
 {
 return $this->morphTo();
 }
}

class User extends Model
{
 /**
 * Get all of the user's images.
 */
 public function images()
 {
 return $this->morphMany('Image::class', 'imageable');
 }
}

class Product extends Model
{
 /**
 * Get all of the product's images.
 */
 public function images()
 {
 return $this->morphMany('Image::class', 'imageable');
 }
}

You may also retrieve the owner of a polymorphic relation from the polymorphic model by
accessing the name of the method that performs the call to morphTo. In our case, that is the
imageable method on the Image model. So, we will access that method as a dynamic property

https://riptutorial.com/ 81

$image = App\Image::find(1);

$imageable = $image->imageable;

This imageable will return either a User or a Product.

Many To Many

Lets say there is roles and permissions. Each role may belongs to many permissions and each
permission may belongs to many role. so there will be 3 tables. two models and one pivot table. a
roles, users and permission_role table.

Role Model

public function permissions()
{
 return $this->belongsToMany(Permission::class);
}

Permission Model

public function roles()
{
 return $this->belongsToMany(Roles::class);
}

Note: 1

consider following while using different table name for pivot table.

Suppose if you want to use role_permission instead of permission_role, as eloquent uses
alphabetic order for building the pivot key names. you will need to pass pivot table name as
second parameter as follows.

Role Model

public function permissions()
{
 return $this->belongsToMany(Permission::class, 'role_permission');
}

Permission Model

public function roles()
{
 return $this->belongsToMany(Roles::class, 'role_permission');
}

Note: 2

consider following while using different key names in pivot table.

https://riptutorial.com/ 82

Eloquent assumes that if no keys are passed as third and fourth parameters that it will be the
singular table names with _id. so it assumes that the pivot will be having role_id and permission_id
fields. If keys other than these are to be used it should be passed as third and fourth parameters.

Lets say if other_role_id instead of role_id and other_permission_id instead of permission_id is to
be used. So it would be as follows.

Role Model

public function permissions()
{
 return $this->belongsToMany(Permission::class, 'role_permission', 'other_role_id',
'other_permission_id');
}

Permission Model

public function roles()
{
 return $this->belongsToMany(Roles::class, 'role_permission', 'other_permission_id',
'other_role_id');
}

Accessing Intermediate table using withPivot()

Suppose you have a third column 'permission_assigned_date' in the pivot table . By default, only
the model keys will be present on the pivot object. Now to get this column in query result you need
to add the name in withPivot() function.

 public function permissions()
 {
 return $this->belongsToMany(Permission::class, 'role_permission', 'other_role_id',
'other_permission_id')->withPivot('permission_assigned_date');
 }

Attaching / Detaching

Eloquent also provides a few additional helper methods to make working with related models more
convenient. For example, let's imagine a user can have many roles and a role can have many
permissions. To attach a role to a permission by inserting a record in the intermediate table that
joins the models, use the attach method:

$role= App\Role::find(1);
$role->permissions()->attach($permissionId);

When attaching a relationship to a model, you may also pass an array of additional data to be
inserted into the intermediate table:

$rol->roles()->attach($permissionId, ['permission_assigned_date' => $date]);

https://riptutorial.com/ 83

Similarly, To remove a specific permission against a role use detach function

$role= App\Role::find(1);
//will remove permission 1,2,3 against role 1
$role->permissions()->detach([1, 2, 3]);

Syncing Associations

You may also use the sync method to construct many-to-many associations. The sync method
accepts an array of IDs to place on the intermediate table. Any IDs that are not in the given array
will be removed from the intermediate table. So, after this operation is complete, only the IDs in
the given array will exist in the intermediate table:

//will keep permission id's 1,2,3 against Role id 1

$role= App\Role::find(1)
$role->permissions()->sync([1, 2, 3]);

Read Eloquent : Relationship online: https://riptutorial.com/laravel/topic/7960/eloquent---
relationship

https://riptutorial.com/ 84

https://riptutorial.com/laravel/topic/7960/eloquent---relationship
https://riptutorial.com/laravel/topic/7960/eloquent---relationship

Chapter 23: Eloquent: Accessors & Mutators

Introduction

Accessors and mutators allow you to format Eloquent attribute values when you retrieve or set
them on model instances. For example, you may want to use the Laravel encrypter to encrypt a
value while it is stored in the database, and then automatically decrypt the attribute when you
access it on an Eloquent model. In addition to custom accessors and mutators, Eloquent can also
automatically cast date fields to Carbon instances or even cast text fields to JSON.

Syntax

set{ATTRIBUTE}Attribute($attribute) // in camel case•

Examples

Defining An Accessors

<?php

namespace App;

use Illuminate\Database\Eloquent\Model;

class User extends Model
{
 /**
 * Get the user's first name.
 *
 * @param string $value
 * @return string
 */
 public function getFirstNameAttribute($value)
 {
 return ucfirst($value);
 }
}

Getting Accessor:

As you can see, the original value of the column is passed to the accessor, allowing you to
manipulate and return the value. To access the value of the accessor, you may simply access the
first_name attribute on a model instance:

$user = App\User::find(1);
$firstName = $user->first_name;

https://riptutorial.com/ 85

Defining a Mutator

class User extends Model
{
 public function setPasswordAttribute($password)
 {
 $this->attributes['password'] = bcrypt($password);
 }
 ...
}

Above code does "bcrypting" each time password property is set.

$user = $users->first();
$user->password = 'white rabbit'; //laravel calls mutator on background
$user->save(); // password is bcrypted and one does not need to call bcrypt('white rabbit')

Read Eloquent: Accessors & Mutators online: https://riptutorial.com/laravel/topic/8305/eloquent--
accessors---mutators

https://riptutorial.com/ 86

https://riptutorial.com/laravel/topic/8305/eloquent--accessors---mutators
https://riptutorial.com/laravel/topic/8305/eloquent--accessors---mutators

Chapter 24: Eloquent: Model

Examples

Making a Model

Model creation

Model classes must extend Illuminate\Database\Eloquent\Model. The default location for models is
the /app directory.

A model class can be easily generated by the Artisan command:

php artisan make:model [ModelName]

This will create a new PHP file in app/ by default, which is named [ModelName].php, and will contain
all the boilerplate for your new model, which includes the class, namespace, and using's required
for a basic setup.

If you want to create a migration file along with your Model, use the following command, where -m
will also generate the migration file:

php artisan make:model [ModelName] -m

In addition to creating the model, this creates a database migration that is hooked up to the model.
The database migration PHP file is located by default in database/migrations/. This does not--by
default--include anything other than the id and created_at/updated_at columns, so you will need to
edit the file to provide additional columns.

Note that you will have to run the migration (once you have set up the migration file) in order for
the model to start working by using php artisan migrate from project root

In addition, if you wish to add a migration later, after making the model, you can do so by running:

php artisan make:migration [migration name]

Say for example you wanted to create a model for your Cats, you would have two choices, to
create with or without a migration. You would chose to create without migration if you already had
a cats table or did not want to create one at this time.

For this example we want to create a migration because we don't already have a table so would
run the following command.

php artisan make:model Cat -m

https://riptutorial.com/ 87

http://www.riptutorial.com/laravel/topic/1140/artisan

This command will create two files:

In the App folder: app/Cat.php1.
In the database folder: database/migrations/timestamp_creat_cats_table.php2.

The file we are interested in is the latter as it is this file that we can decide what we want the table
to look like and include. For any predefined migration we are given an auto incrementing id column
and a timestamps columns.

The below example of an extract of the migration file includes the above predefined columns as
well as the addition of a the name of the cat, age and colour:

public function up()
 {
 Schema::create('cats', function (Blueprint $table) {

 $table->increments('id'); //Predefined ID
 $table->string('name'); //Name
 $table->integer('age'); //Age
 $table->string('colour'); //Colour
 $table->timestamps(); //Predefined Timestamps

 });
 }

So as you can see it is relatively easy to create the model and migration for a table. Then to
execute the migration and create it in your data base you would run the following command:

php artisan migrate

Which will migrate any outstanding migrations to your database.

Model File Location

Models can be stored anywhere thanks to PSR4.

By default models are created in the app directory with the namespace of App. For more complex
applications it's usually recommended to store models within their own folders in a structure that
makes sense to your apps architecture.

For example, if you had an application that used a series of fruits as models, you could create a
folder called app/Fruits and within this folder you create Banana.php (keeping the StudlyCase
naming convention), you could then create the Banana class in the App\Fruits namespace:

namespace App\Fruits;

use Illuminate\Database\Eloquent\Model;

class Banana extends Model {
 // Implementation of "Banana" omitted
}

https://riptutorial.com/ 88

http://www.php-fig.org/psr/psr-4/
https://en.wikipedia.org/wiki/Studly_caps

Model configuration

Eloquent follows a "convention over configuration" approach. By extending the base Model class,
all models inherit the properties listed below. Unless overridden, the following default values apply:

Property Description Default

protected
$connection DB connection name Default DB connection

protected
$table Table name

By default, the class name is converted
to snake_case and pluralized. For
example, SpecialPerson becomes
special_people

protected
$primaryKey Table PK id

public
$incrementing

Indicates if the IDs are auto-
incrementing

true

public
$timestamps

Indicates if the model should be
timestamped

true

const
CREATED_AT

Name of the creation timestamp
column

created_at

const
UPDATED_AT

Name of the modification
timestamp column

updated_at

protected
$dates

Attributes that should be
mutated to DateTime, in
addition to the timestamps
attributes

[]

protected
$dateFormat

Format in which date attributes
will be persisted

Default for current SQL dialect.

protected $with
Relationships to eagerload with
model

[]

protected
$hidden

Attributes omitted in model
serialization

[]

protected
$visible

Attributes allowed in model
serialization

[]

protected
$appends

Attribute accessors added to
model serialization

[]

protected Attributes that are mass- []

https://riptutorial.com/ 89

http://stackoverflow.com/documentation/laravel/865/eloquent/4293/eager-loading#t=201607291528232352311

Property Description Default

$fillable assignable

protected
$guarded

Attributes that are black-listed
from mass assignment

[*] (All attributes)

protected
$touches

The relationships that should be
touched on save

[]

protected
$perPage

The number of models to return
for pagination.

15

5.0

Property Description Default

protected $casts Attributes that should be casted to native types []

Update an existing model

$user = User::find(1);
$user->name = 'abc';
$user->save();

You can also update multiple attributes at once using update, which does not require using save
afterwards:

$user = User::find(1);
$user->update(['name' => 'abc', 'location' => 'xyz']);

You can also update a model(s) without querying it beforehand:

User::where('id', '>', 2)->update(['location' => 'xyz']);

If you don't want to trigger a change to the updated_at timestamp on the model then you can pass
the touch option:

$user = User::find(1);
$user->update(['name' => 'abc', 'location' => 'xyz'], ['touch' => false]);

Read Eloquent: Model online: https://riptutorial.com/laravel/topic/7984/eloquent--model

https://riptutorial.com/ 90

https://riptutorial.com/laravel/topic/7984/eloquent--model

Chapter 25: Error Handling

Remarks

Remember to set up your application for emailing by ensuring proper configuration of
config/mail.php

Also check to make sure ENV variables are properly set.

This example is a guide and is minimal. Explore, modify and style the view as you wish. Tweak the
code to meet your needs. For example, set the recepient in your .env file

Examples

Send Error report email

Exceptions in Laravel are handled by App\Exceptions\Handler.php

This file contains two functions by default. Report & Render. We will only be using the first

 public function report(Exception $e)

The report method is used to log exceptions or send them to an external service like
BugSnag. By default, the report method simply passes the exception to the base class
where the exception is logged. However, you are free to log exceptions however you
wish.

Essentially this function just forwards the error and does nothing. Therefore, we can insert
business logic to perform operations based on the error. For this example we will be sending an
email containing the error information.

public function report(Exception $e)
{
 if ($e instanceof \Exception) {
 // Fetch the error information we would like to
 // send to the view for emailing
 $error['file'] = $e->getFile();
 $error['code'] = $e->getCode();
 $error['line'] = $e->getLine();
 $error['message'] = $e->getMessage();
 $error['trace'] = $e->getTrace();

 // Only send email reports on production server
 if(ENV('APP_ENV') == "production"){
 #1. Queue email for sending on "exceptions_emails" queue
 #2. Use the emails.exception_notif view shown below
 #3. Pass the error array to the view as variable $e
 Mail::queueOn('exception_emails', 'emails.exception_notif', ["e" => $error],
function ($m) {
 $m->subject("Laravel Error");

https://riptutorial.com/ 91

 $m->from(ENV("MAIL_FROM"), ENV("MAIL_NAME"));
 $m->to("webmaster@laravelapp.com", "Webmaster");
 });

 }
 }

 // Pass the error on to continue processing
 return parent::report($e);
}

The view for the email ("emails.exception_notif") is below

<?php
$action = (\Route::getCurrentRoute()) ? \Route::getCurrentRoute()->getActionName() : "n/a";
$path = (\Route::getCurrentRoute()) ? \Route::getCurrentRoute()->getPath() : "n/a";
$user = (\Auth::check()) ? \Auth::user()->name : 'no login';
?>

There was an error in your Laravel App

<hr />
<table border="1" width="100%">
 <tr><th >User:</th><td>{{ $user }}</td></tr>
 <tr><th >Message:</th><td>{{ $e['message'] }}</td></tr>
 <tr><th >Action:</th><td>{{ $action }}</td></tr>
 <tr><th >URI:</th><td>{{ $path }}</td></tr>
 <tr><th >Line:</th><td>{{ $e['line'] }}</td></tr>
 <tr><th >Code:</th><td>{{ $e['code'] }}</td></tr>
</table>

Catching application wide ModelNotFoundException

app\Exceptions\Handler.php

public function render($request, Exception $exception)
{
 if ($exception instanceof ModelNotFoundException) {
 abort(404);
 }

 return parent::render($request, $exception);
}

You can catch / handle any exception that is thrown in Laravel.

Read Error Handling online: https://riptutorial.com/laravel/topic/2858/error-handling

https://riptutorial.com/ 92

https://riptutorial.com/laravel/topic/2858/error-handling

Chapter 26: Events and Listeners

Examples

Using Event and Listeners for sending emails to a new registered user

Laravel's events allows to implement the Observer pattern. This can be used to send a welcome
email to a user whenever they register on your application.

New events and listeners can be generated using the artisan command line utility after registering
the event and their particular listener in App\Providers\EventServiceProvider class.

protected $listen = [
 'App\Events\NewUserRegistered' => [
 'App\Listeners\SendWelcomeEmail',
],
];

Alternate notation:

protected $listen = [
 \App\Events\NewUserRegistered::class => [
 \App\Listeners\SendWelcomeEmail::class,
],
];

Now execute php artisan generate:event. This command will generate all the corresponding events
and listeners mentioned above in App\Events and App\Listeners directories respectively.

We can have multiple listeners to a single event like

protected $listen = [
 'Event' => [
 'Listner1', 'Listener2'
],
];

NewUserRegistered is just a wrapper class for the newly registered User model:

class NewUserRegistered extends Event
{
 use SerializesModels;

 public $user;

 /**
 * Create a new event instance.
 *
 * @return void
 */
 public function __construct(User $user)

https://riptutorial.com/ 93

 {
 $this->user = $user;
 }
}

This Event will be handled by the SendWelcomeEmail listener:

class SendWelcomeEmail
{
 /**
 * Handle the event.
 *
 * @param NewUserRegistered $event
 */
 public function handle(NewUserRegistered $event)
 {
 //send the welcome email to the user
 $user = $event->user;
 Mail::send('emails.welcome', ['user' => $user], function ($message) use ($user) {
 $message->from('hi@yourdomain.com', 'John Doe');
 $message->subject('Welcome aboard '.$user->name.'!');
 $message->to($user->email);
 });
 }
}

The last step is to call/fire the event whenever a new user registers. This can be done in the
controller, command or service, wherever you implement the user registration logic:

event(new NewUserRegistered($user));

Read Events and Listeners online: https://riptutorial.com/laravel/topic/4687/events-and-listeners

https://riptutorial.com/ 94

https://riptutorial.com/laravel/topic/4687/events-and-listeners

Chapter 27: Filesystem / Cloud Storage

Examples

Configuration

The filesystem configuration file is located at config/filesystems.php. Within this file you may
configure all of your "disks". Each disk represents a particular storage driver and storage location.
Example configurations for each supported driver is included in the configuration file. So, simply
modify the configuration to reflect your storage preferences and credentials!

Before using the S3 or Rackspace drivers, you will need to install the appropriate package via
Composer:

Amazon S3: league/flysystem-aws-s3-v2 ~1.0•
Rackspace: league/flysystem-rackspace ~1.0•

Of course, you may configure as many disks as you like, and may even have multiple disks that
use the same driver.

When using the local driver, note that all file operations are relative to the root directory defined in
your configuration file. By default, this value is set to the storage/app directory. Therefore, the
following method would store a file in storage/app/file.txt:

Storage::disk('local')->put('file.txt', 'Contents');

Basic Usage

The Storage facade may be used to interact with any of your configured disks. Alternatively, you
may type-hint the Illuminate\Contracts\Filesystem\Factory contract on any class that is resolved
via the Laravel service container.

Retrieving A Particular Disk

$disk = Storage::disk('s3');

$disk = Storage::disk('local');

Determining If A File Exists

$exists = Storage::disk('s3')->exists('file.jpg');

Calling Methods On The Default Disk

if (Storage::exists('file.jpg'))
{

https://riptutorial.com/ 95

 //
}

Retrieving A File's Contents

$contents = Storage::get('file.jpg');

Setting A File's Contents

Storage::put('file.jpg', $contents);

Prepend To A File

Storage::prepend('file.log', 'Prepended Text');

Append To A File

Storage::append('file.log', 'Appended Text');

Delete A File

Storage::delete('file.jpg');

Storage::delete(['file1.jpg', 'file2.jpg']);

Copy A File To A New Location

Storage::copy('old/file1.jpg', 'new/file1.jpg');

Move A File To A New Location

Storage::move('old/file1.jpg', 'new/file1.jpg');

Get File Size

$size = Storage::size('file1.jpg');

Get The Last Modification Time (UNIX)

$time = Storage::lastModified('file1.jpg');

Get All Files Within A Directory

$files = Storage::files($directory);

// Recursive...
$files = Storage::allFiles($directory);

https://riptutorial.com/ 96

Get All Directories Within A Directory

$directories = Storage::directories($directory);

// Recursive...
$directories = Storage::allDirectories($directory);

Create A Directory

Storage::makeDirectory($directory);

Delete A Directory

Storage::deleteDirectory($directory);

Custom Filesystems

Laravel's Flysystem integration provides drivers for several "drivers" out of the box; however,
Flysystem is not limited to these and has adapters for many other storage systems. You can
create a custom driver if you want to use one of these additional adapters in your Laravel
application. Don't worry, it's not too hard!

In order to set up the custom filesystem you will need to create a service provider such as
DropboxFilesystemServiceProvider. In the provider's boot method, you can inject an instance of the
Illuminate\Contracts\Filesystem\Factory contract and call the extend method of the injected
instance. Alternatively, you may use the Disk facade's extend method.

The first argument of the extend method is the name of the driver and the second is a Closure that
receives the $app and $config variables. The resolver Closure must return an instance of
League\Flysystem\Filesystem.

Note: The $config variable will already contain the values defined in
config/filesystems.php for the specified disk. Dropbox Example

<?php namespace App\Providers;

use Storage;
use League\Flysystem\Filesystem;
use Dropbox\Client as DropboxClient;
use League\Flysystem\Dropbox\DropboxAdapter;
use Illuminate\Support\ServiceProvider;

class DropboxFilesystemServiceProvider extends ServiceProvider {

 public function boot()
 {
 Storage::extend('dropbox', function($app, $config)
 {
 $client = new DropboxClient($config['accessToken'], $config['clientIdentifier']);

 return new Filesystem(new DropboxAdapter($client));
 });

https://riptutorial.com/ 97

 }

 public function register()
 {
 //
 }

}

Creating symbolic link in a web server using SSH

In Laravel documentation, a symbolic link (symlink or soft link) from public/storage to
storage/app/public should be created to make files accessible from the web.

(THIS PROCEDURE WILL CREATE SYMBOLIC LINK WITHIN THE LARAVEL PROJECT
DIRECTORY)

Here are the steps on how you can create symbolic link in your Linux web server using SSH client:

Connect and login to your web server using SSH client (e.g. PUTTY).1.

Link storage/app/public to public/storage using the syntax

ln -s target_path link_path

Example (in CPanel File Directory)

ln -s /home/cpanel_username/project_name/storage/app/public
/home/cpanel_sername/project_name/public/storage

2.

(A folder named storage will be created to link path with an indicator >>> on the folder icon.)

Read Filesystem / Cloud Storage online: https://riptutorial.com/laravel/topic/3040/filesystem---
cloud-storage

https://riptutorial.com/ 98

https://riptutorial.com/laravel/topic/3040/filesystem---cloud-storage
https://riptutorial.com/laravel/topic/3040/filesystem---cloud-storage

Chapter 28: Form Request(s)

Introduction

Custom requests (or Form Requests) are useful in situations when one wants to authorize &
validate a request before hitting the controller method.

One may think of two practical uses, creating & updating a record while each action has a
different set of validation (or authorization) rules.

Using Form Requests is trivial, one has to type-hint the request class in method.

Syntax

php artisan make:request name_of_request•

Remarks

Requests are useful when separating your validation from Controller. It also allows you to check if
the request is authorized.

Examples

Creating Requests

php artisan make:request StoreUserRequest

php artisan make:request UpdateUserRequest

Note: You can also consider using names like StoreUser or UpdateUser (without
Request appendix) since your FormRequests are placed in folder app/Http/Requests/.

Using Form Request

Lets say continue with User example (you may have controller with store method and update
method). To use FormRequests you use type-hinting the specific request.

...

public function store(App\Http\Requests\StoreRequest $request, App\User $user) {
 //by type-hinting the request class, Laravel "runs" StoreRequest
 //before actual method store is hit

 //logic that handles storing new user
 //(both email and password has to be in $fillable property of User model
 $user->create($request->only(['email', 'password']));

https://riptutorial.com/ 99

 return redirect()->back();
}

...

public function update(App\Http\Requests\UpdateRequest $request, App\User $users, $id) {
 //by type-hinting the request class, Laravel "runs" UpdateRequest
 //before actual method update is hit

 //logic that handles updating a user
 //(both email and password has to be in $fillable property of User model
 $user = $users->findOrFail($id);
 $user->update($request->only(['password']));
 return redirect()->back();
}

Handling Redirects after Validation

Sometimes you may want to have some login to determine where the user gets redirected to after
submitting a form. Form Requests give a variety of ways.

By default there are 3 variables declared in the Request $redirect, $redirectRoute and
$redirectAction.

On top of those 3 variables you can override the main redirect handler getRedirectUrl().

A sample request is given below explaining what you can do.

<?php namespace App;

use Illuminate\Foundation\Http\FormRequest as Request;

class SampleRequest extends Request {

 // Redirect to the given url
 public $redirect;

 // Redirect to a given route
 public $redirectRoute;

 // Redirect to a given action
 public $redirectAction;

 /**
 * Get the URL to redirect to on a validation error.
 *
 * @return string
 */
 protected function getRedirectUrl()
 {

 // If no path is given for `url()` it will return a new instance of
`Illuminate\Routing\UrlGenerator`

 // If your form is down the page for example you can redirect to a hash
 return url()->previous() . '#contact';

https://riptutorial.com/ 100

 //`url()` provides several methods you can chain such as

 // Get the current URL
 return url()->current();

 // Get the full URL of the current request
 return url()->full();

 // Go back
 return url()->previous();

 // Or just redirect back
 return redirect()->back();
 }

 /**
 * Get the validation rules that apply to the request.
 *
 * @return array
 */
 public function rules()
 {
 return [];
 }

 /**
 * Determine if the user is authorized to make this request.
 *
 * @return bool
 */
 public function authorize()
 {
 return true;
 }
}

Read Form Request(s) online: https://riptutorial.com/laravel/topic/6329/form-request-s-

https://riptutorial.com/ 101

https://riptutorial.com/laravel/topic/6329/form-request-s-

Chapter 29: Getting started with laravel-5.3

Remarks

This section provides an overview of what laravel-5.3 is, and why a developer might want to use it.

It should also mention any large subjects within laravel-5.3, and link out to the related topics. Since
the Documentation for laravel-5.3 is new, you may need to create initial versions of those related
topics.

Examples

Installing Laravel

Requirements:
You need PHP >= 5.6.4 and Composer installed on your machine. You can check version of both by
using command:
For PHP:

php -v

Output like this:

PHP 7.0.9 (cli) (built: Aug 26 2016 06:17:04) (NTS)
Copyright (c) 1997-2016 The PHP Group
Zend Engine v3.0.0, Copyright (c) 1998-2016 Zend Technologies

For Composer
You can run command on your terminal/CMD:

composer --version

Output like this:

composer version 1.2.1 2016-09-12 11:27:19

Laravel utilizes Composer to manage its dependencies. So, before using Laravel, make sure you
have Composer installed on your machine.

Via Laravel Installer

First, download the Laravel installer using Composer:

composer global require "laravel/installer"

https://riptutorial.com/ 102

https://getcomposer.org/

Make sure to place the $HOME/.composer/vendor/bin directory (or the equivalent directory for your
OS) in your $PATH so the laravel executable can be located by your system.

Once installed, the laravel new command will create a fresh Laravel installation in the directory you
specify. For instance, laravel new blog will create a directory named blog containing a fresh
Laravel installation with all of Laravel's dependencies already installed:

laravel new blog

Via Composer Create-Project

Alternatively, you may also install Laravel by issuing the Composer create-project command in
your terminal:

composer create-project --prefer-dist laravel/laravel blog

Setup

After you are complete with the Laravel installation, you will need to set permissions for the storage
and Bootstrap folders.

Note: Setting permissions is one of the most important processes to complete while
installing Laravel.

Local Development Server

If you have PHP installed locally and you would like to use PHP's built-in development server to
serve your application, you may use the serve Artisan command. This command will start a
development server at http://localhost:8000:

php artisan serve

Open your browser request url http://localhost:8000

Server Requirements

The Laravel framework has a few system requirements. Of course, all of these requirements are
satisfied by the Laravel Homestead virtual machine, so it's highly recommended that you use
Homestead as your local Laravel development environment.

However, if you are not using Homestead, you will need to make sure your server meets the
following requirements:

PHP >= 5.6.4•
OpenSSL PHP Extension•
PDO PHP Extension•
Mbstring PHP Extension•

https://riptutorial.com/ 103

https://laravel.com/docs/5.3/homestead

Tokenizer PHP Extension•
XML PHP Extension•

Local Development Server

If you have PHP installed locally and you would like to use PHP's built-in development server to
serve your application, you may use the serve Artisan command. This command will start a
development server at http://localhost:8000:

php artisan serve

Of course, more robust local development options are available via Homestead and Valet.

Also it's possible to use a custom port, something like 8080. You can do this with the --port option.

php artisan serve --port=8080

If you have a local domain in your hosts file, you can set the hostname. This can be done by the --
host option.

php artisan serve --host=example.dev

You can also run on a custom host and port, this can be done by the following command.

php artisan serve --host=example.dev --port=8080

Hello World Example (Basic) and with using a view

The basic example
Open routes/web.php file and paste the following code in file:

Route::get('helloworld', function () {
 return '<h1>Hello World</h1>';
});

here 'helloworld' will act as page name you want to access,

and if you don't want to create blade file and still want to access the page directly then you can
use laravel routing this way

now type localhost/helloworld in browser address bar and you can access page displaying Hello
World.

The next step.
So you've learned how to create a very simple Hello World! page by returning a hello world
sentence. But we can make it a bit nicer!

Step 1.

https://riptutorial.com/ 104

https://laravel.com/docs/5.3/homestead
https://laravel.com/docs/5.3/valet

We'll start again at our routes/web.php file now instead of using the code above we'll use the
following code:

Route::get('helloworld', function() {
 return view('helloworld');
});

The return value this time is not just a simple helloworld text but a view. A view in Laravel is simply
a new file. This file "helloworld" contains the HTML and maybe later on even some PHP of the
Helloworld text.

Step 2.
Now that we've adjusted our route to call on a view we are going to make the view. Laravel works
with blade.php files in views. So, in this case, our route is called helloworld. So our view will be
called helloworld.blade.php

We will be creating the new file in the resources/views directory and we will call it
helloworld.blade.php

Now we'll open this new file and edit it by creating our Hello World sentence. We can add multiple
different ways to get our sentence as in the example below.

<html>
 <body>
 <h1> Hello World! </h1>

 <?php
 echo "Hello PHP World!";
 ?>

 </body>
</html>

now go to your browser and type your route again like in the basic example: localhost/helloworld
you'll see your new created view with all of the contents!

Hello World Example (Basic)

Open routes file. Paste the following code in:

Route::get('helloworld', function () {
 return '<h1>Hello World</h1>';
});

after going to route http://localhost/helloworld it displays Hello World.

The routes file is located /routes/web.php

Web Server Configuration for Pretty URLs

If you installed Laravel via Composer or the Laravel installer, below configuration you will need.

https://riptutorial.com/ 105

Configuration for Apache Laravel includes a public/.htaccess file that is used to provide URLs
without the index.php front controller in the path. Before serving Laravel with Apache, be sure to
enable the mod_rewrite module so the .htaccess file will be honored by the server.

If the .htaccess file that ships with Laravel does not work with your Apache installation, try this
alternative:

Options +FollowSymLinks
RewriteEngine On

RewriteCond %{REQUEST_FILENAME} !-d
RewriteCond %{REQUEST_FILENAME} !-f
RewriteRule ^ index.php [L]

Configuration for Nginx If you are using Nginx, the following directive in your site configuration
will direct all requests to the index.php front controller:

location / {
 try_files $uri $uri/ /index.php?$query_string;
}

Of course, when using Homestead or Valet, pretty URLs will be automatically configured.

Read Getting started with laravel-5.3 online: https://riptutorial.com/laravel/topic/8602/getting-
started-with-laravel-5-3

https://riptutorial.com/ 106

https://laravel.com/docs/5.4/homestead
https://laravel.com/docs/5.4/valet
https://riptutorial.com/laravel/topic/8602/getting-started-with-laravel-5-3
https://riptutorial.com/laravel/topic/8602/getting-started-with-laravel-5-3

Chapter 30: Helpers

Introduction

Laravel helpers are the globally accessible functions defined by the framework. It can be directly
called and independently used anywhere within the application without needing to instantiating an
object or importing class.

There are helpers for manipulating Arrays, Paths, Strings, URLs, etc

Examples

Array methods

array_add()

This method is used to add new key value pairs to an array.

$array = ['username' => 'testuser'];

$array = array_add($array, 'age', 18);

result

['username' => 'testuser', 'age' => 18]

String methods

camel_case()

This method changes a string to camel case

camel_case('hello_world');

result

HelloWorld

Path mehods

Path methods helps easy access to application related paths easily from anywhere.

public_path()

This method returns the fully qualified public path of the application. which is the public directory.

https://riptutorial.com/ 107

$path = public_path();

Urls

url()

The url function generates a fully qualified URL to the given path.

if your site is hello.com

echo url('my/dashboard');

would return

hello.com/my/dashboard

if nothing is passed to the url method it would return an instance of
Illuminate\Routing\UrlGenerator, and it could be used like this

would return current url

echo url()->current();

would return full url

echo url()->full();

would return previous url

echo url()->previous();

Read Helpers online: https://riptutorial.com/laravel/topic/8827/helpers

https://riptutorial.com/ 108

https://riptutorial.com/laravel/topic/8827/helpers

Chapter 31: HTML and Form Builder

Examples

Installation

HTML and Form Builder is not a core component since Laravel 5, so we need to install it
separately:

composer require laravelcollective/html "~5.0"

Finally in config/app.php we need to register the service provider, and the facades aliases like this:

'providers' => [
 // ...
 Collective\Html\HtmlServiceProvider::class,
 // ...
],

'aliases' => [
 // ...
 'Form' => Collective\Html\FormFacade::class,
 'Html' => Collective\Html\HtmlFacade::class,
 // ...
],

Full docs are available on Forms & HTML

Read HTML and Form Builder online: https://riptutorial.com/laravel/topic/3672/html-and-form-
builder

https://riptutorial.com/ 109

https://laravelcollective.com
https://riptutorial.com/laravel/topic/3672/html-and-form-builder
https://riptutorial.com/laravel/topic/3672/html-and-form-builder

Chapter 32: Installation

Examples

Installation

Laravel applications are installed and managed with Composer, a popular PHP dependency
manager. There are two ways to create a new Laravel application.

Via Composer

$ composer create-project laravel/laravel [foldername]

Or

$ composer create-project --prefer-dist laravel/laravel [foldername]

Replace [foldername] with the name of the directory you want your new Laravel application
installed to. It must not exist before installation. You may also need to add the Composer
executable to your system path.

If want to create a Laravel project using a specific version of the framework, you can provide a
version pattern, otherwise your project will use the latest available version.

If you wanted to create a project in Laravel 5.2 for example, you'd run:

$ composer create-project --prefer-dist laravel/laravel 5.2.*

Why --prefer-dist

There are two ways of downloading a package: source and dist. For stable versions Composer will
use the dist by default. The source is a version control repository. If --prefer-source is enabled,
Composer will install from source if there is one.

--prefer-dist is the opposite of --prefer-source, and tells Composer to install from dist if possible.
This can speed up installs substantially on build servers and in other use cases where you
typically do not run vendor updates. It also allows avoiding problems with Git if you do not have a
proper setup.

Via the Laravel installer

Laravel provides a helpful command line utility to quickly create Laravel applications. First, install
the installer:

https://riptutorial.com/ 110

https://getcomposer.org/

$ composer global require laravel/installer

You have to make sure that the Composer binaries folder is within your $PATH
variable to execute the Laravel installer.

First, look if it already is in your $PATH variable

echo $PATH

If everything is correct, the output should contain something like this:

Users/yourusername/.composer/vendor/bin

If not, edit your .bashrc or, if your using ZSH, your .zshrc so it contains the path to your
Composer vendor directory.

Once installed, this command will create a fresh Laravel installation in the directory you specify.

laravel new [foldername]

You can also use . (a dot) in place of [foldername] to create the project in the current working
directory without making a sub-directory.

Running the application

Laravel comes bundled with a PHP-based web server which can be started by running

$ php artisan serve

By default, the HTTP server will use port 8000, but if the port is already in use or if you want to run
multiple Laravel applications at once, you can use the --port flag to specify a different port:

$ php artisan serve --port=8080

The HTTP server will use localhost as the default domain for running the application, but you can
use the --host flag to specify a different address:

$ php artisan serve --host=192.168.0.100 --port=8080

Using a different server

If you prefer to use a different web server software, some configuration files are provided for you
inside the public directory of your project; .htaccess for Apache and web.config for ASP.NET. For
other software such as NGINX, you can convert the Apache configurations using various online
tools.

The framework needs the web server user to have write permissions on the following directories:

https://riptutorial.com/ 111

/storage•
/bootstrap/cache•

On *nix operating systems this can be achieved by

chown -R www-data:www-data storage bootstrap/cache
chmod -R ug+rwx storage bootstrap/cache

(where www-data is the name and group of the web server user)

The web server of your choice should be configured to serve content from your project's /public
directory, which is usually done by setting it as the document root. The rest of your project should
not be accessible through your web server.

If you set everything up properly, navigating to your website's URL should display the default
landing page of Laravel.

Requirements

The Laravel framework has the following requirements:

5.3

PHP >= 5.6.4•
XML PHP Extension•
PDO PHP Extension•
OpenSSL PHP Extension•
Mbstring PHP Extension•
Tokenizer PHP Extension•

5.1 (LTS)5.2

PHP >= 5.5.9•
PDO PHP Extension•
Laravel 5.1 is the first version of Laravel to support PHP 7.0.•

5.0

PHP >= 5.4, PHP < 7•
OpenSSL PHP Extension•
Tokenizer PHP Extension•
Mbstring PHP Extension•
JSON PHP extension (only on PHP 5.5)•

4.2

PHP >= 5.4•
Mbstring PHP Extension•
JSON PHP extension (only on PHP 5.5)•

https://riptutorial.com/ 112

Hello World Example (Using Controller and View)

Create a Laravel application:

$ composer create-project laravel/laravel hello-world

1.

Navigate to the project folder, e.g.

$ cd C:\xampp\htdocs\hello-world

2.

Create a controller:

$ php artisan make:controller HelloController --resource

3.

This will create the file app/Http/Controllers/HelloController.php. The --resource
option will generate CRUD methods for the controller, e.g. index, create, show, update.

Register a route to HelloController's index method. Add this line to app/Http/routes.php
(version 5.0 to 5.2) or routes/web.php (version 5.3):

4.

 Route::get('hello', 'HelloController@index');

To see your newly added routes, you can run $ php artisan route:list

Create a Blade template in the views directory:

resources/views/hello.blade.php:

<h1>Hello world!</h1>

5.

Now we tell index method to display the hello.blade.php template:

app/Http/Controllers/HelloController.php

6.

 <?php

 namespace App\Http\Controllers;

 use Illuminate\Http\Request;

 use App\Http\Requests;

 class HelloController extends Controller
 {
 /**
 * Display a listing of the resource.
 *
 * @return \Illuminate\Http\Response
 */
 public function index()
 {

https://riptutorial.com/ 113

 return view('hello');
 }

 // ... other resources are listed below the index one above

You can serve your app using the following PHP Artisan Command: php artisan serve; it will show
you the address at which you can access your application (usually at http://localhost:8000 by
default).

Alternatively, you may head over directly to the appropriate location in your browser; in case you
are using a server like XAMPP (either: http://localhost/hello-world/public/hello should you have
installed your Laravel instance, hello-world, directly in your xampp/htdocs directory as in: having
executed the step 1 of this Hello Word from your command line interface, pointing at your
xampp/htdocs directory).

Hello World Example (Basic)

Open routes file. Paste the following code in:

Route::get('helloworld', function () {
 return '<h1>Hello World</h1>';
});

after going to route localhost/helloworld it displays Hello World.

The routes file is located:

5.3

For Web

routes/web.php

For APIs

routes/api.php

5.25.1 (LTS)5.0

app/Http/routes.php

4.2

app/routes.php

Installation using LaraDock (Laravel Homestead for Docker)

LaraDock is a Laravel Homestead like development environment but for Docker instead of
Vagrant. https://github.com/LaraDock/laradock

https://riptutorial.com/ 114

http://localhost:8000
http://localhost/hello-world/public/hello
https://github.com/LaraDock/laradock

Installation

*Requires Git and Docker

Clone the LaraDock repository:

A. If you already have a Laravel project, clone this repository on your Laravel root directory:

git submodule add https://github.com/LaraDock/laradock.git

B. If you don't have a Laravel project, and you want to install Laravel from Docker, clone this repo
anywhere on your machine:

git clone https://github.com/LaraDock/laradock.git

Basic Usage

Run Containers: (Make sure you are in the laradock folder before running the docker-
compose commands).

Example: Running NGINX and MySQL: docker-compose up -d nginx mysql

There are a list of available containers you can select to create your own combinations.

nginx, hhvm, php-fpm, mysql, redis, postgres, mariadb, neo4j, mongo, apache2, caddy, memcached,
beanstalkd, beanstalkd-console, workspace

1.

Enter the Workspace container, to execute commands like (Artisan, Composer, PHPUnit,
Gulp, ...).

docker-compose exec workspace bash

2.

If you don't have a Laravel project installed yet, follow the step to install Laravel from a
Docker container.

a. Enter the Workspace container.

b. Install Laravel. composer create-project laravel/laravel my-cool-app "5.3.*"

3.

Edit the Laravel configurations. Open your Laravel's .env file and set the DB_HOST to your
mysql:

DB_HOST=mysql

4.

Open your browser and visit your localhost address.5.

Read Installation online: https://riptutorial.com/laravel/topic/7961/installation

https://riptutorial.com/ 115

https://riptutorial.com/laravel/topic/7961/installation

Chapter 33: Installation Guide

Remarks

This section provides an overview of what laravel-5.4 is, and why a developer might want to use it.

It should also mention any large subjects within laravel-5.4, and link out to the related topics. Since
the Documentation for laravel-5.4 is new, you may need to create initial versions of those related
topics.

Examples

Installation

Detailed instructions on getting laravel set up or installed.

composer is required for installing laravel easily.

There are 3 methods of installing laravel in your system:

Via Laravel Installer

Download the Laravel installer using composer

composer global require "laravel/installer"

Before using composer we need to add ~/.composer/vendor/bin to PATH. After installation has
finished we can use laravel new command to create a new project in Laravel.

Example:

laravel new {folder name}

This command creates a new directory named as site and a fresh Laravel installation with all
other dependencies are installed in the directory.

1.

Via Composer Create-Project

You can use the command in the terminal to create a new Laravel app:

composer create-project laravel/laravel {folder name}

2.

Via Download

Download Laravel and unzip it.

composer install1.

3.

https://riptutorial.com/ 116

https://getcomposer.org/download/
https://github.com/laravel/laravel/

Copy .env.example to .env via teminal or manually.

cp .env.example .env

2.

Open .env file and set your database, email, pusher, etc. (if needed)3.
php artisan migrate (if database is setup)4.
php artisan key:generate5.
php artisan serve6.
Go to localhost:8000 to view the site7.

Laravel docs

Hello World Example (Basic)

Accessing pages and outputting data is fairly easy in Laravel. All of the page routes are located in
app/routes.php. There are usually a few examples to get you started, but we're going to create a
new route. Open your app/routes.php, and paste in the following code:

Route::get('helloworld', function () {
 return '<h1>Hello World</h1>';
});

This tells Laravel that when someone accesses http://localhost/helloworld in a browser, it should
run the function and return the string provided.

Hello World Example With Views and Controller

Assuming we have a working laravel application running in, say, "mylaravel.com",we want our
application to show a "Hello World" message when we hit the URL http://mylaravel.com/helloworld
. It involves the creation of two files (the view and the controller) and the modification of an existing
file, the router.

The view

First off , we open a new blade view file named helloview.blade.php with the "Hello World" string.
Create it in the directory app/resources/views

<h1>Hello, World</h1>

The controller

Now we create a controller that will manage the display of that view with the "Hello World" string.
We'll use artisan in the command line.

$> cd your_laravel_project_root_directory
$> php artisan make:controller HelloController

That will just create a file (app/Http/Controllers/HelloController.php) containing the class that is

https://riptutorial.com/ 117

http://localhost:8000/
https://laravel.com/docs/5.4#installing-laravel

our new controller HelloController.

Edit that new file and write a new method hello that will display the view we created before.

public function hello()
{
 return view('helloview');
}

That 'helloview' argument in the view function is just the name of the view file without the trailing
".blade.php". Laravel will know how to find it.

Now when we call the method hello of the controller HelloController it will display the message.
But how do we link that to a call to http://mylaravel.com/helloworld ? With the final step, the
routing.

The router

Open the existing file app/routes/web.php (in older laravel versions app/Http/routes.php) and add
this line:

Route::get('/helloworld', 'HelloController@hello');

which is a very self-explaining command saying to our laravel app: "When someone uses the GET
verb to access '/helloworld' in this laravel app, return the results of calling the function hello in the
HelloController controller.

Read Installation Guide online: https://riptutorial.com/laravel/topic/2187/installation-guide

https://riptutorial.com/ 118

https://riptutorial.com/laravel/topic/2187/installation-guide

Chapter 34: Introduction to laravel-5.2

Introduction

Laravel is a MVC framework with bundles, migrations, and Artisan CLI. Laravel offers a robust set
of tools and an application architecture that incorporates many of the best features of frameworks
like CodeIgniter, Yii, ASP.NET MVC, Ruby on Rails, Sinatra, and others. Laravel is an Open
Source framework. It has a very rich set of features which will boost the speed of Web
Development. If you familiar with Core PHP and Advanced PHP, Laravel will make your task
easier. It will save a lot time.

Remarks

This section provides an overview of what laravel-5.1 is, and why a developer might want to use it.

It should also mention any large subjects within laravel-5.1, and link out to the related topics. Since
the Documentation for laravel-5.1 is new, you may need to create initial versions of those related
topics.

Examples

Installation or Setup

Instructions on installing Laravel 5.1 on a Linux/Mac/Unix Machine.

Before initiating the installation, check if the following requirements are met:

PHP >= 5.5.9•
OpenSSL PHP Extension•
PDO PHP Extension•
Mbstring PHP Extension•
Tokenizer PHP Extension•

Let's begin the installation:

Install composer. Composer Documentation1.
Run composer create-project laravel/laravel <folder-name> "5.1.*"2.
Ensure that the storage folder and the bootstrap/cache folder are writable.3.
Open the .env file and set the configuration information like database credentials, debug
status, application environment, etc.

4.

Run php artisan serve and point your browser to http://localhost:8000. If everything is fine
then you should get the page

5.

Install Laravel 5.1 Framework on Ubuntu 16.04, 14.04 & LinuxMint

https://riptutorial.com/ 119

https://getcomposer.org/doc/00-intro.md

Step 1 – Install LAMP

To start with Laravel, we first need to set up a running LAMP server. If you have already running
LAMP stack skip this step else use followings commands to set up lamp on Ubuntu system.

Install PHP 5.6

$ sudo apt-get install python-software-properties
$ sudo add-apt-repository ppa:ondrej/php
$ sudo apt-get update
$ sudo apt-get install -y php5.6 php5.6-mcrypt php5.6-gd

Install Apache2

$ apt-get install apache2 libapache2-mod-php5

Install MySQL

$ apt-get install mysql-server php5.6-mysql

Step 2 – Install Composer

Composer is required for installing Laravel dependencies. So use below commands to download
and use as a command in our system.

$ curl -sS https://getcomposer.org/installer | php
$ sudo mv composer.phar /usr/local/bin/composer
$ sudo chmod +x /usr/local/bin/composer

Step 3 – Install Laravel

To download latest version of Laravel, Use below command to clone master repo of laravel from
github.

$ cd /var/www
$ git clone https://github.com/laravel/laravel.git

Navigate to Laravel code directory and use composer to install all dependencies required for
Laravel framework.

$ cd /var/www/laravel
$ sudo composer install

Dependencies installation will take some time. After than set proper permissions on files.

$ chown -R www-data.www-data /var/www/laravel
$ chmod -R 755 /var/www/laravel
$ chmod -R 777 /var/www/laravel/app/storage

https://riptutorial.com/ 120

Step 4 – Set Encryption Key

Now set the 32 bit long random number encryption key, which used by the Illuminate encrypter
service.

$ php artisan key:generate

Application key [uOHTNu3Au1Kt7Uloyr2Py9blU0J5XQ75] set successfully.

Now edit config/app.php configuration file and update above generated application key as
followings. Also make sure cipher is set properly.

'key' => env('APP_KEY', 'uOHTNu3Au1Kt7Uloyr2Py9blU0J5XQ75'),

'cipher' => 'AES-256-CBC',

Step 5 – Create Apache VirtualHost

Now add a Virtual Host in your Apache configuration file to access Laravel framework from web
browser. Create Apache configuration file under /etc/apache2/sites-available/ directory and add
below content.

$ vim /etc/apache2/sites-available/laravel.example.com.conf

This is the Virtual Host file structure.

<VirtualHost *:80>

 ServerName laravel.example.com
 DocumentRoot /var/www/laravel/public

 <Directory />
 Options FollowSymLinks
 AllowOverride None
 </Directory>
 <Directory /var/www/laravel>
 AllowOverride All
 </Directory>

 ErrorLog ${APACHE_LOG_DIR}/error.log
 LogLevel warn
 CustomLog ${APACHE_LOG_DIR}/access.log combined
</VirtualHost>

Finally lets enable website and reload Apache service using below command.

$ a2ensite laravel.example.com
$ sudo service apache2 reload

Step 6 – Access Laravel

At this point you have successfully completed Laravel 5 PHP framework on your system. Now

https://riptutorial.com/ 121

make host file entry to access your Laravel application in web browser. Change 127.0.0.1 with
your server ip and laravel.example.com with your domain name configured in Apache.

$ sudo echo "127.0.0.1 laravel.example.com" >> /etc/hosts

And access http://laravel.example.com in your favorite web browser as below.

Read Introduction to laravel-5.2 online: https://riptutorial.com/laravel/topic/1987/introduction-to-
laravel-5-2

https://riptutorial.com/ 122

http://laravel.example.com
https://riptutorial.com/laravel/topic/1987/introduction-to-laravel-5-2
https://riptutorial.com/laravel/topic/1987/introduction-to-laravel-5-2

Chapter 35: Introduction to laravel-5.3

Introduction

New features, improvements and changes from Laravel 5.2 to 5.3

Examples

The $loop variable

It is known for a while that dealing with loops in Blade has been limited, as of 5.3 there is a
variable called $loop available

@foreach($variables as $variable)

 // Within here the `$loop` variable becomes available

 // Current index, 0 based
 $loop->index;

 // Current iteration, 1 based
 $loop->iteration;

 // How many iterations are left for the loop to be complete
 $loop->remaining;

 // Get the amount of items in the loop
 $loop->count;

 // Check to see if it's the first iteration ...
 $loop->first;

 // ... Or last iteration
 $loop->last;

 //Depth of the loop, ie if a loop within a loop the depth would be 2, 1 based counting.
 $loop->depth;

 // Get's the parent `$loop` if the loop is nested, else null
 $loop->parent;

@endforeach

Read Introduction to laravel-5.3 online: https://riptutorial.com/laravel/topic/9231/introduction-to-
laravel-5-3

https://riptutorial.com/ 123

https://riptutorial.com/laravel/topic/9231/introduction-to-laravel-5-3
https://riptutorial.com/laravel/topic/9231/introduction-to-laravel-5-3

Chapter 36: Laravel Docker

Introduction

A challenge that every developer and development team faces is environment consistency.
Laravel is one of the most popular PHP frameworks today. DDocker, on the other hand, is a
virtualization method that eliminates “works on my machine” issues when cooperating on code
with other developers. The two together create a fusion of useful and powerful. Although both of
them do very different things, they can both be combined to create amazing products.

Examples

Using Laradock

Laradock is a project that provides a ready to go contains tailored for Laravel use.

Download or clone Laradock in your project's root folder:

git clone https://github.com/Laradock/laradock.git

Change directory into Laradock and generate the .env file needed to run your configurations:

cd laradock
cp .env-example .env

You are now ready to run docker. The first time you run the container it will download all the need
packages from the internet.

docker-compose up -d nginx mysql redis beanstalkd

Now you can open your browser and view your project on http://localhost.

For the full Laradock documentation and configuration click here.

Read Laravel Docker online: https://riptutorial.com/laravel/topic/10034/laravel-docker

https://riptutorial.com/ 124

http://laradock.io
https://riptutorial.com/laravel/topic/10034/laravel-docker

Chapter 37: Laravel Packages

Examples

laravel-ide-helper

This package generates a file that your IDE understands, so it can provide accurate
autocompletion. Generation is done based on the files in your project.

Read more about this here

laravel-datatables

This package is created to handle server-side works of DataTables jQuery Plugin via AJAX option
by using Eloquent ORM, Fluent Query Builder or Collection.

Read more about this here or here

Intervention Image

Intervention Image is an open source PHP image handling and manipulation library. It provides an
easier and expressive way to create, edit, and compose images and supports currently the two
most common image processing libraries GD Library and Imagick.

Read more about this here

Laravel generator

Get your APIs and Admin Panel ready in minutes.Laravel Generator to generate CRUD, APIs,
Test Cases and Swagger Documentation

Read more about this here

Laravel Socialite

Laravel Socialite provides an expressive, fluent interface to OAuth authentication with Facebook,
Twitter, Google, LinkedIn, GitHub and Bitbucket. It handles almost all of the boilerplate social
authentication code you are dreading writing.

Read more about this here

Official Packages

Cashier

Laravel Cashier provides an expressive, fluent interface to Stripe's and Braintree's subscription

https://riptutorial.com/ 125

https://github.com/barryvdh/laravel-ide-helper
https://github.com/yajra/laravel-datatables
https://datatables.yajrabox.com/
http://image.intervention.io/
https://github.com/InfyOmLabs/laravel-generator
https://github.com/laravel/socialite
https://stripe.com/au
https://www.braintreepayments.com

billing services. It handles almost all of the boilerplate subscription billing code you are dreading
writing. In addition to basic subscription management, Cashier can handle coupons, swapping
subscription, subscription "quantities", cancellation grace periods, and even generate invoice
PDFs.

More about this package can be found here.

Envoy

Laravel Envoy provides a clean, minimal syntax for defining common tasks you run on your
remote servers. Using Blade style syntax, you can easily setup tasks for deployment, Artisan
commands, and more. Currently, Envoy only supports the Mac and Linux operating systems.

This package can be found on Github.

Passport

Laravel already makes it easy to perform authentication via traditional login forms, but what about
APIs? APIs typically use tokens to authenticate users and do not maintain session state between
requests. Laravel makes API authentication a breeze using Laravel Passport, which provides a full
OAuth2 server implementation for your Laravel application in a matter of minutes.

More about this package can be found here.

Scout

Laravel Scout provides a simple, driver-based solution for adding full-text search to your Eloquent
models. Using model observers, Scout will automatically keep your search indexes in sync with
your Eloquent records.

Currently, Scout ships with an Algolia driver; however, writing custom drivers is simple and you are
free to extend Scout with your own search implementations.

More about this package can be found here.

Socialite

Laravel Socialite provides an expressive, fluent interface to OAuth authentication with Facebook,
Twitter, Google, LinkedIn, GitHub and Bitbucket. It handles almost all of the boilerplate social
authentication code you are dreading writing.

This package can be found on Github.

Read Laravel Packages online: https://riptutorial.com/laravel/topic/8001/laravel-packages

https://riptutorial.com/ 126

https://laravel.com/docs/5.4/billing
https://github.com/laravel/envoy
https://laravel.com/docs/5.4/passport
https://laravel.com/docs/5.4/scout
https://github.com/laravel/socialite
https://riptutorial.com/laravel/topic/8001/laravel-packages

Chapter 38: lumen framework

Examples

Getting started with Lumen

The following example demonstrates using Lumen in WAMP / MAMP / LAMP environments.

To work with Lumen you need to setup couple of things first.

Composer•
PHPUnit•
git (not required but strongly recommended)•

Assuming you have all these three components installed (at least you need composer), first go to
your web servers document root using terminal. MacOSX and Linux comes with a great terminal.
You can use git bash (which is actually mingw32 or mingw64) in windows.

$ cd path/to/your/document/root

Then you need to use compose to install and create Lumen project. Run the following command.

$ composer create-project laravel/lumen=~5.2.0 --prefer-dist lumen-project
$ cd lumen-project

lumen-app in the code above is the folder name. You can change it as you like. Now you need to
setup your virtual host to point to the path/to/document/root/lumen-project/public folder. Say you
mapped http://lumen-project.local to this folder. Now if you go to this url you should see a
message like following (depending on your installed Lumen version, in my case it was 5.4.4)-

Lumen (5.4.4) (Laravel Components 5.4.*)

If you open lumen-project/routers/web.php file there you should see the following-

$app->get('/', function () use($app) {
 return $app->version();
});

Congratulations! Now you have a working Lumen installation. No you can extend this app to listen to
your custom endpoints.

Read lumen framework online: https://riptutorial.com/laravel/topic/9221/lumen-framework

https://riptutorial.com/ 127

https://lumen.laravel.com
https://getcomposer.org/
https://phpunit.de/
https://git-scm.com/
https://riptutorial.com/laravel/topic/9221/lumen-framework

Chapter 39: Macros In Eloquent Relationship

Introduction

We have new features for Eloquent Relationship in Laravel version 5.4.8. We can fetch a single
instance of a hasMany (it is just one example) relationship by define it at on place and it will works
for all relationship

Examples

We can fetch one instance of hasMany relationship

In our AppServiceProvider.php

public function boot()
{
 HasMany::macro('toHasOne', function() {
 return new HasOne(
 $this->query,
 $this->parent,
 $this->foreignKey,
 $this->localKey
);
 });
}

Suppose we have shop modal and we are getting the list of products which has purchased.
Suppose we have allPurchased relationship for Shop modal

public function allPurchased()
{
 return $this->hasMany(Purchased::class);
}

public function lastPurchased()
{
 return $this->allPurchased()->latest()->toHasOne();
}

Read Macros In Eloquent Relationship online: https://riptutorial.com/laravel/topic/8998/macros-in-
eloquent-relationship

https://riptutorial.com/ 128

https://riptutorial.com/laravel/topic/8998/macros-in-eloquent-relationship
https://riptutorial.com/laravel/topic/8998/macros-in-eloquent-relationship

Chapter 40: Mail

Examples

Basic example

You can configure Mail by just adding/changing these lines in the app's .ENV file with your email
provider login details, for example for using it with gmail you can use:

MAIL_DRIVER=smtp
MAIL_HOST=smtp.gmail.com
MAIL_PORT=587
MAIL_USERNAME=yourEmail@gmail.com
MAIL_PASSWORD=yourPassword
MAIL_ENCRYPTION=tls

Then you can start sending emails using Mail, for example:

$variable = 'Hello world!'; // A variable which can be use inside email blade template.
Mail::send('your.blade.file', ['variable' => $variable], function ($message) {
 $message->from('john@doe.com');
 $message->sender('john@doe.com');
 $message->to(foo@bar.com);
 $message->subject('Hello World');
 });

Read Mail online: https://riptutorial.com/laravel/topic/8014/mail

https://riptutorial.com/ 129

https://riptutorial.com/laravel/topic/8014/mail

Chapter 41: Middleware

Introduction

Middleware are classes, that can be assigned to one or more route, and are used to make actions
in the early or final phases of the request cycle. We can think of them as a series of layers an
HTTP request has to pass through while it's executed

Remarks

A "Before" middleware will executes before the controller action code; while a "After" middleware
executes after the request is handled by the application

Examples

Defining a Middleware

To define a new middleware we have to create the middleware class:

class AuthenticationMiddleware
{
 //this method will execute when the middleware will be triggered
 public function handle ($request, Closure $next)
 {
 if (! Auth::user())
 {
 return redirect('login');
 }

 return $next($request);
 }
}

Then we have to register the middleware: if the middleware should be bind to all the routes of the
application, we should add it to the middleware property of app/Http/Kernel.php:

protected $middleware = [
 \Illuminate\Foundation\Http\Middleware\CheckForMaintenanceMode::class,
 \App\Http\Middleware\AuthenticationMiddleware::class
];

while if we only want to associate the middleware to some of the routes, we can add it to
$routeMiddleware

//register the middleware as a 'route middleware' giving it the name of 'custom_auth'
protected $routeMiddleware = [
 'custom_auth' => \App\Http\Middleware\AuthenticationMiddleware::class
];

https://riptutorial.com/ 130

and then bind it to the single routes like this:

//bind the middleware to the admin_page route, so that it will be executed for that route
Route::get('admin_page', 'AdminController@index')->middleware('custom_auth');

Before vs. After Middleware

An example of "before" middleware would be as follows:

<?php

namespace App\Http\Middleware;

use Closure;

class BeforeMiddleware
{
 public function handle($request, Closure $next)
 {
 // Perform action

 return $next($request);
 }
}

while "after" middleware would look like this:

<?php

namespace App\Http\Middleware;

use Closure;

class AfterMiddleware
{
 public function handle($request, Closure $next)
 {
 $response = $next($request);

 // Perform action

 return $response;
 }
}

The key difference is in how the $request parameter is handled. If actions are performed before
$next($request) that will happen before the controller code is executed while calling
$next($request) first will lead to the actions being performed after the controller code is executed.

Route Middleware

Any middleware registered as routeMiddleware in app/Http/Kernel.php can be assigned to a route.

There are a few different ways to assign middleware, but they all do the same.

https://riptutorial.com/ 131

Route::get('/admin', 'AdminController@index')->middleware('auth', 'admin');
Route::get('admin/profile', ['using' => 'AdminController@index', 'middleware' => 'auth']);
Route::get('admin/profile', ['using' => 'AdminController@index', 'middleware' => ['auth',
'admin']);

In all the examples above, you can also pass fully qualified class names as middleware,
regardless if it's been registered as a route middleware.

use App\Http\Middleware\CheckAdmin;
Route::get('/admin', 'AdminController@index')->middleware(CheckAdmin::class);

Read Middleware online: https://riptutorial.com/laravel/topic/3419/middleware

https://riptutorial.com/ 132

https://riptutorial.com/laravel/topic/3419/middleware

Chapter 42: Multiple DB Connections in
Laravel

Examples

Initial Steps

Multiple database connections, of any type, can be defined inside the database configuration file
(likely app/config/database.php). For instance, to pull data from 2 MySQL databases define them
both separately:

<?php
return array(

 'default' => 'mysql',

 'connections' => array(

 # Our primary database connection
 'mysql' => array(
 'driver' => 'mysql',
 'host' => 'host1',
 'database' => 'database1',
 'username' => 'user1',
 'password' => 'pass1'
 'charset' => 'utf8',
 'collation' => 'utf8_unicode_ci',
 'prefix' => '',
),

 # Our secondary database connection
 'mysql2' => array(
 'driver' => 'mysql',
 'host' => 'host2',
 'database' => 'database2',
 'username' => 'user2',
 'password' => 'pass2'
 'charset' => 'utf8',
 'collation' => 'utf8_unicode_ci',
 'prefix' => '',
),
),
);

The default connection is still set to mysql. This means unless otherwise specified, the application
uses the mysql connection.

Using Schema builder

Within the Schema Builder, use the Schema facade with any connection. Run the connection()
method to specify which connection to use:

https://riptutorial.com/ 133

Schema::connection('mysql2')->create('some_table', function($table)
{
 $table->increments('id'):
});

Using DB query builder

Similar to Schema Builder, define a connection on the Query Builder:

$users = DB::connection('mysql2')->select(...);

Using Eloquent

There are multiple ways to define which connection to use in the Eloquent models. One way is to
set the $connection variable in the model:

<?php

class SomeModel extends Eloquent {

 protected $connection = 'mysql2';

}

The connection can also be defined at runtime via the setConnection method.

<?php

class SomeController extends BaseController {

 public function someMethod()
 {
 $someModel = new SomeModel;

 $someModel->setConnection('mysql2');

 $something = $someModel->find(1);

 return $something;
 }
}

From Laravel Documentation

Each individual connection can be accessed via the connection method on the DB facade, even
when there are multiple connections defined. The name passed to the connection method should
correspond to one of the connections listed in the config/database.php configuration file:

$users = DB::connection('foo')->select(...);

The raw can also be accessed, underlying PDO instance using the getPdo method on a

https://riptutorial.com/ 134

https://laravel.com/docs/5.3/database#accessing-connections
https://laravel.com/docs/5.4/eloquent#basic-usage
https://github.com/laravel/framework/blob/master/src/Illuminate/Database/Eloquent/Model.php#L28

connection instance:

$pdo = DB::connection()->getPdo();

https://laravel.com/docs/5.4/database#using-multiple-database-connections

Read Multiple DB Connections in Laravel online: https://riptutorial.com/laravel/topic/9605/multiple-
db-connections-in-laravel

https://riptutorial.com/ 135

https://laravel.com/docs/5.4/database#using-multiple-database-connections
https://riptutorial.com/laravel/topic/9605/multiple-db-connections-in-laravel
https://riptutorial.com/laravel/topic/9605/multiple-db-connections-in-laravel

Chapter 43: Naming Files when uploading
with Laravel on Windows

Parameters

Param/Function Description

file-upload name of the file <input> field

$sampleName
could also be dynamically generated string or the name of the
file uploaded by the user

app_path()
is Laravel helper to provide the absolute path to the
application

getCLientOriginalExtension()
Laravel wrapper to fetch the extension of the file uploaded by
the user as it was on the user machine

Examples

Generating timestamped file names for files uploaded by users.

Below won't work on a Windows machine

$file = $request->file('file_upload');
$sampleName = 'UserUpload';
$destination = app_path() . '/myStorage/';
$fileName = $sampleName . '-' . date('Y-m-d-H:i:s') . '.' .
$file->getClientOriginalExtension();
$file->move($destination, $fileName);

It will throw an error like "Could no move file to /path..."

Why? - This works perfectly on a Ubuntu server
The reason is that on Windows colon ':' is not allowed in a filename where as it is allowed on
linux. This is such a small thing that we may not notice it upfront and keep wondering that why a
code which is running well on Ubuntu (Linux) is not working?
Our first hunch would be to check the file permissions and things like that but we may not notice
that colon ':' is the culprit here.
So in order to upload files on Windows, Do not use colon':' while generating timestamped
filenames, instead do something like below:

$filename = $sampleName . '-' . date('Y-m-d-H_i_s') . '.' . $file-
>getClientOriginalExtension(); //ex output UserUpload-2016-02-18-11_25_43.xlsx

https://riptutorial.com/ 136

 OR

$filename = $sampleName . '-' .date('Y-m-d H i s') . '.' . $file-
>getClientOriginalExtension(); //ex output UserUpload-2016-02-18 11 25 43.xlsx

 OR

$filename = $sampleName . '-'.date('Y-m-d_g-i-A').'.' . $file->getClientOriginalExtension();
//ex output UserUpload-2016-02-18_11-25-AM.xlsx

Read Naming Files when uploading with Laravel on Windows online:
https://riptutorial.com/laravel/topic/2629/naming-files-when-uploading-with-laravel-on-windows

https://riptutorial.com/ 137

https://riptutorial.com/laravel/topic/2629/naming-files-when-uploading-with-laravel-on-windows

Chapter 44: Observer

Examples

Creating an observer

Observers are used for listening to livecycle callbacks of a certain model in Laravel.
These listeners may listen to any of the following actions:

creating•
created•
updating•
updated•
saving•
saved•
deleting•
deleted•
restoring•
restored•

Here is an example of an observer.

UserObserver

<?php

namespace App\Observers;

/**
 * Observes the Users model
 */
class UserObserver
{
 /**
 * Function will be triggerd when a user is updated
 *
 * @param Users $model
 */
 public function updated($model)
 {
 // execute your own code
 }
}

As shown in the user observer, we listen to the updated action, however before this class actually
listens to the user model we first need to register it inside the EventServiceProvider.

EventServiceProvider

<?php

https://riptutorial.com/ 138

namespace App\Providers;

use Illuminate\Contracts\Events\Dispatcher as DispatcherContract;
use Illuminate\Foundation\Support\Providers\EventServiceProvider as ServiceProvider;

use App\Models\Users;
use App\Observers\UserObserver;

/**
 * Event service provider class
 */
class EventServiceProvider extends ServiceProvider
{
 /**
 * Boot function
 *
 * @param DispatcherContract $events
 */
 public function boot(DispatcherContract $events)
 {
 parent::boot($events);

 // In this case we have a User model that we want to observe
 // We tell Laravel that the observer for the user model is the UserObserver
 Users::observe(new UserObserver());
 }
}

Now that we have registered our observer, the updated function will be called every time after
saving the user model.

Read Observer online: https://riptutorial.com/laravel/topic/7128/observer

https://riptutorial.com/ 139

https://riptutorial.com/laravel/topic/7128/observer

Chapter 45: Pagination

Examples

Pagination in Laravel

In other frameworks pagination is headache. Laravel makes it breeze, it can generate pagination
by adding few lines of code in Controller and View.

Basic Usage

There are many ways to paginate items, but the simplest one is using the paginate method on
query builder or an Eloquent query. Laravel out of the box take care of setting limit and offset
based on the current page being viewed by user. By default, the current page is detected by the
value of ?page query string argument on the HTTP request. And for sure, this value is detected by
Laravel automatically and insert into links generated by paginator.

Now let's say we want to call the paginate method on query. In our example the passed argument
to paginate is the number of items you would like to display "per page". In our case, let say we
want to display 10 items per page.

<?php

namespace App\Http\Controllers;

use DB;
use App\Http\Controllers\Controller;

class UserController extends Controller
{
 /**
 * Show all of the users for the application.
 *
 * @return Response
 */
 public function index()
 {
 $users = DB::table('users')->paginate(10);

 return view('user.index', ['users' => $users]);
 }
}

Note: Currently, pagination operations that use a groupBy statement cannot be
executed efficiently by Laravel. If you need to use a groupBy with a paginated result set,
it is recommended that you query the database and create a paginator manually.

Simple Pagination

Let say you just want to display Next and Previous links on your pagination view. Laravel provides
you this option by using simplePaginate method.

https://riptutorial.com/ 140

https://laravel.com/docs/5.2/eloquent

$users = DB::table('users')->simplePaginate(10);

Displaying Results In A View

Now lets display the pagination in view. Actually when you call the paginate or simplePaginate
methods on Eloquent query, you receive a paginator instance. When paginate method is called,
you receive an instance of Illuminate\Pagination\LengthAwarePaginator, while when you call
simplePaginate method, you receive an instance of Illuminate\Pagination\Paginator. These
instances / objects comes with several methods that explaines the result set. Moreover, in addition
to these helpers methods, the paginator instances are iterators and can be looped as an array.

Once you received the results, you can easily render the page links using blade

<div class="container">
 @foreach ($users as $user)
 {{ $user->name }}
 @endforeach
</div>

{{ $users->links() }}

The links method will automatically render the links to other pages in result set. Each of these
links will contain the specific page number i.e ?page query string variable. The HTML generated by
the links method is perfectly compatible with the Bootstrap CSS framework.

Changing pagination views

While using laravel pagination you are free to use your own custom views.So,when calling the
links method on a paginator instance, pass the view name as the first argument to the method like
:

{{ $paginator->links('view.name') }}

or

You can customize the pagination views is by exporting them to your resources/views/vendor
directory using the vendor:publish command:

php artisan vendor:publish --tag=laravel-pagination

This command will place the views in the resources/views/vendor/pagination directory. The
default.blade.php file within this directory corresponds to the default pagination view. Edit this file
to modify the HTML of pagination.

Read Pagination online: https://riptutorial.com/laravel/topic/2359/pagination

https://riptutorial.com/ 141

http://getbootstrap.com
https://riptutorial.com/laravel/topic/2359/pagination

Chapter 46: Permissions for storage

Introduction

Laravel requires some folders to be writable for the web server user.

Examples

Example

We also need to set correct permissions for storage files in the server. So, we need to give a write
permission in the storage directory as follows:

$ chmod -R 777 ./storage ./bootstrap

or you may use

$ sudo chmod -R 777 ./storage ./bootstrap

For windows

Make sure you are an admin user on that computer with writeable access

xampp\htdocs\laravel\app\storage needs to be writable

The NORMAL way to set permissions is to have your files owned by the webserver:

sudo chown -R www-data:www-data /path/to/your/root/directory

Read Permissions for storage online: https://riptutorial.com/laravel/topic/9797/permissions-for-
storage

https://riptutorial.com/ 142

https://riptutorial.com/laravel/topic/9797/permissions-for-storage
https://riptutorial.com/laravel/topic/9797/permissions-for-storage

Chapter 47: Policies

Examples

Creating Policies

Since defining all of the authorization logic in the AuthServiceProvider could become cumbersome
in large applications, Laravel allows you to split your authorization logic into "Policy" classes.
Policies are plain PHP classes that group authorization logic based on the resource they
authorize.

You may generate a policy using the make:policy artisan command. The generated policy will be
placed in the app/Policies directory:

php artisan make:policy PostPolicy

Read Policies online: https://riptutorial.com/laravel/topic/7344/policies

https://riptutorial.com/ 143

https://riptutorial.com/laravel/topic/7344/policies

Chapter 48: Queues

Introduction

Queues allow your application to reserve bits of work that are time consuming to be handled by a
background process.

Examples

Use-cases

For example, if you are sending an email to a customer after starting a task, it's best to
immediately redirect the user to the next page while queuing the email to be sent in the
background. This will speed up the load time for the next page, since sending an email can
sometimes take several seconds or longer.

Another example would be updating an inventory system after a customer checks out with their
order. Rather than waiting for the API calls to complete, which may take several seconds, you can
immediately redirect user to the checkout success page while queuing the API calls to happen in
the background.

Queue Driver Configuration

Each of Laravel's queue drivers are configured from the config/queue.php file. A queue driver is the
handler for managing how to run a queued job, identifying whether the jobs succeeded or failed,
and trying the job again if configured to do so.

Out of the box, Laravel supports the following queue drivers:

sync

Sync, or synchronous, is the default queue driver which runs a queued job within your existing
process. With this driver enabled, you effectively have no queue as the queued job runs
immediately. This is useful for local or testing purposes, but clearly not recommended for
production as it removes the performance benefit from setting up your queue.

database

This driver stores queued jobs in the database. Before enabling this driver, you will need to create
database tables to store your queued and failed jobs:

php artisan queue:table
php artisan migrate

sqs

https://riptutorial.com/ 144

This queue driver uses Amazon's Simple Queue Service to manage queued jobs. Before enabling
this job you must install the following composer package: aws/aws-sdk-php ~3.0

Also note that if you plan to use delays for queued jobs, Amazon SQS only supports a maximum
delay of 15 minutes.

iron

This queue drivers uses Iron to manage queued jobs.

redis

This queue driver uses an instance of Redis to manage queued jobs. Before using this queue
driver, you will need to configure a copy of Redis and install the following composer dependency:
predis/predis ~1.0

beanstalkd

This queue driver uses an instance of Beanstalk to manage queued jobs. Before using this queue
driver, you will need to configure a copy of Beanstalk and install the following composer
dependency: pda/pheanstalk ~3.0

null

Specifying null as your queue driver will discard any queued jobs.

Read Queues online: https://riptutorial.com/laravel/topic/2651/queues

https://riptutorial.com/ 145

https://aws.amazon.com/sqs/
https://www.iron.io/
http://redis.io/
http://kr.github.io/beanstalkd/
https://riptutorial.com/laravel/topic/2651/queues

Chapter 49: Remove public from URL in
laravel

Introduction

How to remove public from URL in Laravel, there are many answers on internet but the easiest
way is described below

Examples

How to do that?

Follow these steps to remove public from the url

Copy .htaccess file from /public directory to Laravel/project root folder.1.
Rename the server.php in the Laravel/project root folder to index.php.2.

Cheers you will be good now.

Please Note: It is tested on Laravel 4.2, Laravel 5.1, Laravel 5.2, Laravel 5.3.

I think this is the easiest way to remove public from the url.

Remove the public from url

Renaming the server.php to index.php1.
Copy the .htaccess from public folder to root folder2.
Changing .htaccess a bit as follows for statics:3.

RewriteEngine On

RewriteCond %{REQUEST_FILENAME} !-d
RewriteRule ^(.*)/$ /$1 [L,R=301]

RewriteCond %{REQUEST_URI} !(\.css|\.js|\.png|\.jpg|\.gif|robots\.txt)$ [NC]
RewriteCond %{REQUEST_FILENAME} !-d
RewriteCond %{REQUEST_FILENAME} !-f
RewriteRule ^ index.php [L]

RewriteCond %{REQUEST_FILENAME} !-d
RewriteCond %{REQUEST_FILENAME} !-f
RewriteCond %{REQUEST_URI} !^/public/
RewriteRule ^(css|js|images)/(.*)$ public/$1/$2 [L,NC]

Sometimes I've use this method for removing public form url.

Read Remove public from URL in laravel online: https://riptutorial.com/laravel/topic/9786/remove-
public-from-url-in-laravel

https://riptutorial.com/ 146

https://riptutorial.com/laravel/topic/9786/remove-public-from-url-in-laravel
https://riptutorial.com/laravel/topic/9786/remove-public-from-url-in-laravel

Chapter 50: Requests

Examples

Getting input

The primary way of getting input would be from injecting the Illuminate\Http\Request into your
controller, after that there are numerous ways of accessing the data, 4 of which are in the example
below.

<?php
namespace App\Http\Controllers;

use Illuminate\Http\Request;

class UserController extends Controller
{
 public function store(Request $request)
 {
 // Returns the username value
 $name = $request->input('username');

 // Returns the username value
 $name = $request->username;

 // Returns the username value
 $name = request('username');

 // Returns the username value again
 $name = request()->username;

 }

}

When using the input function it is also possible to add a default value for when the request input
is not available

$name = $request->input('username', 'John Doe');

Read Requests online: https://riptutorial.com/laravel/topic/3076/requests

https://riptutorial.com/ 147

https://riptutorial.com/laravel/topic/3076/requests

Chapter 51: Requests

Examples

Obtain an Instance of HTTP Request

To obtain an instance of an HTTP Request, class Illuminate\Http\Request need to be type hint
either in the constructor or the method of the controller.

Example code:

 <?php

namespace App\Http\Controllers;

/* Here how we illuminate the request class in controller */
use Illuminate\Http\Request;

use Illuminate\Routing\Controller;

class PostController extends Controller
{
 /**
 * Store a new post.
 *
 * @param Request $request
 * @return Response
 */
 public function store(Request $request)
 {
 $name = $request->input('post_title');

 /*
 * so typecasting Request class in our method like above avails the
 * HTTP GET/POST/PUT etc method params in the controller to use and
 * manipulate
 */
 }
}

Request Instance with other Parameters from routes in controller method

Sometimes we need to accept route params as well as access the HTTP Request params. We
can still type hint the Requests class in laravel controller and achieve that as explained below

E.g. We have a route that update a certain post like this (passing post id i route)

Route::put('post/{id}', 'PostController@update');

Also since user have edited other edit form fields, so that will be available in HTTP Request

Here is how to access both in our method

https://riptutorial.com/ 148

 public function update(Request $request,$id){
 //This way we have $id param from route and $request as an HTTP Request object

 }

Read Requests online: https://riptutorial.com/laravel/topic/4929/requests

https://riptutorial.com/ 149

https://riptutorial.com/laravel/topic/4929/requests

Chapter 52: Route Model Binding

Examples

Implicit Binding

Laravel automatically resolves Eloquent models defined in routes or controller actions whose
variable names match a route segment name. For example:

Route::get('api/users/{user}', function (App\User $user) {
 return $user->email;
});

In this example, since the Eloquent $user variable defined on the route matches the {user}
segment in the route's URI, Laravel will automatically inject the model instance that has an ID
matching the corresponding value from the request URI. If a matching model instance is not found
in the database, a 404 HTTP response will automatically be generated.

If the model's table name is composed from multiple words, to make the implicit model binding
working the input variable should be all lowercase;
For example, if the user can do some kind of action, and we want to access this action, the route
will be:

Route::get('api/useractions/{useraction}', function (App\UserAction $useraction) {
 return $useraction->description;
});

Explicit Binding

To register an explicit binding, use the router's model method to specify the class for a given
parameter. You should define your explicit model bindings in the boot method of the
RouteServiceProvider class

public function boot()
{
 parent::boot();

 Route::model('user', App\User::class);
}

Next, we can define a route that contains {user} parameter.

$router->get('profile/{user}', function(App\User $user) {

});

Since we have bound all {user} parameters to the App\User model, a User instance will be injected

https://riptutorial.com/ 150

into the route. So, for example, a request to profile/1 will inject the User instance from the
database which has an ID of 1.

If a matching model instance is not found in the database, a 404 HTTP response will be
automatically generated.

Read Route Model Binding online: https://riptutorial.com/laravel/topic/7098/route-model-binding

https://riptutorial.com/ 151

https://riptutorial.com/laravel/topic/7098/route-model-binding

Chapter 53: Routing

Examples

Basic Routing

Routing defines a map between HTTP methods and URIs on one side, and actions on the other.
Routes are normally written in the app/Http/routes.php file.

In its simplest form, a route is defined by calling the corresponding HTTP method on the Route
facade, passing as parameters a string that matches the URI (relative to the application root), and
a callback.

For instance: a route to the root URI of the site that returns a view home looks like this:

Route::get('/', function() {
 return view('home');
});

A route for a post request which simply echoes the post variables:

Route::post('submit', function() {
 return Input::all();
});

//or

Route::post('submit', function(\Illuminate\Http\Request $request) {
 return $request->all();
});

Routes pointing to a Controller method

Instead of defining the callback inline, the route can refer to a controller method in
[ControllerClassName@Method] syntax:

Route::get('login', 'LoginController@index');

A route for multiple verbs

The match method can be used to match an array of HTTP methods for a given route:

Route::match(['GET', 'POST'], '/', 'LoginController@index');

Also you can use all to match any HTTP method for a given route:

https://riptutorial.com/ 152

Route::all('login', 'LoginController@index');

Route Groups

Routes can be grouped to avoid code repetition.

Let's say all URIs with a prefix of /admin use a certain middleware called admin and they all live in
the App\Http\Controllers\Admin namespace.

A clean way of representing this using Route Groups is as follows:

Route::group([
 'namespace' => 'Admin',
 'middleware' => 'admin',
 'prefix' => 'admin'
], function () {

 // something.dev/admin
 // 'App\Http\Controllers\Admin\IndexController'
 // Uses admin middleware
 Route::get('/', ['uses' => 'IndexController@index']);

 // something.dev/admin/logs
 // 'App\Http\Controllers\Admin\LogsController'
 // Uses admin middleware
 Route::get('/logs', ['uses' => 'LogsController@index']);
});

Named Route

Named routes are used to generate a URL or redirects to a specific route. The advantage of using
a named route is, if we change the URI of a route in future, we wouldn't need to change the URL
or redirects pointing to that route if we are using a named route. But if the links were generated
using the url [eg. url('/admin/login')], then we would have to change everywhere where it is
used.

Named routes are created using as array key

Route::get('login', ['as' => 'loginPage', 'uses' => 'LoginController@index']);

or using method name

Route::get('login', 'LoginController@index')->name('loginPage');

Generate URL using named route

To generate a url using the route's name

https://riptutorial.com/ 153

$url = route('loginPage');

If you are using the route name for redirection

$redirect = Redirect::route('loginPage');

Route Parameters

You can use route parameters to get the part of the URI segment. You can define a optional or
required route parameter/s while creating a route. Optional parameters have a ? appended at the
end of the parameter name. This name is enclosed in a curly braces {}

Optional Parameter

Route::get('profile/{id?}', ['as' => 'viewProfile', 'uses' => 'ProfileController@view']);

This route can be accessed by domain.com/profile/23 where 23 is the id parameter. In this example
the id is passed as a parameter in view method of ProfileController. Since this is a optional
parameter accessing domain.com/profile works just fine.

Required Parameter

Route::get('profile/{id}', ['as' => 'viewProfile', 'uses' => 'ProfileController@view']);

Note that required parameter's name doesn't have a ? at the end of the parameter name.

Accessing the parameter in controller

In your controller, your view method takes a parameter with the same name as the one in the
routes.php and can be used like a normal variable. Laravel takes care of injecting the value:

public function view($id){
 echo $id;
}

Catch all routes

If you want to catch all routes, then you could use a regular expression as shown:

Route::any('{catchall}', 'CatchAllController@handle')->where('catchall', '.*');

Important: If you have other routes and you don't want for the catch-all to interfere, you should
put it in the end. For example:

https://riptutorial.com/ 154

Catching all routes except already defined

Route::get('login', 'AuthController@login');
Route::get('logout', 'AuthController@logout');
Route::get('home', 'HomeController@home');

// The catch-all will match anything except the previous defined routes.
Route::any('{catchall}', 'CatchAllController@handle')->where('catchall', '.*');

Routes are matched in the order they are declared

This is a common gotcha with Laravel routes. Routes are matched in the order that they are
declared. The first matching route is the one that is used.

This example will work as expected:

Route::get('/posts/{postId}/comments/{commentId}', 'CommentController@show');
Route::get('/posts/{postId}', 'PostController@show');

A get request to /posts/1/comments/1 will invoke CommentController@show. A get request to /posts/1
will invoke PostController@show.

However, this example will not work in the same manner:

Route::get('/posts/{postId}', 'PostController@show');
Route::get('/posts/{postId}/comments/{commentId}', 'CommentController@show');

A get request to /posts/1/comments/1 will invoke PostController@show. A get request to /posts/1 will
invoke PostController@show.

Because Laravel uses the first matched route, the request to /posts/1/comments/1 matches
Route::get('/posts/{postId}', 'PostController@show'); and assigns the variable $postId to the
value 1/comments/1. This means that CommentController@show will never be invoked.

Case-insensitive routes

Routes in Laravel are case-sensitive. It means that a route like

Route::get('login', ...);

will match a GET request to /login but will not match a GET request to /Login.

In order to make your routes case-insensitive, you need to create a new validator class that will
match requested URLs against defined routes. The only difference between the new validator and
the existing one is that it will append the i modifier at the end of regular expression for the
compiled route to switch enable case-insensitive matching.

https://riptutorial.com/ 155

<?php namespace Some\Namespace;

use Illuminate\Http\Request;
use Illuminate\Routing\Route;
use Illuminate\Routing\Matching\ValidatorInterface;

class CaseInsensitiveUriValidator implements ValidatorInterface
{
 public function matches(Route $route, Request $request)
 {
 $path = $request->path() == '/' ? '/' : '/'.$request->path();
 return preg_match(preg_replace('/$/','i', $route->getCompiled()->getRegex()),
rawurldecode($path));
 }
}

In order for Laravel to use your new validator, you need to update the list of matchers that are
used to match URL to a route and replace the original UriValidator with yours.

In order to do that, add the following at the top of your routes.php file:

<?php
use Illuminate\Routing\Route as IlluminateRoute;
use Your\Namespace\CaseInsensitiveUriValidator;
use Illuminate\Routing\Matching\UriValidator;

$validators = IlluminateRoute::getValidators();
$validators[] = new CaseInsensitiveUriValidator;
IlluminateRoute::$validators = array_filter($validators, function($validator) {
 return get_class($validator) != UriValidator::class;
});

This will remove the original validator and add yours to the list of validators.

Read Routing online: https://riptutorial.com/laravel/topic/1284/routing

https://riptutorial.com/ 156

https://riptutorial.com/laravel/topic/1284/routing

Chapter 54: Seeding

Remarks

Database seeding allows you to insert data, general test data into your database. By default there
is a DatabaseSeeder class under database/seeds.

Running seeders can be done with

php artisan db:seed

Or if you only want to process a single class

php artisan db:seed --class=TestSeederClass

As with all artisan commands, you have access to a wide array of methods which can be found in
the api documentation

Examples

Inserting data

There are several ways to insert data:

Using the DB Facade

public function run()
{
 DB::table('users')
 ->insert([
 'name' => 'Taylor',
 'age' => 21
]);
}

Via Instantiating a Model

public function run()
{
 $user = new User;
 $user->name = 'Taylor';
 $user->save();
}

Using the create method

https://riptutorial.com/ 157

https://laravel.com/api/5.3/Illuminate/Console/Command.html

public function run()
{
 User::create([
 'name' => 'Taylor',
 'age' => 21
]);
}

Using factory

public function run()
{
 factory(App\User::class, 10)->create();
}

Seeding && deleting old data and reseting auto-increment

public function run()
{
 DB::table('users')->delete();
 DB::unprepared('ALTER TABLE users AUTO_INCREMENT=1;');
 factory(App\User::class, 200)->create();
}

See the Persisting example for more information on inserting/updating data.

Calling other seeders

Within your DatabaseSeeder class you are able to call other seeders

$this->call(TestSeeder::class)

This allows you to keep one file where you can easily find your seeders. Keep in mind that you
need to pay attention to the order of your calls regarding foreign key constraints. You can't
reference a table that doesn't exist yet.

Creating a Seeder

To create seeders, you may use the make:seeder Artisan command. All seeders generated will be
placed in the database/seeds directory.

$ php artisan make:seeder MoviesTableSeeder

Generated seeders will contain one method: run. You may insert data into your database in this
method.

<?php

use Illuminate\Database\Seeder;

https://riptutorial.com/ 158

http://www.riptutorial.com/laravel/example/4094/persisting

use Illuminate\Database\Eloquent\Model;

class MoviesTableSeeder extends Seeder
{
 /**
 * Run the database seeds.
 *
 * @return void
 */
 public function run()
 {
 App\Movie::create([
 'name' => 'A New Hope',
 'year' => '1977'
]);

 App\Movie::create([
 'name' => 'The Empire Strikes Back',
 'year' => '1980'
]);
 }
}

You will generally want to call all your seeders inside the DatabaseSeeder class.

Once you're done writing the seeders, use the db:seed command. This will run DatabaseSeeder's run
function.

$ php artisan db:seed

You may also specify to run a specific seeder class to run individually using the --class option.

$ php artisan db:seed --class=UserSeeder

If you want to rollback and rerun all migrations, and then reseed:

$ php artisan migrate:refresh --seed

The migrate:refresh --seed command is a shortcut to these 3 commands:

$ php artisan migrate:reset # rollback all migrations
$ php artisan migrate # run migrations
$ php artisan db:seed # run seeders

Safe reseeding

You may want to re-seed your database without affecting your previously created seeds. For this
purpose, you can use firstOrCreate in your seeder:

EmployeeType::firstOrCreate([
 'type' => 'manager',
]);

https://riptutorial.com/ 159

http://www.riptutorial.com/laravel/example/11241/calling-other-seeders
http://www.riptutorial.com/laravel/example/11241/calling-other-seeders
http://www.riptutorial.com/laravel/example/11241/calling-other-seeders
https://laravel.com/api/5.2/Illuminate/Database/Eloquent/Builder.html#method_firstOrCreate

Then you can seed the database:

php artisan db:seed

Later, if you want to add another type of employee, you can just add that new one in the same file:

EmployeeType::firstOrCreate([
 'type' => 'manager',
]);
EmployeeType::firstOrCreate([
 'type' => 'secretary',
]);

And seed your database again with no problems:

php artisan db:seed

Notice in the first call you are retrieving the record but doing nothing with it.

Read Seeding online: https://riptutorial.com/laravel/topic/3272/seeding

https://riptutorial.com/ 160

https://riptutorial.com/laravel/topic/3272/seeding

Chapter 55: Services

Examples

Introduction

Laravel allows access to a variety of classes called Services. Some services are available out of
the box, but you can create them by yourself.

A service can be used in multiple files of the application, like controllers. Let's imagine a Service
OurService implementing a getNumber() method returning a random number:

class SomeController extends Controller {

 public function getRandomNumber()
 {
 return app(OurService::class)->getNumber();
 }
}

To create a Service, it is only needed to create a new Class:

app/Services/OurService/OurService.php

<?php
namespace App\Services\OurService;

class OurService
{
 public function getNumber()
 {
 return rand();
 }
}

At this time, you could already use this service in a controller, but you would need to instantiate a
new object each time you would need it:

class SomeController extends Controller {

 public function getRandomNumber()
 {
 $service = new OurService();
 return $service->getNumber();
 }

 public function getOtherRandomNumber()
 {
 $service = new OurService();
 return $service->getNumber();
 }
}

https://riptutorial.com/ 161

That is why the next step is to register your service into the Service Container. When you register
you Service into the Service Container, you don't need to create a new object every time you need
it.

To register a Service into the Service Container, you need to create a Service Provider. This
Service Provider can:

Register your Service into the Service Container with the register method)1.
Injecting other Services into your Service (dependencies) with the boot method2.

A Service Provider is a class extending the abstract class Illuminate\Support\ServiceProvider. It
needs to implement the register() method to register a Service into the Service Container:

app/Services/OurService/OurServiceServiceProvider.php

<?php
namespace App\Services\OurService;

use Illuminate\Support\ServiceProvider;

class OurServiceServiceProvider extends ServiceProvider
{
 public function register()
 {
 $this->app->singleton('OurService', function($app) {
 return new OurService();
 });
 }
}

All the Service Providers are saved in an array in config/app.php. So we need to register our
Service Provider into this array:

return [

 ...

 'providers' => [

 ...

 App\Services\OurService\OurServiceServiceProvider::class,

 ...

],

 ...

];

We can now access our Service in a controller. Three possibilities:

Dependency Injection:1.

https://riptutorial.com/ 162

<?php
namespace App\Http\Controllers;

use App\Services\OurService\OurService;

class SomeController extends Controller
{
 public function __construct(OurService $our_service)
 {
 dd($our_service->getNumber());
 }
}

Access via the app() helper:2.

<?php
namespace App\Http\Controllers;

use App\Services\OurService\OurService;

class SomeController extends Controller
{
 public function getRandomNumber()
 {
 return app('OurService')->getNumber();
 }
}

Laravel provides Facades, imaginary classes that you can use in all of your projects and reflect a
Service. To access your service more easily, you can create a Facade:

<?php
namespace App\Http\Controllers;

use Randomisator;

class SomeController extends Controller
{
 public function getRandomNumber()
 {
 return Randomisator::getNumber();
 }

}

To create a new Facade, you need to create a new Class extending
Illuminate\Support\Facades\Facade. This class needs to implement the getFacadeAccessor() method
and return the name of a service registered by a Service Provider:

app/Services/OurService/OurServiceFacade.php

<?php
namespace App\Services\OurService;

use Illuminate\Support\Facades\Facade;

https://riptutorial.com/ 163

class OurServiceFacade extends Facade
{
 protected static function getFacadeAccessor()
 {
 return 'OurService';
 }
}

You also need to register your Facade into config/app.php:

return [

 ...

 'aliases' => [

 'Randomisator' => App\Services\OurService\OurServiceFacade::class,
],

];

The Facade is now accessible anywhere in your project.

If you want to access your service from your views, you can create a helper function. Laravel ships
with some helpers function out of the box, like the auth() function or the view() function. To create
a helper function, create a new file:

app/Services/OurService/helpers.php

if (! function_exists('randomisator')) {
 /**
 * Get the available OurService instance.
 *
 * @return \App\ElMatella\FacebookLaravelSdk
 */
 function randomisator()
 {
 return app('OurService');
 }
}

You also need to register this file, but in your composer.json file:

{

 ...

 "autoload": {
 "files": [
 "app/Services/OurService/helpers.php"
],

 ...
 }

https://riptutorial.com/ 164

}

You can now use this helper in a view:

<h1>Here is a random number: {{ randomisator()->getNumber() }}</h1>

Read Services online: https://riptutorial.com/laravel/topic/1907/services

https://riptutorial.com/ 165

https://riptutorial.com/laravel/topic/1907/services

Chapter 56: Services

Examples

Binding an Interface To Implementation

In a Service Provider register method we can bind an interface to an implementation:

public function register()
{
 App::bind(UserRepositoryInterface::class, EloquentUserRepository::class);
}

From now on, everytime the app will need an instance of UserRepositoryInterface, Laravel will auto
inject a new instance of EloquentUserRepository :

//this will get back an instance of EloquentUserRepository
$repo = App::make(UserRepositoryInterface:class);

Binding an Instance

We can use the Service Container as a Registry by binding an instance of an object in it and get it
back when we'll need it:

// Create an instance.
$john = new User('John');

// Bind it to the service container.
App::instance('the-user', $john);

// ...somewhere and/or in another class...

// Get back the instance
$john = App::make('the-user');

Binding a Singleton to the Service Container

We can bind a class as a Singleton:

public function register()
{
 App::singleton('my-database', function()
 {
 return new Database();
 });
}

This way, the first time an instance of 'my-database' will be requested to the service container, a
new instance will be created. All the successive requests of this class will get back the first created

https://riptutorial.com/ 166

instance:

//a new instance of Database is created
$db = App::make('my-database');

//the same instance created before is returned
$anotherDb = App::make('my-database');

Introduction

The Service Container is the main Application object. It can be used as a Dependency Injection
Container, and a Registry for the application by defining bindings in the Service Providers

Service Providers are classes where we define the way our service classes will be created
through the application, bootstrap their configuration, and bind interfaces to implementations

Services are classes that wrap one or more logic correlated tasks together

Using the Service Container as a Dependency Injection Container

We can use the Service Container as a Dependency Injection Container by binding the creation
process of objects with their dependencies in one point of the application

Let's suppose that the creation of a PdfCreator needs two objects as dependencies; every time we
need to build an instance of PdfCreator, we should pass these dependencies to che constructor.
By using the Service Container as DIC, we define the creation of PdfCreator in the binding
definition, taking the required dependency directly from the Service Container:

App:bind('pdf-creator', function($app) {

 // Get the needed dependencies from the service container.
 $pdfRender = $app->make('pdf-render');
 $templateManager = $app->make('template-manager');

 // Create the instance passing the needed dependencies.
 return new PdfCreator($pdfRender, $templateManager);
});

Then, in every point of our app, to get a new PdfCreator, we can simply do:

$pdfCreator = App::make('pdf-creator');

And the Service container will create a new instance, along with the needed dependencies for us.

Read Services online: https://riptutorial.com/laravel/topic/1908/services

https://riptutorial.com/ 167

https://riptutorial.com/laravel/topic/1908/services

Chapter 57: Socialite

Examples

Installation

composer require laravel/socialite

This installation assumes you're using Composer for managing your dependencies with Laravel,
which is a great way to deal with it.

Configuration

In your config\services.php you can add the following code

'facebook' => [
 'client_id' => 'your-facebook-app-id',
 'client_secret' => 'your-facebook-app-secret',
 'redirect' => 'http://your-callback-url',
],

You'll also need to add the Provider to your config\app.php

Look for 'providers' => [] array and, at the end of it, add the following

'providers' => [
 ...

 Laravel\Socialite\SocialiteServiceProvider::class,
]

A Facade is also provided with the package. If you would like to make usage of it make sure that
the aliases array (also in your config\app.php) has the following code

'aliases' => [

 'Socialite' => Laravel\Socialite\Facades\Socialite::class,
]

Basic Usage - Facade

return Socialite::driver('facebook')->redirect();

This will redirect an incoming request to the appropriate URL to be authenticated. A basic example
would be in a controller

<?php

https://riptutorial.com/ 168

http://it-should-link-to-composer-tag-in-the-docs

namespace App\Http\Controllers\Auth;

use Socialite;

class AuthenticationController extends Controller {

 /**
 * Redirects the User to the Facebook page to get authorization.
 *
 * @return Response
 */
 public function facebook() {
 return Socialite::driver('facebook')->redirect();
 }

}

make sure your app\Http\routes.php file has a route to allow an incoming request here.

Route::get('facebook', 'App\Http\Controllers\Auth\AuthenticationController@facebook');

Basic Usage - Dependency Injection

/**
 * LoginController constructor.
 * @param Socialite $socialite
 */
public function __construct(Socialite $socialite) {
 $this->socialite = $socialite;
}

Within the constructor of your Controller, you're now able to inject the Socialite class that will help
you handle login with social networks. This will replace the usage of the Facade.

/**
 * Redirects the User to the Facebook page to get authorization.
 *
 * @return Response
 */
public function facebook() {
 return $this->socialite->driver('facebook')->redirect();
}

Socialite for API - Stateless

public function facebook() {
 return $this->socialite->driver('facebook')->stateless()->redirect()->getTargetUrl();
}

This will return the URL that the consumer of the API must provide to the end user to get
authorization from Facebook.

https://riptutorial.com/ 169

Read Socialite online: https://riptutorial.com/laravel/topic/1312/socialite

https://riptutorial.com/ 170

https://riptutorial.com/laravel/topic/1312/socialite

Chapter 58: Sparkpost integration with
Laravel 5.4

Introduction

Laravel 5.4 comes preinstalled with sparkpost api lib. Sparkpost lib requires secret key which one
can find from their sparkpost account.

Examples

SAMPLE .env file data

To successfully create a sparkpost email api setup, add the below details to env file and your
application will be good to start sending emails.

MAIL_DRIVER=sparkpost
SPARKPOST_SECRET=

NOTE: The above details does not give you the code written in controller which has the business
logic to send emails using laravels Mail::send function.

Read Sparkpost integration with Laravel 5.4 online:
https://riptutorial.com/laravel/topic/10136/sparkpost-integration-with-laravel-5-4

https://riptutorial.com/ 171

https://riptutorial.com/laravel/topic/10136/sparkpost-integration-with-laravel-5-4

Chapter 59: Task Scheduling

Examples

Creating a task

You can create a task (Console Command) in Laravel using Artisan. From your command line:

php artisan make:console MyTaskName

This creates the file in app/Console/Commands/MyTaskName.php. It will look like this:

<?php

namespace App\Console\Commands;

use Illuminate\Console\Command;

class MyTaskName extends Command
{
 /**
 * The name and signature of the console command.
 *
 * @var string
 */
 protected $signature = 'command:name';

 /**
 * The console command description.
 *
 * @var string
 */
 protected $description = 'Command description';

 /**
 * Create a new command instance.
 *
 * @return void
 */
 public function __construct()
 {
 parent::__construct();
 }

 /**
 * Execute the console command.
 *
 * @return mixed
 */
 public function handle()
 {
 //
 }
}

https://riptutorial.com/ 172

Some important parts of this definition are:

The $signature property is what identifies your command. You will be able to execute this
command later through the command line using Artisan by running php artisan command:name
(Where command:name matches your command's $signature)

•

The $description property is Artisan's help/usage displays next to your command when it is
made available.

•

The handle() method is where you write the code for your command.•

Eventually, your task will be made available to the command line through Artisan. The protected
$signature = 'command:name'; property on this class is what you would use to run it.

Making a task available

You can make a task available to Artisan and to your application in the app/Console/Kernel.php
file.

The Kernel class contains an array named $commands which make your commands available to your
application.

Add your command to this array, in order to make it available to Artisan and your application.

<?php

namespace App\Console;

use Illuminate\Console\Scheduling\Schedule;
use Illuminate\Foundation\Console\Kernel as ConsoleKernel;

class Kernel extends ConsoleKernel
{
 /**
 * The Artisan commands provided by your application.
 *
 * @var array
 */
 protected $commands = [
 Commands\Inspire::class,
 Commands\MyTaskName::class // This line makes MyTaskName available
];

 /**
 * Define the application's command schedule.
 *
 * @param \Illuminate\Console\Scheduling\Schedule $schedule
 * @return void
 */
 protected function schedule(Schedule $schedule)
 {

 }
}

Once this is done, you can now access your command via the command line, using Artisan.
Assuming that your command has the $signature property set to my:task, you can run the following

https://riptutorial.com/ 173

command to execute your task:

php artisan my:task

Scheduling your task

When your command is made available to your application, you can use Laravel to schedule it to
run at pre-defined intervals, just like you would a CRON.

In The app/Console/Kernel.php file you will find a schedule method that you can use to schedule
your task.

<?php

namespace App\Console;

use Illuminate\Console\Scheduling\Schedule;
use Illuminate\Foundation\Console\Kernel as ConsoleKernel;

class Kernel extends ConsoleKernel
{
 /**
 * The Artisan commands provided by your application.
 *
 * @var array
 */
 protected $commands = [
 Commands\Inspire::class,
 Commands\MyTaskName::class
];

 /**
 * Define the application's command schedule.
 *
 * @param \Illuminate\Console\Scheduling\Schedule $schedule
 * @return void
 */
 protected function schedule(Schedule $schedule)
 {
 $schedule->command('my:task')->everyMinute();
 // $schedule->command('my:task')->everyFiveMinutes();
 // $schedule->command('my:task')->daily();
 // $schedule->command('my:task')->monthly();
 // $schedule->command('my:task')->sundays();
 }
}

Assuming your task's $signature is my:task you can schedule it as shown above, using the Schedule
$schedule object. Laravel provides loads of different ways to schedule your command, as shown in
the commented out lines above.

Setting the scheduler to run

The scheduler can be run using the command:

https://riptutorial.com/ 174

php artisan schedule:run

The scheduler needs to be run every minute in order to work correctly. You can set this up by
creating a cron job with the following line, which runs the scheduler every minute in the
background.

* * * * * php /path/to/artisan schedule:run >> /dev/null 2>&1

Read Task Scheduling online: https://riptutorial.com/laravel/topic/4026/task-scheduling

https://riptutorial.com/ 175

https://riptutorial.com/laravel/topic/4026/task-scheduling

Chapter 60: Testing

Examples

Introduction

Writing testable code is an important part of building a robust, maintainable, and agile project.
Support for PHP's most widely used testing framework, PHPUnit, is built right into Laravel.
PHPUnit is configured using the phpunit.xml file, which resides in the root directory of every new
Laravel application.

The tests directory, also in the root directory, contains the individual testing files which hold the
logic for testing each portion of your application. Of course, it is your responsibility as a developer
to write these tests as you build your application, but Laravel includes an example file,
ExampleTest.php, to get you going.

<?php

use Illuminate\Foundation\Testing\WithoutMiddleware;
use Illuminate\Foundation\Testing\DatabaseMigrations;
use Illuminate\Foundation\Testing\DatabaseTransactions;

class ExampleTest extends TestCase
{
 /**
 * A basic functional test example.
 *
 * @return void
 */
 public function testBasicExample()
 {
 $this->visit('/')
 ->see('Laravel 5');
 }
}

In the testBasicExample() method, we visit the site's index page and make sure we see the text
Laravel 5 somewhere on that page. If the text is not present, the test will fail and generate an error.

Test without middleware and with a fresh database

To make artisan migrate a fresh database before running tests, use DatabaseMigrations. Also if you
want to avoid middleware like Auth, use WithoutMiddleware.

<?php

use Illuminate\Foundation\Testing\WithoutMiddleware;
use Illuminate\Foundation\Testing\DatabaseMigrations;

class ExampleTest extends TestCase
{

https://riptutorial.com/ 176

https://phpunit.de/

 use DatabaseMigrations, WithoutMiddleware;

 /**
 * A basic functional test example.
 *
 * @return void
 */
 public function testExampleIndex()
 {
 $this->visit('/protected-page')
 ->see('All good');
 }
}

Database transactions for mutliple database connection

DatabaseTransactions trait allows databases to rollback all the change during the tests. If you want
to rollback multiple databases , you need to set $connectionsToTransact properties

use Illuminate\Foundation\Testing\DatabaseMigrations;

class ExampleTest extends TestCase
{
 use DatabaseTransactions;

 $connectionsToTransact =["mysql","sqlite"] //tell Laravel which database need to rollBack

 public function testExampleIndex()
 {
 $this->visit('/action/parameter')
 ->see('items');
 }
}

Testing setup, using in memory database

Following setup ensures that testing framework (PHPUnit) uses :memory: database.

config/database.php

'connections' => [

 'sqlite_testing' => [
 'driver' => 'sqlite',
 'database' => ':memory:',
 'prefix' => '',
],
 .
 .
 .

./phpunit.xml

 .
 .

https://riptutorial.com/ 177

 .
 </filter>
 <php>
 <env name="APP_ENV" value="testing"/>
 <env name="APP_URL" value="http://example.dev"/>
 <env name="CACHE_DRIVER" value="array"/>
 <env name="SESSION_DRIVER" value="array"/>
 <env name="QUEUE_DRIVER" value="sync"/>
 <env name="DB_CONNECTION" value="sqlite_testing"/>
 </php>
</phpunit>

Configuration

The phpunit.xml file is the default configuration file for tests and is already setup for testing with
PHPUnit.

The default testing environment APP_ENV is defined as testing with array being the cache driver
CACHE_DRIVER. With this setup, no data (session/cache) will be retained while testing.

To run tests against a specific environment like homestead the defaults can be changed to:

<env name="DB_HOST" value="192.168.10.10"/>
<env name="DB_DATABASE" value="homestead"/>
<env name="DB_USERNAME" value="homestead"/>
<env name="DB_PASSWORD" value="secret"/>

Or to use a temporary in memory database:

<env name="DB_CONNECTION" value="sqlite"/>
<env name="DB_DATABASE" value=":memory:"/>

One last note to keep in mind from the Laravel documentation:

Make sure to clear your configuration cache using the config:clear Artisan command
before running your tests!

Read Testing online: https://riptutorial.com/laravel/topic/1249/testing

https://riptutorial.com/ 178

https://github.com/laravel/laravel/blob/master/phpunit.xml
https://laravel.com/docs/master/testing
https://riptutorial.com/laravel/topic/1249/testing

Chapter 61: Token Mismatch Error in AJAX

Introduction

I have analyzed that ratio of getting TokenMismatch Error is very high. And this error occurs
because of some silly mistakes. There are many reasons where developers are making mistakes.
Here are some of the examples i.e No _token on headers, No _token passed data when using
Ajax, permission issue on storage path, an invalid session storage path.

Examples

Setup Token on Header

Set the token on <head> of your default.blade.php.

<meta name="csrf-token" content="{{csrf_token()}}">

Add ajaxSetup on the top of your script, that will be accessible to everywhere. This will set headers
on each ajax call

$.ajaxSetup({
 headers: {
 'X-CSRF-TOKEN': $('meta[name="csrf-token"]').attr('content')
 }
});

Set token on
tag

Add below function to your <form> tag. This function will generate a hidden field named _token and
filled value with the token.

{{csrf_field()}}

Add csrf_token () function to your hidden _token in the value attribute. This will generate only
encrypted string.

<input type="hidden" name="_token" value="{{csrf_token()}}"/>.

Check session storage path & permission

Here I assume that project app url is APP_URL=http://project.dev/ts/toys-store

Set the writable permission to storage_path('framework/sessions') the folder.1.
Check the path of your laravel project 'path' => '/ts/toys-store', the root of your laravel 2.

https://riptutorial.com/ 179

project.
Change the name of your cookie 'cookie' => 'toys-store',3.

return [
 'driver' => env('SESSION_DRIVER', 'file'),
 'lifetime' => 120,
 'expire_on_close' => false,
 'encrypt' => false,
 'files' => storage_path('framework/sessions'),
 'connection' => null,
 'table' => 'sessions',
 'lottery' => [2, 100],
 'cookie' => 'toys-store',
 'path' => '/ts/toys-store',
 'domain' => null,
 'secure' => false,
 'http_only' => true,
];

Use _token field on Ajax

There are many ways to send _token on AJAX call

Get all input field's value within <form> tag using var formData = new FormData($("#cart-
add")[0]);

1.

Use $("form").serialize(); or $("form").serializeArray();2.
Add _token manually on data of Ajax. using $('meta[name="csrf-token"]').attr('content') or
$('input[name="_token"]').val().

3.

We can set as header on a particular Ajax call like below code.4.

$.ajax({
 url: $("#category-add").attr("action"),
 type: "POST",
 data: formData,
 processData: false,
 contentType: false,
 dataType: "json",
 headers: {
 'X-CSRF-TOKEN': $('meta[name="csrf-token"]').attr('content')
 }
});

Read Token Mismatch Error in AJAX online: https://riptutorial.com/laravel/topic/10656/token-
mismatch-error-in-ajax

https://riptutorial.com/ 180

https://riptutorial.com/laravel/topic/10656/token-mismatch-error-in-ajax
https://riptutorial.com/laravel/topic/10656/token-mismatch-error-in-ajax

Chapter 62: use fields aliases in Eloquent

Read use fields aliases in Eloquent online: https://riptutorial.com/laravel/topic/7927/use-fields-
aliases-in-eloquent

https://riptutorial.com/ 181

https://riptutorial.com/laravel/topic/7927/use-fields-aliases-in-eloquent
https://riptutorial.com/laravel/topic/7927/use-fields-aliases-in-eloquent

Chapter 63: Useful links

Introduction

In this topic, you can find useful links to improve your Laravel skills or extend your knowledge.

Examples

Laravel Ecosystem

Laravel Scout - Laravel Scout provides a simple, driver-based solution for adding full-text
search to your Eloquent models.

•

Laravel Passport - API authentication without a headache. Passport is an OAuth2 server
that's ready in minutes.

•

Homestead - The official Laravel development environment. Powered by Vagrant,
Homestead gets your entire team on the same page with the latest PHP, MySQL, Postgres,
Redis, and more.

•

Laravel Cashier - Make subscription billing painless with built-in Stripe and Braintree
integrations. Coupons, swapping subscriptions, cancellations, and even PDF invoices are
ready out of the box.

•

Forge - Provision and deploy unlimited PHP applications on DigitalOcean, Linode, & AWS.•
Envoyer - Zero Downtime PHP Deployment.•
Valet - A Laravel development environment for Mac minimalists. No Vagrant, no Apache, no
fuss.

•

Spark - Powerful SaaS application scaffolding. Stop writing boilerplate & focus on your
application.

•

Lumen - If all you need is an API and lightning fast speed, try Lumen. It’s Laravel super-light.•
Statamic - A true CMS designed to make agencies profitable, developers happy, and clients
hug you.

•

Education

Laracasts - Learn practical, modern web development, through expert screencasts.•
Laravel News - Stay up to date with Laravel with Laravel News.•
Laravel.io - Forum with open-source code.•

Podcasts

Laravel News Podcasts•
The Laravel Podcasts•

Read Useful links online: https://riptutorial.com/laravel/topic/9957/useful-links

https://riptutorial.com/ 182

https://laravel.com/docs/5.4/scout
https://laravel.com/docs/5.4/passport
https://laravel.com/docs/5.4/homestead
https://laravel.com/docs/billing
https://forge.laravel.com/
https://envoyer.io/
https://laravel.com/docs/valet
https://spark.laravel.com/
https://lumen.laravel.com/
https://statamic.com/
https://laracasts.com/
https://laravel-news.com/
https://laravel.io/forum
https://laravel-news.com/curated-list-of-geek-podcasts
http://www.laravelpodcast.com/
https://riptutorial.com/laravel/topic/9957/useful-links

Chapter 64: Valet

Introduction

Valet is a development environment tailor made for macOS. It abstracts away the need for virtual
machines, Homestead, or Vagrant. No need to constantly update your /etc/hosts file anymore.
You can even share your sites publicly using local tunnels.

Laravel Valet makes all sites available on a *.dev domain by binding folder names to domain
names.

Syntax

valet command [options] [arguments]•

Parameters

Parameter Values Set

command
domain, fetch-share-url, forget, help, install, link, links, list, logs, on-latest-
version, open, park, paths, restart, secure, start, stop, uninstall, unlink,
unsecure, which

options
-h, --help, -q, --quiet, -V, --version, --ansi, --no-ansi, -n, --no-interaction, -v, -vv, -
vvv,--verbose

arguments (optional)

Remarks

Because Valet for Linux and Windows are unofficial, there will not be support outside of their
respective Github repositories.

Examples

Valet link

This command is useful if you want to serve a single site in a directory and not the entire directory.

cd ~/Projects/my-blog/
valet link awesome-blog

Valet will create a symbolic link in ~/.valet/Sites which points to your current working directory.

https://riptutorial.com/ 183

http://www.riptutorial.com/laravel/example/30726/valet-domain
http://www.riptutorial.com/laravel/example/6218/valet-link
http://www.riptutorial.com/laravel/example/7537/valet-links
http://www.riptutorial.com/laravel/example/6219/valet-park

After running the link command, you can access the site in your browser at http://awesome-
blog.dev.

To see a listing of all of your linked directories, run the valet links command. You may use valet
unlink awesome-blog to destroy the symbolic link.

Valet park

cd ~/Projects
valet park

This command will register your current working directory as a path that Valet should search for
sites. Now, any Laravel project you create within your "parked" directory will automatically be
served using the http://folder-name.dev convention.

Valet links

This command will display all the registered Valet links you have created and their corresponding
file paths on your computer.

Command:

valet links

Sample Output:

...
site1 -> /path/to/site/one
site2 -> /path/to/site/two
...

Note 1: You can run this command from anywhere not just from within a linked folder.

Note 2: Sites will be listed without the ending .dev but you'll still use site1.dev to access your
application from the browser.

Installation

IMPORTANT!! Valet is a tool designed for macOS only.

Prerequisites

Valet utilizes your local machine's HTTP port (port 80), therefore, you will not be able to use
if Apache or Nginx are installed and running on the same machine.

•

macOS' unofficial package manager Homebrew is required to properly use Valet.•
Make sure Homebrew is updated to the latest version by running brew update in the terminal.•

Installation

https://riptutorial.com/ 184

http://www.riptutorial.com/laravel/example/7537/valet-links
https://brew.sh

Install PHP 7.1 using Homebrew via brew install homebrew/php/php71.•
Install Valet with Composer via composer global require laravel/valet.•
Append ~/.composer/vendor/bin directory to your system's "PATH" if it is not already there.•
Run the valet install command.•

Post Install During the installation process, Valet installed DnsMasq. It also registered Valet's
daemon to automatically launch when your system starts, so you don't need to run valet start or
valet install every time you reboot your machine.

Valet domain

This command allows you to change or view the TLD (top-level domain) used to bind domains to
your local machine.

Get The Current TLD

$ valet domain
> dev

Set the TLD

$ valet domain local
> Your Valet domain has been updated to [local].

Installation (Linux)

IMPORTANT!! Valet is a tool designed for macOS, the version below is ported for Linux OS.

Prerequisites

Do not install valet as root or by using the sudo command.•
Valet utilizes your local machine's HTTP port (port 80), therefore, you will not be able to use
if Apache or Nginx are installed and running on the same machine.

•

An up to date version of composer is required to install and run Valet.•

Installation

Run composer global require cpriego/valet-linux to install Valet globally.•
Run the valet install command to finish the installation.•

Post Install

During the installation process, Valet installed DnsMasq. It also registered Valet's daemon to
automatically launch when your system starts, so you don't need to run valet start or valet
install every time you reboot your machine.

The Official Documentation can be found here.

Read Valet online: https://riptutorial.com/laravel/topic/1906/valet

https://riptutorial.com/ 185

https://github.com/cpriego/valet-linux/wiki
https://riptutorial.com/laravel/topic/1906/valet

Chapter 65: Validation

Parameters

Parameter Details

required The field is required

sometimes
Run validation checks against a field only if that field is present in
the input array

email The input is a valid email

max:value The input value should be below the maximum value

unique:db_table_name
The input value should be unique in the provided database table
name

accepted Yes / On / 1 true, useful for checking TOS

active_url Must be a valid URL according to checkdnsrr

after :date Field under validation must provide a value after the given date

alpha The field under validation must be entirely alphabetic characters.

alpha_dash
The field under validation may have alpha-numeric characters, as
well as dashes and underscores.

alpha_num
The field under validation must be entirely alpha-numeric
characters.

array Must be a PHP array

before :date The field must be a value under the given date

between:min,max
The input value should be in between minimum (min) and maximum
(max) value

boolean
The field under validation must be able to be cast as a boolean.
Accepted input are true, false, 1, 0, "1", and "0".

confirmed

The field under validation must have a matching field of
foo_confirmation. For example, if the field under validation is
password, a matching password_confirmation field must be present in
the input.

The field under validation must be a valid date according to the date

https://riptutorial.com/ 186

http://php.net/checkdnsrr
http://php.net/array

Parameter Details

strtotime PHP function.

integer The field under validation must be an integer

string The field under validation must be a string type.

Examples

Basic Example

You can validate request data using the validate method (available in the base Controller,
provided by the ValidatesRequests trait).

If the rules pass, your code will keep executing normally; however, if validation fails, an error
response containing the validation errors will automatically be sent back:

for typical HTML form requests, the user will be redirected to the previous page, with the
form keeping the submitted values

•

for requests that expect a JSON response, a HTTP response with code 422 will be
generated

•

For example, in your UserController, you might be saving a new user in the store method, which
would need validation before saving.

/**
 * @param Request $request
 * @return Response
 */
public function store(Request $request) {
 $this->validate($request, [
 'name' => 'required',
 'email' => 'email|unique:users|max:255'
],
 // second array of validation messages can be passed here
 [
 'name.required' => 'Please provide a valid name!',
 'email.required' => 'Please provide a valid email!',
]);

 // The validation passed
}

In the example above, we validate that the name field exists with non-empty value. Secondly, we
check that the email field has a valid e-mail format, is unique in the database table "users", and
has maximum length of 255 characters.

The | (pipe) character combines different validation rules for one field.

Sometimes you may wish to stop running validation rules on an attribute after the first validation
failure. To do so, assign the bail rule to the attribute:

https://riptutorial.com/ 187

http://php.net/strtotime
http://php.net/manual/en/language.types.integer.php
http://php.net/manual/en/ref.strings.php

$this->validate($request, [
 'name' => 'bail|required',
 'email' => 'email|unique:users|max:255'
]);

The complete list of available validation rules can be found in the parameters section below.

Array Validation

Validating array form input fields is very simple.

Suppose you have to validate each name, email and father name in a given array. You could do
the following:

$validator = \Validator::make($request->all(), [
 'name.*' => 'required',
 'email.*' => 'email|unique:users',
 'fatherName.*' => 'required'
]);

if ($validator->fails()) {
 return back()->withInput()->withErrors($validator->errors());
}

Laravel displays default messages for validation. However, if you want custom messages for array
based fields, you can add the following code:

[
 'name.*' => [
 'required' => 'Name field is required',
],
 'email.*' => [
 'unique' => 'Unique Email is required',
],
 'fatherName.*' => [
 'required' => 'Father Name required',
]
]

Your final code will look like this:

$validator = \Validator::make($request->all(), [
 'name.*' => 'required',
 'email.*' => 'email|unique:users',
 'fatherName.*' => 'required',
], [
 'name.*' => 'Name Required',
 'email.*' => 'Unique Email is required',
 'fatherName.*' => 'Father Name required',
]);

if ($validator->fails()) {
 return back()->withInput()->withErrors($validator->errors());
}

https://riptutorial.com/ 188

http://www.riptutorial.com/laravel/topic/1310/validation

Other Validation Approaches

1) Form Request Validation

You may create a "form request" which can hold the authorization logic, validation rules, and error
messages for a particular request in your application.

The make:request Artisan CLI command generates the class and places it in the app/Http/Requests
directory:

php artisan make:request StoreBlogPostRequest

The authorize method can be overridden with the authorization logic for this request:

public function authorize()
{
 return $this->user()->can('post');
}

The rules method can be overridden with the specific rules for this request:

public function rules()
{
 return [
 'title' => 'required|unique:posts|max:255',
 'body' => 'required',
];
}

The messages method can be overridden with the specific messages for this request:

public function messages()
{
 return [
 'title.required' => 'A title is required',
 'title.unique' => 'There is another post with the same title',
 'title.max' => 'The title may not exceed :max characters',
 'body.required' => 'A message is required',
];
}

In order to validate the request, just type-hint the specific request class on the corresponding
controller method. If validation fails, an error response will be sent back.

public function store(StoreBlogPostRequest $request)
{
 // validation passed
}

2) Manually Creating Validators

https://riptutorial.com/ 189

For more flexibility, you may want to create a Validator manually, and handle the failed validation
directly:

<?php
namespace App\Http\Controllers;

use Validator;
use Illuminate\Http\Request;
use App\Http\Controllers\Controller;

class PostController extends Controller
{
 public function store(Request $request)
 {
 $validator = Validator::make($request->all(), [
 'title' => 'required|unique:posts|max:255',
 'body' => 'required',
]);

 if ($validator->fails()) {
 return redirect('post/create')
 ->withErrors($validator)
 ->withInput();
 }

 // Store the blog post...
 }
}

2) Fluently creating rules

Occasionally you might need to create unique rules on the fly, working with the boot() method
within a Service Provider might be over the top, as of Laravel 5.4 you can create new rules fluently
by using the Rule class.

As an example we are going to work with the UserRequest for when you want to insert or update a
user. For now we want a name to be required and the email address must be unique. The problem
with using the unique rule is that if you are editing a user, they might keep the same email, so you
need to exclude the current user from the rule. The following example shows how you can easily
do this by utilising the new Rule class.

<?php
namespace App\Http\Requests;
use Illuminate\Foundation\Http\FormRequest;
use Illuminate\Http\Request;
use Illuminate\Validation\Rule;

class UserRequest extends FormRequest
{
 /**
 * Determine if the user is authorized to make this request.
 *
 * @return bool
 */
 public function authorize()
 {

https://riptutorial.com/ 190

 return true;
 }

 /**
 * Get the validation rules that apply to the request.
 *
 * @return array
 */
 public function rules(Request $request)
 {
 $id = $request->route()->getParameter('user');

 return [
 'name' => 'required',

 // Notice the value is an array and not a string like usual
 'email' => [
 'required',
 Rule::unique('users')->ignore($id)
]
];
 }
}

Single Form Request Class for POST, PUT, PATCH

Following the 'Form Request Validation' example, the same Request Class can be used for POST,
PUT, PATCH so you do not have to create another class using the same/similar validations. This
comes in handy if you have attributes in your table that are unique.

/**
 * Get the validation rules that apply to the request.
 *
 * @return array
 */
public function rules() {
 switch($this->method()) {
 case 'GET':
 case 'DELETE':
 return [];
 case 'POST':
 return [
 'name' => 'required|max:75|unique',
 'category' => 'required',
 'price' => 'required|between:0,1000',
];
 case 'PUT':
 case 'PATCH':
 return [
 'name' => 'required|max:75|unique:product,name,' . $this->product,
 'category' => 'required',
 'price' => 'required|between:0,1000',
];
 default:break;
 }
}

Starting from the top, our switch statement is going to look at the method type of the request (GET,

https://riptutorial.com/ 191

http://www.riptutorial.com/laravel/example/9670/other-validation-approaches

DELETE, POST, PUT, PATCH).

Depending on the method will return the array of rules defined. If you have a field that is unique,
such as the name field in the example, you need to specify a particular id for the validation to
ignore.

'field_name' => 'unique:table_name,column_name,' . $idToIgnore`

If you have a primary key labeled something other than id, you will specify the primary key column
as the fourth parameter.

'field_name' => 'unique:table_name,column_name,' . $idToIgnore . ',primary_key_column'

In this example, we are using PUT and passing to the route (admin/products/{product}) the value of
the product id. So $this->product will be equal to the id to ignore.

Now your PUT|PATCH and POST validation rules do not need to be the same. Define your logic that fits
your requirements. This technique allows you to reuse the custom messages you may have
defined within the custom Form Request Class.

Error messages

Customizing error messages

The /resources/lang/[lang]/validation.php files contain the error messages to be used by the
validator. You can edit them as needed.

Most of them have placeholders which will be automatically replaced when generating the error
message.

For example, in 'required' => 'The :attribute field is required.', the :attribute placeholder will
be replaced by the field name (alternatively, you can also customize the display value of each field
in the attributes array in the same file).

Example

message configuration:

'required' => 'Please inform your :attribute.',
//...
'attributes => [
 'email' => 'E-Mail address'
]

rules:

`email' => `required`

https://riptutorial.com/ 192

resulting error message:

"Please inform your E-Mail address."

Customising error messages within a Request class

The Request class has access to a messages() method which should return an array, this can be
used to override messages without having to go into the lang files. For example if we have a
custom file_exists validation you can messages like below.

class SampleRequest extends Request {

 /**
 * Get the validation rules that apply to the request.
 *
 * @return array
 */
 public function rules()
 {
 return [
 'image' => 'required|file_exists'
];
 }

 /**
 * Determine if the user is authorized to make this request.
 *
 * @return bool
 */
 public function authorize()
 {
 return true;
 }

 public function messages()
 {
 return [
 'image.file_exists' => 'That file no longer exists or is invalid'
];
 }

}

Displaying error messages

The validation errors are flashed to the session, and are also available in the $errors variable,
which is automatically shared to all views.

Example of displaying the errors in a Blade view:

@if (count($errors) > 0)
 <div class="alert alert-danger">

https://riptutorial.com/ 193

 @foreach ($errors->all() as $error)
 {{ $error }}
 @endforeach

 </div>
@endif

Custom Validation Rules

If you want to create a custom validation rule, you can do so for instance in the boot method of a
service provider, via the Validator facade.

<?php
namespace App\Providers;

use Illuminate\Support\ServiceProvider;
use Validator;

class AppServiceProvider extends ServiceProvider
{
 public function boot()
 {
 Validator::extend('starts_with', function($attribute, $value, $parameters, $validator)
{
 return \Illuminate\Support\Str::startsWith($value, $parameters[0]);
 });

 Validator::replacer('starts_with', function($message, $attribute, $rule, $parameters)
{
 return str_replace(':needle', $parameters[0], $message);
 });
 }
}

The extend method takes a string which will be the name of the rule and a function which in turn
will be passed the name of the attribute, the value being validated, an array of the rule parameters,
and the validator instance, and should return whether the validation passes. In this example, we
are checking if the value string starts with a given substring.

The error message for this custom rule can be set as usual in the
/resources/lang/[lang]/validation.php file, and can contain placeholders, for instance, for
parameters values:

'starts_with' => 'The :attribute must start with :needle.'

The replacer method takes a string which is the name of the rule and a function which in turn will
be passed the original message (before replacing), the name of the attribute, the name of the rule,
and an array of the rule parameters, and should return the message after replacing the
placeholders as needed.

Use this rule as any other:

https://riptutorial.com/ 194

$this->validate($request, [
 'phone_number' => 'required|starts_with:+'
]);

Read Validation online: https://riptutorial.com/laravel/topic/1310/validation

https://riptutorial.com/ 195

https://riptutorial.com/laravel/topic/1310/validation

Credits

S.
No

Chapters Contributors

1
Getting started with
Laravel

alepeino, Alphonsus, boroboris, Colin Herzog, Community, Ed
Rands, Evgeniy Maynagashev, Gaurav, Imam Assidiqqi, James,
Ketan Akbari, Kovah, Lance Pioch, Marek Skiba, Martin Bean,
Misa Lazovic, nyedidikeke, Oliver Adria, Prakash, rap-2-h, Ru
Chern Chong, SeinopSys, Tatranskymedved, Tim

2 Artisan
Alessandro Bassi, Gaurav, Harshal Limaye, Himanshu Raval,
Imam Assidiqqi, Kaspars, Laurel, Rubens Mariuzzo, Safoor
Safdar, Sagar Naliyapara, SeinopSys

3 Authentication Aykut CAN, Imam Assidiqqi

4 Authorization Daniel Verem

5 Blade Templates

A. Raza, agleis, Akshay Khale, alepeino, Alessandro Bassi,
Benubird, cbaconnier, Christophvh, Imam Assidiqqi,
matiaslauriti, Nauman Zafar, rap-2-h, Safoor Safdar, Tosho
Trajanov, yogesh

6 Cashier littleswany, RamenChef

7
Change default
routing behaviour in
Laravel 5.2.31 +

Frank Provost

8 Collections

A. Raza, Alessandro Bassi, Alex Harris, bhill77, caoglish,
Dummy Code, Gras Double, Ian, Imam Assidiqqi, Josh Rumbut,
Karim Geiger, matiaslauriti, Nicklas Kevin Frank, Ozzy, rap-2-h,
simonhamp, Vucko

9
Common Issues &
Quick Fixes

Nauman Zafar

10 Constants Mubashar Iqbal, Oscar David, Zakaria Acharki

11 Controllers Ru Chern Chong

12 Cron basics A. Raza

13
Cross Domain
Request

Imam Assidiqqi, Suraj

Custom Helper 14 Ian, Luceos, rap-2-h, Raunak Gupta

https://riptutorial.com/ 196

https://riptutorial.com/contributor/3208258/alepeino
https://riptutorial.com/contributor/4007220/alphonsus
https://riptutorial.com/contributor/5142901/boroboris
https://riptutorial.com/contributor/7538945/colin-herzog
https://riptutorial.com/contributor/-1/community
https://riptutorial.com/contributor/2330972/ed-rands
https://riptutorial.com/contributor/2330972/ed-rands
https://riptutorial.com/contributor/5852587/evgeniy-maynagashev
https://riptutorial.com/contributor/3113599/gaurav
https://riptutorial.com/contributor/4750402/imam-assidiqqi
https://riptutorial.com/contributor/359034/james
https://riptutorial.com/contributor/4058808/ketan-akbari
https://riptutorial.com/contributor/1203515/kovah
https://riptutorial.com/contributor/1167677/lance-pioch
https://riptutorial.com/contributor/6729812/marek-skiba
https://riptutorial.com/contributor/102205/martin-bean
https://riptutorial.com/contributor/2430434/misa-lazovic
https://riptutorial.com/contributor/6381711/nyedidikeke
https://riptutorial.com/contributor/3347365/oliver-adria
https://riptutorial.com/contributor/3477687/prakash
https://riptutorial.com/contributor/978690/rap-2-h
https://riptutorial.com/contributor/4031163/ru-chern-chong
https://riptutorial.com/contributor/4031163/ru-chern-chong
https://riptutorial.com/contributor/1344955/seinopsys
https://riptutorial.com/contributor/7167572/tatranskymedved
https://riptutorial.com/contributor/261713/tim
https://riptutorial.com/contributor/689665/alessandro-bassi
https://riptutorial.com/contributor/3113599/gaurav
https://riptutorial.com/contributor/7148982/harshal-limaye
https://riptutorial.com/contributor/4757316/himanshu-raval
https://riptutorial.com/contributor/4750402/imam-assidiqqi
https://riptutorial.com/contributor/3892935/kaspars
https://riptutorial.com/contributor/6083675/laurel
https://riptutorial.com/contributor/439427/rubens-mariuzzo
https://riptutorial.com/contributor/1728836/safoor-safdar
https://riptutorial.com/contributor/1728836/safoor-safdar
https://riptutorial.com/contributor/4670278/sagar-naliyapara
https://riptutorial.com/contributor/1344955/seinopsys
https://riptutorial.com/contributor/2819034/aykut-can
https://riptutorial.com/contributor/4750402/imam-assidiqqi
https://riptutorial.com/contributor/5428438/daniel-verem
https://riptutorial.com/contributor/3374681/a--raza
https://riptutorial.com/contributor/6621419/agleis
https://riptutorial.com/contributor/2541634/akshay-khale
https://riptutorial.com/contributor/3208258/alepeino
https://riptutorial.com/contributor/689665/alessandro-bassi
https://riptutorial.com/contributor/494643/benubird
https://riptutorial.com/contributor/8068675/cbaconnier
https://riptutorial.com/contributor/3493752/christophvh
https://riptutorial.com/contributor/4750402/imam-assidiqqi
https://riptutorial.com/contributor/1998801/matiaslauriti
https://riptutorial.com/contributor/5452620/nauman-zafar
https://riptutorial.com/contributor/978690/rap-2-h
https://riptutorial.com/contributor/1728836/safoor-safdar
https://riptutorial.com/contributor/6530132/tosho-trajanov
https://riptutorial.com/contributor/6530132/tosho-trajanov
https://riptutorial.com/contributor/6469791/yogesh
https://riptutorial.com/contributor/3351455/littleswany
https://riptutorial.com/contributor/6392939/ramenchef
https://riptutorial.com/contributor/2940794/frank-provost
https://riptutorial.com/contributor/3374681/a--raza
https://riptutorial.com/contributor/689665/alessandro-bassi
https://riptutorial.com/contributor/1561929/alex-harris
https://riptutorial.com/contributor/3143628/bhill77
https://riptutorial.com/contributor/2272581/caoglish
https://riptutorial.com/contributor/2379592/dummy-code
https://riptutorial.com/contributor/289317/gras-double
https://riptutorial.com/contributor/3604087/ian
https://riptutorial.com/contributor/4750402/imam-assidiqqi
https://riptutorial.com/contributor/1594060/josh-rumbut
https://riptutorial.com/contributor/465830/karim-geiger
https://riptutorial.com/contributor/1998801/matiaslauriti
https://riptutorial.com/contributor/2260604/nicklas-kevin-frank
https://riptutorial.com/contributor/104452/ozzy
https://riptutorial.com/contributor/978690/rap-2-h
https://riptutorial.com/contributor/123696/simonhamp
https://riptutorial.com/contributor/5647037/vucko
https://riptutorial.com/contributor/5452620/nauman-zafar
https://riptutorial.com/contributor/3640207/mubashar-iqbal
https://riptutorial.com/contributor/5211514/oscar-david
https://riptutorial.com/contributor/4281779/zakaria-acharki
https://riptutorial.com/contributor/4031163/ru-chern-chong
https://riptutorial.com/contributor/3374681/a--raza
https://riptutorial.com/contributor/4750402/imam-assidiqqi
https://riptutorial.com/contributor/5413785/suraj
https://riptutorial.com/contributor/3604087/ian
https://riptutorial.com/contributor/717181/luceos
https://riptutorial.com/contributor/978690/rap-2-h
https://riptutorial.com/contributor/5019802/raunak-gupta

function

15
CustomException
class in Laravel

ashish bansal

16 Database
A. Raza, adam, caoglish, Ian, Iftikhar uddin, Imam Assidiqqi,
liamja, Panagiotis Koursaris, RamenChef, Rubens Mariuzzo,
Sanzeeb Aryal, Vucko

17 Database Migrations
Chris, Chris White, Hovsep, hschin, Iftikhar uddin, Imam
Assidiqqi, Kaspars, liamja, littleswany, mnoronha, Nauman
Zafar, Panagiotis Koursaris, Paulo Freitas, Vucko

18 Database Seeding
Achraf Khouadja, Andrew Nolan, Dan Johnson, Isma, Kyslik,
Marco Aurélio Deleu

19

Deploy Laravel 5
App on Shared
Hosting on Linux
Server

Donkarnash, Gayan, Imam Assidiqqi, Kyslik, PassionInfinite,
Pete Houston, rap-2-h, Ru Chern Chong, Stojan Kukrika,
ultrasamad

20 Directory Structure Kaspars, Moppo, RamenChef

21 Eloquent

aimme, alepeino, Alessandro Bassi, Alex Harris, Alfa,
Alphonsus, andretzermias, andrewtweber, Andrey Lutskevich,
aynber, Buckwheat, Casper Spruit, Dancia, Dipesh Poudel, Ian,
Imam Assidiqqi, James, James, jedrzej.kurylo, John Slegers,
Josh Rumbut, Kaspars, Ketan Akbari, KuKeC, littleswany,
Lykegenes, Maantje, Mahmood, Marco Aurélio Deleu,
marcus.ramsden, Marek Skiba, Martin Bean, matiaslauriti, MM2,
Nicklas Kevin Frank, Niklas Modess, Nyan Lynn Htut, patricus,
Pete Houston, Phroggyy, Prisoner Raju, RamenChef, rap-2-h,
Rubens Mariuzzo, Sagar Naliyapara, Samsquanch, Sergio
Guillen Mantilla, Tim, tkausl, whoan, Yasin Patel

22
Eloquent :
Relationship

Advaith, aimme, Alex Harris, Alphonsus, bhill77, Imam Assidiqqi
, Ketan Akbari, Phroggyy, rap-2-h, Ru Chern Chong, Zulfiqar
Tariq

23
Eloquent: Accessors
& Mutators

Diego Souza, Kyslik

24 Eloquent: Model

Aeolingamenfel, alepeino, Alex Harris, Imam Assidiqqi, John
Slegers, Kaspars, littleswany, Marco Aurélio Deleu,
marcus.ramsden, Marek Skiba, matiaslauriti, Nicklas Kevin
Frank, Samsquanch, Tim

25 Error Handling Isma, Kyslik, RamenChef, Rubens Mariuzzo

https://riptutorial.com/ 197

https://riptutorial.com/contributor/6531516/ashish-bansal
https://riptutorial.com/contributor/3374681/a--raza
https://riptutorial.com/contributor/2797224/adam
https://riptutorial.com/contributor/2272581/caoglish
https://riptutorial.com/contributor/3604087/ian
https://riptutorial.com/contributor/3854365/iftikhar-uddin
https://riptutorial.com/contributor/4750402/imam-assidiqqi
https://riptutorial.com/contributor/451975/liamja
https://riptutorial.com/contributor/4195561/panagiotis-koursaris
https://riptutorial.com/contributor/6392939/ramenchef
https://riptutorial.com/contributor/439427/rubens-mariuzzo
https://riptutorial.com/contributor/5608921/sanzeeb-aryal
https://riptutorial.com/contributor/5647037/vucko
https://riptutorial.com/contributor/614112/chris
https://riptutorial.com/contributor/5596894/chris-white
https://riptutorial.com/contributor/6626015/hovsep
https://riptutorial.com/contributor/2931685/hschin
https://riptutorial.com/contributor/3854365/iftikhar-uddin
https://riptutorial.com/contributor/4750402/imam-assidiqqi
https://riptutorial.com/contributor/4750402/imam-assidiqqi
https://riptutorial.com/contributor/3892935/kaspars
https://riptutorial.com/contributor/451975/liamja
https://riptutorial.com/contributor/3351455/littleswany
https://riptutorial.com/contributor/2608433/mnoronha
https://riptutorial.com/contributor/5452620/nauman-zafar
https://riptutorial.com/contributor/5452620/nauman-zafar
https://riptutorial.com/contributor/4195561/panagiotis-koursaris
https://riptutorial.com/contributor/222758/paulo-freitas
https://riptutorial.com/contributor/5647037/vucko
https://riptutorial.com/contributor/5960249/achraf-khouadja
https://riptutorial.com/contributor/5729023/andrew-nolan
https://riptutorial.com/contributor/2719424/dan-johnson
https://riptutorial.com/contributor/3231770/isma
https://riptutorial.com/contributor/1564365/kyslik
https://riptutorial.com/contributor/1014588/marco-aurelio-deleu
https://riptutorial.com/contributor/1220364/donkarnash
https://riptutorial.com/contributor/3918473/gayan
https://riptutorial.com/contributor/4750402/imam-assidiqqi
https://riptutorial.com/contributor/1564365/kyslik
https://riptutorial.com/contributor/4919058/passioninfinite
https://riptutorial.com/contributor/801396/pete-houston
https://riptutorial.com/contributor/978690/rap-2-h
https://riptutorial.com/contributor/4031163/ru-chern-chong
https://riptutorial.com/contributor/4393488/stojan-kukrika
https://riptutorial.com/contributor/7235138/ultrasamad
https://riptutorial.com/contributor/3892935/kaspars
https://riptutorial.com/contributor/3739901/moppo
https://riptutorial.com/contributor/6392939/ramenchef
https://riptutorial.com/contributor/1409707/aimme
https://riptutorial.com/contributor/3208258/alepeino
https://riptutorial.com/contributor/689665/alessandro-bassi
https://riptutorial.com/contributor/1561929/alex-harris
https://riptutorial.com/contributor/2470753/alfa
https://riptutorial.com/contributor/4007220/alphonsus
https://riptutorial.com/contributor/2992745/andretzermias
https://riptutorial.com/contributor/704803/andrewtweber
https://riptutorial.com/contributor/3894654/andrey-lutskevich
https://riptutorial.com/contributor/1007220/aynber
https://riptutorial.com/contributor/4867275/buckwheat
https://riptutorial.com/contributor/4649882/casper-spruit
https://riptutorial.com/contributor/3565320/dancia
https://riptutorial.com/contributor/5309397/dipesh-poudel
https://riptutorial.com/contributor/3604087/ian
https://riptutorial.com/contributor/4750402/imam-assidiqqi
https://riptutorial.com/contributor/394013/james
https://riptutorial.com/contributor/1739852/james
https://riptutorial.com/contributor/1594915/jedrzej-kurylo
https://riptutorial.com/contributor/1946501/john-slegers
https://riptutorial.com/contributor/1594060/josh-rumbut
https://riptutorial.com/contributor/3892935/kaspars
https://riptutorial.com/contributor/4058808/ketan-akbari
https://riptutorial.com/contributor/5139222/kukec
https://riptutorial.com/contributor/3351455/littleswany
https://riptutorial.com/contributor/3242099/lykegenes
https://riptutorial.com/contributor/4755215/maantje
https://riptutorial.com/contributor/69232/mahmood
https://riptutorial.com/contributor/1014588/marco-aurelio-deleu
https://riptutorial.com/contributor/425519/marcus-ramsden
https://riptutorial.com/contributor/6729812/marek-skiba
https://riptutorial.com/contributor/102205/martin-bean
https://riptutorial.com/contributor/1998801/matiaslauriti
https://riptutorial.com/contributor/1768257/mm2
https://riptutorial.com/contributor/2260604/nicklas-kevin-frank
https://riptutorial.com/contributor/772791/niklas-modess
https://riptutorial.com/contributor/1223051/nyan-lynn-htut
https://riptutorial.com/contributor/3583182/patricus
https://riptutorial.com/contributor/801396/pete-houston
https://riptutorial.com/contributor/4123267/phroggyy
https://riptutorial.com/contributor/1941091/prisoner-raju
https://riptutorial.com/contributor/6392939/ramenchef
https://riptutorial.com/contributor/978690/rap-2-h
https://riptutorial.com/contributor/439427/rubens-mariuzzo
https://riptutorial.com/contributor/4670278/sagar-naliyapara
https://riptutorial.com/contributor/485418/samsquanch
https://riptutorial.com/contributor/2280891/sergio-guillen-mantilla
https://riptutorial.com/contributor/2280891/sergio-guillen-mantilla
https://riptutorial.com/contributor/261713/tim
https://riptutorial.com/contributor/1080064/tkausl
https://riptutorial.com/contributor/4095830/whoan
https://riptutorial.com/contributor/6246818/yasin-patel
https://riptutorial.com/contributor/6349060/advaith
https://riptutorial.com/contributor/1409707/aimme
https://riptutorial.com/contributor/1561929/alex-harris
https://riptutorial.com/contributor/4007220/alphonsus
https://riptutorial.com/contributor/3143628/bhill77
https://riptutorial.com/contributor/4750402/imam-assidiqqi
https://riptutorial.com/contributor/4058808/ketan-akbari
https://riptutorial.com/contributor/4123267/phroggyy
https://riptutorial.com/contributor/978690/rap-2-h
https://riptutorial.com/contributor/4031163/ru-chern-chong
https://riptutorial.com/contributor/2308263/zulfiqar-tariq
https://riptutorial.com/contributor/2308263/zulfiqar-tariq
https://riptutorial.com/contributor/6734718/diego-souza
https://riptutorial.com/contributor/1564365/kyslik
https://riptutorial.com/contributor/3681236/aeolingamenfel
https://riptutorial.com/contributor/3208258/alepeino
https://riptutorial.com/contributor/1561929/alex-harris
https://riptutorial.com/contributor/4750402/imam-assidiqqi
https://riptutorial.com/contributor/1946501/john-slegers
https://riptutorial.com/contributor/1946501/john-slegers
https://riptutorial.com/contributor/3892935/kaspars
https://riptutorial.com/contributor/3351455/littleswany
https://riptutorial.com/contributor/1014588/marco-aurelio-deleu
https://riptutorial.com/contributor/425519/marcus-ramsden
https://riptutorial.com/contributor/6729812/marek-skiba
https://riptutorial.com/contributor/1998801/matiaslauriti
https://riptutorial.com/contributor/2260604/nicklas-kevin-frank
https://riptutorial.com/contributor/2260604/nicklas-kevin-frank
https://riptutorial.com/contributor/485418/samsquanch
https://riptutorial.com/contributor/261713/tim
https://riptutorial.com/contributor/3231770/isma
https://riptutorial.com/contributor/1564365/kyslik
https://riptutorial.com/contributor/6392939/ramenchef
https://riptutorial.com/contributor/439427/rubens-mariuzzo

26 Events and Listeners Bharat Geleda, matiaslauriti, Nauman Zafar

27
Filesystem / Cloud
Storage

Imam Assidiqqi, Nitish Kumar, Paulo Laxamana

28 Form Request(s) Bookeater, Ian, John Roca, Kyslik, RamenChef

29
Getting started with
laravel-5.3

A. Raza, Advaith, Community, davejal, Deathstorm, Manish,
Matthew Beckman, Robin Dirksen, Shital Jachak

30 Helpers aimme

31
HTML and Form
Builder

alepeino, Casper Spruit, Himanshu Raval, Prakash

32 Installation

A. Raza, alepeino, Alphonsus, Black, boroboris, Gaurav, Imam
Assidiqqi, James, Ketan Akbari, Lance Pioch, Marek Skiba,
Martin Bean, nyedidikeke, PaladiN, Prakash, rap-2-h, Ru Chern
Chong, Sagar Naliyapara, SeinopSys, Tim

33 Installation Guide
Advaith, Amarnasan, aynber, Community, davejal, Dov
Benyomin Sohacheski, Imam Assidiqqi, PaladiN, rap-2-h, Ru
Chern Chong

34
Introduction to
laravel-5.2

A. Raza, ashish bansal, Community, Edward Palen, Ivanka
Todorova, Shubhamoy

35
Introduction to
laravel-5.3

Ian

36 Laravel Docker Dov Benyomin Sohacheski

37 Laravel Packages
Casper Spruit, Imam Assidiqqi, Ketan Akbari, rap-2-h, Ru Chern
Chong, Tosho Trajanov

38 lumen framework maksbd19

39
Macros In Eloquent
Relationship

Alex Casajuana, Vikash

40 Mail Yohanan Baruchel

41 Middleware Alex Harris, Kaspars, Kyslik, Moppo, Pistachio

42
Multiple DB
Connections in
Laravel

4444, A. Raza, Rana Ghosh

Naming Files when
uploading with

43 Donkarnash, RamenChef

https://riptutorial.com/ 198

https://riptutorial.com/contributor/3516962/bharat-geleda
https://riptutorial.com/contributor/1998801/matiaslauriti
https://riptutorial.com/contributor/5452620/nauman-zafar
https://riptutorial.com/contributor/4750402/imam-assidiqqi
https://riptutorial.com/contributor/6085328/nitish-kumar
https://riptutorial.com/contributor/4158351/paulo-laxamana
https://riptutorial.com/contributor/6548647/bookeater
https://riptutorial.com/contributor/3604087/ian
https://riptutorial.com/contributor/2392691/john-roca
https://riptutorial.com/contributor/1564365/kyslik
https://riptutorial.com/contributor/6392939/ramenchef
https://riptutorial.com/contributor/3374681/a--raza
https://riptutorial.com/contributor/6349060/advaith
https://riptutorial.com/contributor/-1/community
https://riptutorial.com/contributor/3664960/davejal
https://riptutorial.com/contributor/7647266/deathstorm
https://riptutorial.com/contributor/1578402/manish
https://riptutorial.com/contributor/3230030/matthew-beckman
https://riptutorial.com/contributor/2859139/robin-dirksen
https://riptutorial.com/contributor/3519150/shital-jachak
https://riptutorial.com/contributor/1409707/aimme
https://riptutorial.com/contributor/3208258/alepeino
https://riptutorial.com/contributor/4649882/casper-spruit
https://riptutorial.com/contributor/4757316/himanshu-raval
https://riptutorial.com/contributor/3477687/prakash
https://riptutorial.com/contributor/3374681/a--raza
https://riptutorial.com/contributor/3208258/alepeino
https://riptutorial.com/contributor/4007220/alphonsus
https://riptutorial.com/contributor/4684797/black
https://riptutorial.com/contributor/5142901/boroboris
https://riptutorial.com/contributor/3113599/gaurav
https://riptutorial.com/contributor/4750402/imam-assidiqqi
https://riptutorial.com/contributor/4750402/imam-assidiqqi
https://riptutorial.com/contributor/359034/james
https://riptutorial.com/contributor/4058808/ketan-akbari
https://riptutorial.com/contributor/1167677/lance-pioch
https://riptutorial.com/contributor/6729812/marek-skiba
https://riptutorial.com/contributor/102205/martin-bean
https://riptutorial.com/contributor/6381711/nyedidikeke
https://riptutorial.com/contributor/3887342/paladin
https://riptutorial.com/contributor/3477687/prakash
https://riptutorial.com/contributor/978690/rap-2-h
https://riptutorial.com/contributor/4031163/ru-chern-chong
https://riptutorial.com/contributor/4031163/ru-chern-chong
https://riptutorial.com/contributor/4670278/sagar-naliyapara
https://riptutorial.com/contributor/1344955/seinopsys
https://riptutorial.com/contributor/261713/tim
https://riptutorial.com/contributor/6349060/advaith
https://riptutorial.com/contributor/1398445/amarnasan
https://riptutorial.com/contributor/1007220/aynber
https://riptutorial.com/contributor/-1/community
https://riptutorial.com/contributor/3664960/davejal
https://riptutorial.com/contributor/5058871/dov-benyomin-sohacheski
https://riptutorial.com/contributor/5058871/dov-benyomin-sohacheski
https://riptutorial.com/contributor/4750402/imam-assidiqqi
https://riptutorial.com/contributor/3887342/paladin
https://riptutorial.com/contributor/978690/rap-2-h
https://riptutorial.com/contributor/4031163/ru-chern-chong
https://riptutorial.com/contributor/4031163/ru-chern-chong
https://riptutorial.com/contributor/3374681/a--raza
https://riptutorial.com/contributor/6531516/ashish-bansal
https://riptutorial.com/contributor/-1/community
https://riptutorial.com/contributor/5390791/edward-palen
https://riptutorial.com/contributor/867418/ivanka-todorova
https://riptutorial.com/contributor/867418/ivanka-todorova
https://riptutorial.com/contributor/2365052/shubhamoy
https://riptutorial.com/contributor/3604087/ian
https://riptutorial.com/contributor/5058871/dov-benyomin-sohacheski
https://riptutorial.com/contributor/4649882/casper-spruit
https://riptutorial.com/contributor/4750402/imam-assidiqqi
https://riptutorial.com/contributor/4058808/ketan-akbari
https://riptutorial.com/contributor/978690/rap-2-h
https://riptutorial.com/contributor/4031163/ru-chern-chong
https://riptutorial.com/contributor/4031163/ru-chern-chong
https://riptutorial.com/contributor/6530132/tosho-trajanov
https://riptutorial.com/contributor/1330083/maksbd19
https://riptutorial.com/contributor/4980018/alex-casajuana
https://riptutorial.com/contributor/3821621/vikash
https://riptutorial.com/contributor/6612690/yohanan-baruchel
https://riptutorial.com/contributor/1561929/alex-harris
https://riptutorial.com/contributor/3892935/kaspars
https://riptutorial.com/contributor/1564365/kyslik
https://riptutorial.com/contributor/3739901/moppo
https://riptutorial.com/contributor/5006183/pistachio
https://riptutorial.com/contributor/1464444/4444
https://riptutorial.com/contributor/3374681/a--raza
https://riptutorial.com/contributor/6162401/rana-ghosh
https://riptutorial.com/contributor/1220364/donkarnash
https://riptutorial.com/contributor/6392939/ramenchef

Laravel on Windows

44 Observer matiaslauriti, Szenis

45 Pagination Himanshu Raval, Iftikhar uddin

46
Permissions for
storage

A. Raza

47 Policies Tosho Trajanov

48 Queues Alessandro Bassi, Kyslik

49
Remove public from
URL in laravel

A. Raza, Rana Ghosh, ultrasamad

50 Requests Ian, Jerodev, RamenChef, Rubens Mariuzzo

51 Route Model Binding A. Raza, GiuServ, Vikash

52 Routing
A. Raza, alepeino, Alessandro Bassi, Alex Juchem, beznez,
Dwight, Ilker Mutlu, Imam Assidiqqi, jedrzej.kurylo, Kyslik, Milan
Maharjan, Rubens Mariuzzo, SeinopSys, Vucko

53 Seeding
A. Raza, Alphonsus, Ian, Imam Assidiqqi, Kyslik, SupFrost,
whoan

54 Services A. Raza, El_Matella

55 Socialite Jonathon, Marco Aurélio Deleu

56
Sparkpost integration
with Laravel 5.4

Alvin Chettiar

57 Task Scheduling Jonathon

58 Testing
Alessandro Bassi, Brayniverse, caoglish, Julian Minde, Kyslik,
rap-2-h, Sven

59
Token Mismatch
Error in AJAX

Pankaj Makwana

60
use fields aliases in
Eloquent

MM2

61 Useful links Jakub Kratina

62 Valet
David Lartey, Dov Benyomin Sohacheski, Imam Assidiqqi, Misa
Lazovic, Ru Chern Chong, Shog9

A. Raza, alepeino, Alessandro Bassi, Alex Harris, Andrew Nolan63 Validation

https://riptutorial.com/ 199

https://riptutorial.com/contributor/1998801/matiaslauriti
https://riptutorial.com/contributor/2761093/szenis
https://riptutorial.com/contributor/4757316/himanshu-raval
https://riptutorial.com/contributor/3854365/iftikhar-uddin
https://riptutorial.com/contributor/3374681/a--raza
https://riptutorial.com/contributor/6530132/tosho-trajanov
https://riptutorial.com/contributor/689665/alessandro-bassi
https://riptutorial.com/contributor/1564365/kyslik
https://riptutorial.com/contributor/3374681/a--raza
https://riptutorial.com/contributor/6162401/rana-ghosh
https://riptutorial.com/contributor/7235138/ultrasamad
https://riptutorial.com/contributor/3604087/ian
https://riptutorial.com/contributor/743016/jerodev
https://riptutorial.com/contributor/6392939/ramenchef
https://riptutorial.com/contributor/439427/rubens-mariuzzo
https://riptutorial.com/contributor/3374681/a--raza
https://riptutorial.com/contributor/6875588/giuserv
https://riptutorial.com/contributor/3821621/vikash
https://riptutorial.com/contributor/3374681/a--raza
https://riptutorial.com/contributor/3208258/alepeino
https://riptutorial.com/contributor/689665/alessandro-bassi
https://riptutorial.com/contributor/5161740/alex-juchem
https://riptutorial.com/contributor/3794177/beznez
https://riptutorial.com/contributor/1125910/dwight
https://riptutorial.com/contributor/1804506/ilker-mutlu
https://riptutorial.com/contributor/4750402/imam-assidiqqi
https://riptutorial.com/contributor/1594915/jedrzej-kurylo
https://riptutorial.com/contributor/1564365/kyslik
https://riptutorial.com/contributor/2253892/milan-maharjan
https://riptutorial.com/contributor/2253892/milan-maharjan
https://riptutorial.com/contributor/439427/rubens-mariuzzo
https://riptutorial.com/contributor/1344955/seinopsys
https://riptutorial.com/contributor/5647037/vucko
https://riptutorial.com/contributor/3374681/a--raza
https://riptutorial.com/contributor/4007220/alphonsus
https://riptutorial.com/contributor/3604087/ian
https://riptutorial.com/contributor/4750402/imam-assidiqqi
https://riptutorial.com/contributor/1564365/kyslik
https://riptutorial.com/contributor/2729470/supfrost
https://riptutorial.com/contributor/4095830/whoan
https://riptutorial.com/contributor/3374681/a--raza
https://riptutorial.com/contributor/4547701/el-matella
https://riptutorial.com/contributor/2244675/jonathon
https://riptutorial.com/contributor/1014588/marco-aurelio-deleu
https://riptutorial.com/contributor/8082582/alvin-chettiar
https://riptutorial.com/contributor/2244675/jonathon
https://riptutorial.com/contributor/689665/alessandro-bassi
https://riptutorial.com/contributor/2174276/brayniverse
https://riptutorial.com/contributor/2272581/caoglish
https://riptutorial.com/contributor/4963895/julian-minde
https://riptutorial.com/contributor/1564365/kyslik
https://riptutorial.com/contributor/978690/rap-2-h
https://riptutorial.com/contributor/1815847/sven
https://riptutorial.com/contributor/2613552/pankaj-makwana
https://riptutorial.com/contributor/1768257/mm2
https://riptutorial.com/contributor/2850062/jakub-kratina
https://riptutorial.com/contributor/1818092/david-lartey
https://riptutorial.com/contributor/5058871/dov-benyomin-sohacheski
https://riptutorial.com/contributor/4750402/imam-assidiqqi
https://riptutorial.com/contributor/2430434/misa-lazovic
https://riptutorial.com/contributor/2430434/misa-lazovic
https://riptutorial.com/contributor/4031163/ru-chern-chong
https://riptutorial.com/contributor/811/shog9
https://riptutorial.com/contributor/3374681/a--raza
https://riptutorial.com/contributor/3208258/alepeino
https://riptutorial.com/contributor/689665/alessandro-bassi
https://riptutorial.com/contributor/1561929/alex-harris
https://riptutorial.com/contributor/5729023/andrew-nolan

, happyhardik, Himanshu Raval, Ian, Iftikhar uddin, John
Slegers, Marco Aurélio Deleu, matiaslauriti, rap-2-h, Rubens
Mariuzzo, Safoor Safdar, Sagar Naliyapara, Stephen Leppik,
sun, Vucko

https://riptutorial.com/ 200

https://riptutorial.com/contributor/162223/happyhardik
https://riptutorial.com/contributor/4757316/himanshu-raval
https://riptutorial.com/contributor/3604087/ian
https://riptutorial.com/contributor/3854365/iftikhar-uddin
https://riptutorial.com/contributor/1946501/john-slegers
https://riptutorial.com/contributor/1946501/john-slegers
https://riptutorial.com/contributor/1014588/marco-aurelio-deleu
https://riptutorial.com/contributor/1998801/matiaslauriti
https://riptutorial.com/contributor/978690/rap-2-h
https://riptutorial.com/contributor/439427/rubens-mariuzzo
https://riptutorial.com/contributor/439427/rubens-mariuzzo
https://riptutorial.com/contributor/1728836/safoor-safdar
https://riptutorial.com/contributor/4670278/sagar-naliyapara
https://riptutorial.com/contributor/6388243/stephen-leppik
https://riptutorial.com/contributor/6000234/sun
https://riptutorial.com/contributor/5647037/vucko

	About
	Chapter 1: Getting started with Laravel
	Remarks

	Laravel StackOverflow Slack Community
	Featured Tutorial
	Contribution Guidelines
	Contribution Style Guide
	About Laravel
	Main Features
	MVC
	Blade Templating Engine
	Routing & Middleware
	Artisan
	Eloquent ORM
	Event Handling

	Versions
	Examples
	Welcome to Laravel tag documentation!
	Starter Guide

	Getting Started
	Laravel Views

	Chapter 2: Artisan
	Syntax
	Parameters
	Examples
	Introduction
	List all registered routes filtered by multiple methods
	Running Laravel Artisan commands using PHP code
	Creating and registering new artisan command

	Chapter 3: Authentication
	Examples
	Multi Authentication

	Chapter 4: Authorization
	Introduction
	Examples
	Using Gates
	Authorizing Actions with Gates
	Policies
	Writing Policies
	Authorizing Actions with Policies

	Chapter 5: Blade Templates
	Introduction
	Examples
	Views: Introduction
	Control Structures

	Conditionals
	'If' statements
	'Unless' statements

	Loops
	'While' loop
	'Foreach' loop
	'Forelse' Loop
	Echoing PHP expressions

	Echoing a variable
	Echoing an element in an array
	Echoing an object property
	Echoing the result of a function call

	Checking for Existence
	Raw echos
	Including Partial Views
	Layout Inheritance
	Sharing data to all views

	Using View::share
	Using View::composer
	Closure-based composer
	Class-based composer
	Execute arbitrary PHP code

	Chapter 6: Cashier
	Remarks
	Examples
	Stripe Setup

	Chapter 7: Change default routing behaviour in Laravel 5.2.31 +
	Syntax
	Parameters
	Remarks
	Examples
	Adding api-routes with other middleware and keep default web middleware

	Chapter 8: Collections
	Syntax
	Remarks
	Examples
	Creating Collections
	where()

	Nesting
	Additions
	Using Get to lookup value or return default
	Using Contains to check if a collection satisfies certain condition
	Using Pluck to extract certain values from a collection
	Using Map to manipulate each element in a collection
	Using sum, avg, min or max on a collection for statistical calculations
	Sorting a collection

	Sort()
	SortBy()
	SortByDesc()
	Using reduce()
	Using macro() to extend collections
	Using Array Syntax

	Chapter 9: Common Issues & Quick Fixes
	Introduction
	Examples
	TokenMisMatch Exception

	Chapter 10: Constants
	Examples
	Example

	Chapter 11: Controllers
	Introduction
	Examples
	Basic Controllers
	Controller Middleware
	Resource Controller

	Example of how a Resource Controller look
	Actions Handled By Resource Controller

	Chapter 12: Cron basics
	Introduction
	Examples
	Create Cron Job

	Chapter 13: Cross Domain Request
	Examples
	Introduction
	CorsHeaders

	Chapter 14: Custom Helper function
	Introduction
	Remarks
	Examples
	document.php
	HelpersServiceProvider.php
	Use

	Chapter 15: CustomException class in Laravel
	Introduction
	Examples
	CustomException class in laravel

	Chapter 16: Database
	Examples
	Multiple database connections

	Chapter 17: Database Migrations
	Examples
	Migrations
	The migration files
	Generating migration files
	Inside a database migration
	Running migrations
	Rolling Back Migrations

	Chapter 18: Database Seeding
	Examples
	Running a Seeder
	Creating a Seed
	Inserting Data using a Seeder
	Inserting data with a Model Factory
	Seeding with MySQL Dump
	Using faker And ModelFactories to generate Seeds

	Chapter 19: Deploy Laravel 5 App on Shared Hosting on Linux Server
	Remarks
	Examples
	Laravel 5 App on Shared Hosting on Linux Server

	Chapter 20: Directory Structure
	Examples
	Change default app directory

	Override Application class
	Calling the new class
	Composer
	Change the Controllers directory

	Chapter 21: Eloquent
	Introduction
	Remarks
	Examples
	Introduction

	Sub-topic Navigation
	Persisting
	Deleting

	Soft Deleting
	Change primary key and timestamps
	Throw 404 if entity not found
	Cloning Models

	Chapter 22: Eloquent : Relationship
	Examples
	Querying on relationships
	Inserting Related Models
	Introduction
	Relationship Types

	One to Many
	One to One
	How to associate between two models (example: User and Phone model)
	Explanation

	Many to Many
	Polymorphic
	Many To Many

	Chapter 23: Eloquent: Accessors & Mutators
	Introduction
	Syntax
	Examples
	Defining An Accessors

	Getting Accessor:
	Defining a Mutator

	Chapter 24: Eloquent: Model
	Examples
	Making a Model
	Model creation
	Model File Location
	Model configuration
	Update an existing model

	Chapter 25: Error Handling
	Remarks
	Examples
	Send Error report email
	Catching application wide ModelNotFoundException

	Chapter 26: Events and Listeners
	Examples
	Using Event and Listeners for sending emails to a new registered user

	Chapter 27: Filesystem / Cloud Storage
	Examples
	Configuration
	Basic Usage
	Custom Filesystems
	Creating symbolic link in a web server using SSH

	Chapter 28: Form Request(s)
	Introduction
	Syntax
	Remarks
	Examples
	Creating Requests
	Using Form Request
	Handling Redirects after Validation

	Chapter 29: Getting started with laravel-5.3
	Remarks
	Examples
	Installing Laravel

	Via Laravel Installer
	Via Composer Create-Project
	Setup
	Server Requirements
	Local Development Server
	Hello World Example (Basic) and with using a view
	Hello World Example (Basic)
	Web Server Configuration for Pretty URLs

	Chapter 30: Helpers
	Introduction
	Examples
	Array methods
	String methods
	Path mehods
	Urls

	Chapter 31: HTML and Form Builder
	Examples
	Installation

	Chapter 32: Installation
	Examples
	Installation

	Via Composer
	Via the Laravel installer
	Running the application
	Using a different server
	Requirements
	Hello World Example (Using Controller and View)
	Hello World Example (Basic)
	Installation using LaraDock (Laravel Homestead for Docker)

	Installation
	Basic Usage
	Chapter 33: Installation Guide
	Remarks
	Examples
	Installation
	Hello World Example (Basic)
	Hello World Example With Views and Controller
	The view
	The controller
	The router

	Chapter 34: Introduction to laravel-5.2
	Introduction
	Remarks
	Examples
	Installation or Setup
	Install Laravel 5.1 Framework on Ubuntu 16.04, 14.04 & LinuxMint

	Chapter 35: Introduction to laravel-5.3
	Introduction
	Examples
	The $loop variable

	Chapter 36: Laravel Docker
	Introduction
	Examples
	Using Laradock

	Chapter 37: Laravel Packages
	Examples
	laravel-ide-helper
	laravel-datatables
	Intervention Image
	Laravel generator
	Laravel Socialite
	Official Packages

	Cashier
	Envoy
	Passport
	Scout
	Socialite

	Chapter 38: lumen framework
	Examples
	Getting started with Lumen

	Chapter 39: Macros In Eloquent Relationship
	Introduction
	Examples
	We can fetch one instance of hasMany relationship

	Chapter 40: Mail
	Examples
	Basic example

	Chapter 41: Middleware
	Introduction
	Remarks
	Examples
	Defining a Middleware
	Before vs. After Middleware
	Route Middleware

	Chapter 42: Multiple DB Connections in Laravel
	Examples
	Initial Steps
	Using Schema builder
	Using DB query builder
	Using Eloquent
	From Laravel Documentation

	Chapter 43: Naming Files when uploading with Laravel on Windows
	Parameters
	Examples
	Generating timestamped file names for files uploaded by users.

	Chapter 44: Observer
	Examples
	Creating an observer

	Chapter 45: Pagination
	Examples
	Pagination in Laravel
	Changing pagination views

	Chapter 46: Permissions for storage
	Introduction
	Examples
	Example

	Chapter 47: Policies
	Examples
	Creating Policies

	Chapter 48: Queues
	Introduction
	Examples
	Use-cases
	Queue Driver Configuration
	sync
	database
	sqs
	iron
	redis
	beanstalkd
	null

	Chapter 49: Remove public from URL in laravel
	Introduction
	Examples
	How to do that?
	Remove the public from url

	Chapter 50: Requests
	Examples
	Getting input

	Chapter 51: Requests
	Examples
	Obtain an Instance of HTTP Request
	Request Instance with other Parameters from routes in controller method

	Chapter 52: Route Model Binding
	Examples
	Implicit Binding
	Explicit Binding

	Chapter 53: Routing
	Examples
	Basic Routing

	Routes pointing to a Controller method
	A route for multiple verbs
	Route Groups
	Named Route

	Generate URL using named route
	Route Parameters

	Optional Parameter
	Required Parameter
	Accessing the parameter in controller
	Catch all routes

	Catching all routes except already defined
	Routes are matched in the order they are declared
	Case-insensitive routes

	Chapter 54: Seeding
	Remarks
	Examples
	Inserting data

	Using the DB Facade
	Via Instantiating a Model
	Using the create method
	Using factory
	Seeding && deleting old data and reseting auto-increment
	Calling other seeders
	Creating a Seeder
	Safe reseeding

	Chapter 55: Services
	Examples
	Introduction

	Chapter 56: Services
	Examples
	Binding an Interface To Implementation
	Binding an Instance
	Binding a Singleton to the Service Container
	Introduction
	Using the Service Container as a Dependency Injection Container

	Chapter 57: Socialite
	Examples
	Installation
	Configuration
	Basic Usage - Facade
	Basic Usage - Dependency Injection
	Socialite for API - Stateless

	Chapter 58: Sparkpost integration with Laravel 5.4
	Introduction
	Examples
	SAMPLE .env file data

	Chapter 59: Task Scheduling
	Examples
	Creating a task
	Making a task available
	Scheduling your task
	Setting the scheduler to run

	Chapter 60: Testing
	Examples
	Introduction
	Test without middleware and with a fresh database
	Database transactions for mutliple database connection
	Testing setup, using in memory database
	Configuration

	Chapter 61: Token Mismatch Error in AJAX
	Introduction
	Examples
	Setup Token on Header
	Set token on tag
	Check session storage path & permission
	Use _token field on Ajax

	Chapter 62: use fields aliases in Eloquent
	Chapter 63: Useful links
	Introduction
	Examples
	Laravel Ecosystem
	Education
	Podcasts

	Chapter 64: Valet
	Introduction
	Syntax
	Parameters
	Remarks
	Examples
	Valet link
	Valet park
	Valet links
	Installation
	Valet domain
	Installation (Linux)

	Chapter 65: Validation
	Parameters
	Examples
	Basic Example
	Array Validation
	Other Validation Approaches
	Single Form Request Class for POST, PUT, PATCH
	Error messages

	Customizing error messages
	Customising error messages within a Request class
	Displaying error messages
	Custom Validation Rules

	Credits

