

Mastering XMI: Java Programming with XMI, XML, and UML
by Timothy J. Grose (Author), Gary C. Doney (Author), Stephen A.

Brodsky (Author)

Paperback: 480 pages ;

Publisher: John Wiley & Sons;

ISBN: 0471384291

John Wiley & Sons, Inc.
NEW YORK • CHICHESTER • WEINHEIM • BRISBANE • SINGAPORE • TORONTO

Wiley Computer Publishing

Timothy J. Grose
Gary C. Doney

Stephen A. Brodsky, Ph.D.

Mastering XMI
Java Programming with

XMI, XML, and UML

Mastering XMI
Java Programming with

XMI, XML, and UML

John Wiley & Sons, Inc.
NEW YORK • CHICHESTER • WEINHEIM • BRISBANE • SINGAPORE • TORONTO

Wiley Computer Publishing

Timothy J. Grose
Gary C. Doney

Stephen A. Brodsky, Ph.D.

Mastering XMI
Java Programming with

XMI, XML, and UML

Publisher: Robert Ipsen
Executive Editor: Robert M. Elliott
Developmental Editor: Emilie Herman
Managing Editor: John Atkins
New Media Editor: Brian Snapp
Text Design & Composition: MacAllister Publishing Services, LLC

Designations used by companies to distinguish their products are often claimed as trade-
marks. In all instances where John Wiley & Sons, Inc., is aware of a claim, the product names
appear in initial capital or ALL CAPITAL LETTERS. Readers, however, should contact the
appropriate companies for more complete information regarding trademarks and registration.

IBM, DB2, VisualAge, and WebSphere are trademarks or registered trademarks of IBM Cor-
poration in the United States, other countries, or both.

Java and all Java-based trademarks and logos are trademarks of Sun Microsystems, Inc. in
the United States and/or other countries.

Microsoft, Windows, and Windows NT are either registered trademarks or trademarks of
Microsoft Corporation in the United States and/or other countries.

OMG, Object Management Group, OMG IDL, CORBA, XMI, MOF, CWM, Unified Model-
ing Language, UML, the UML Cube Logo, Model Driven Architecture, MDA, OMG Model
Driven Architecture, OMG MDA, and IIOP are trademarks or registered trademarks of the
Object Management Group, Inc., in the United States and other countries. All other names
and marks that may appear are used for identification purposes only and may be trade-
marks of their respective owners.

Pentium is a registered trademark of Intel Corporation.

Walkman is a registered trademark of Sony Corporation.

This book is printed on acid-free paper.

Copyright © 2002 by IBM. All rights reserved.

Published by John Wiley & Sons, Inc.

Published simultaneously in Canada.

No part of this publication may be reproduced, stored in a retrieval system or transmitted
in any form or by any means, electronic, mechanical, photocopying, recording, scanning or
otherwise, except as permitted under Sections 107 or 108 of the 1976 United States Copy-
right Act, without either the prior written permission of the Publisher, or authorization
through payment of the appropriate per-copy fee to the Copyright Clearance Center, 222
Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax (978) 750-4744. Requests to the
Publisher for permission should be addressed to the Permissions Department, John Wiley
& Sons, Inc., 605 Third Avenue, New York, NY 10158-0012, (212) 850-6011, fax (212) 850-
6008, e-mail: PERMREQ@WILEY.COM.

This publication is designed to provide accurate and authoritative information in regard to
the subject matter covered. It is sold with the understanding that the publisher is not
engaged in professional services. If professional advice or other expert assistance is
required, the services of a competent professional person should be sought.

Library of Congress Cataloging-in-Publication Data:

ISBN: 0-471-38429-1

Printed in the United States of America.

10 9 8 7 6 5 4 3 2 1

Advance Praise for
Mastering XMI

“XMI is a powerful standard for representing objects in XML and it plays key
roles in IBM’s WebSphere servers and WebSphere Studio application develop-
ment tools. This book takes the mystery out of XMI, tells why it is important,
and shows Java programmers how to use it. Its authors made XMI work for
WebSphere and they build on that experience to explain the hows and whys of
XMI in an eminently readable and practical way.”

Lee R. Nackman
IBM Vice President, Application Development Tools

Member, IBM Academy of Technology

“Model Driven Architecture (MDA) is an appealing vision of how to develop
software, but there is little information readily available on how to apply these
somewhat abstract ideas in practice. Timothy Grose, Gary Doney, and Stephen
Brodsky remedy this deficiency by producing a comprehensive, grounded,
and detailed handbook on how to use XMI to create and integrate MDA appli-
cations using Java, XML, and UML. The CD contains a wealth of supporting
information, including a full-featured trial edition of IBM’s WebSphere Studio
Application Developer. This book is an essential read for any developer seri-
ous about applying the principles of Model Driven Architecture in real soft-
ware development projects.”

Steve J. Cook
IBM Distinguished Engineer

Member, IBM Academy of Technology

v

“The convergence of modeling technologies into the UML that the OMG drove
home in 1997 has finally made software design and architecture a mainstream
activity. The convergence of the UML itself with the startling rise of XML is the
obvious next step: the communication of metamodels (and objects in general)
clearly relies on universal data formats such as XML. This explains the rapid
uptake of XMI in the software development community. This masterful book
gives everything the serious application developer needs, start to finish—from
motivation, through explanation, to clear, concise examples using XMI with
Java. As the Model Driven Architecture (MDA) sweeps the mess of software
heterogeneity under the rug, XMI at MDA’s core ensures interoperability
across tools and applications. And there’s no better way to learn the details
than this book.”

Richard Mark Soley, Ph.D.
Chairman and CEO, Object Management Group, Inc.

vi Advance Praise for Mastering XMI

vii

2001 OMG Press
Advisory Board

Karen D. Boucher

Executive Vice President

The Standish Group

Carol C. Burt

President and Chief Executive
Officer

2AB, Inc.

Sridhar Iyengar

Unisys Fellow

Unisys Corporation

Cris Kobryn

Chief Technologist

Telelogic

Nilo Mitra, Ph.D.

Principal System Engineer

Ericsson

Jon Siegel, Ph.D.

Director, Technology Transfer

Object Management Group, Inc.

Richard Mark Soley, Ph.D.

Chairman and Chief Executive
Officer

Object Management Group, Inc.

Sheldon C. Sutton

Principal Information Systems
Engineer

The MITRE Corporation

Ron Zahavi

Chief Technology Officer

AxTechnology

ix

(For complete information about current and upcoming titles, go to
www.wiley.com/compbooks/omg/.)

■■ Building Business Objects by Peter Eeles and Oliver Sims, ISBN: 0-471-
19176-0.

■■ Business Component Factory: A Comprehensive Overview of Compo-
nent-Based Development for the Enterprise by Peter Herzum and
Oliver Sims, ISBN: 0-471-32760-3.

■■ Business Modeling with UML: Business Patterns at Work by Hans-Erik
Eriksson and Magnus Penker, ISBN: 0-471-29551-5.

■■ CORBA 3 Fundamentals and Programming, 2nd Edition by Jon Siegel,
ISBN: 0-471-29518-3.

■■ CORBA Design Patterns by Thomas J. Mowbray and Raphael C.
Malveau, ISBN: 0-471-15882-8.

■■ Enterprise Application Integration with CORBA: Component and Web-
Based Solutions by Ron Zahavi, ISBN: 0-471-32720-4.

■■ Enterprise Java with UML by C.T. Arrington, ISBN: 0-471-38680-4.

■■ Enterprise Security with EJB and CORBA by Bret Hartman, Donald J.
Flinn, and Konstantin Beznosov, ISBN: 0-471-15076-2.

■■ The Essential CORBA: Systems Integration Using Distributed Objects
by Thomas J. Mowbray and Ron Zahavi, ISBN: 0-471-10611-9.

■■ Instant CORBA by Robert Orfali, Dan Harkey, and Jeri Edwards,
ISBN: 0-471-18333-4.

OMG Press Books in Print

■■ Integrating CORBA and COM Applications by Michael Rosen and
David Curtis, ISBN: 0-471-19827-7.

■■ Java Programming with CORBA, Third Edition by Gerald Brose,
Andreas Vogel, and Keith Duddy, ISBN: 0-471-24765-0.

■■ The Object Technology Casebook: Lessons from Award-Winning Busi-
ness Applications by Paul Harmon and William Morrisey, ISBN: 0-471-
14717-6.

■■ The Object Technology Revolution by Michael Guttman and Jason
Matthews, ISBN: 0-471-60679-0.

■■ Programming with Enterprise JavaBeans, JTS, and OTS: Building Dis-
tributed Transactions with Java and C�� by Andreas Vogel and Mad-
havan Rangarao, ISBN: 0-471-31972-4.

■■ Programming with Java IDL by Geoffrey Lewis, Steven Barber, and
Ellen Siegel, ISBN: 0-471-24797-9.

■■ Quick CORBA 3 by Jon Siegel, ISBN: 0-471-38935-8.

■■ UML Toolkit by Hans-Erik Eriksson and Magnus Penker, ISBN: 0-471-
19161-2.

x OMG Press Books in Print

xi

About the OMG

The Object Management Group (OMG) is an open membership, not-for-profit
consortium that produces and maintains computer industry specifications for
interoperable applications. To achieve this goal, the OMG specifies open stan-
dards for every aspect of distributed computing from analysis and design,
through infrastructure, to application objects and components defined on vir-
tually every enterprise middleware platform. OMG’s membership roster
includes virtually every large company in the computer industry, and hun-
dreds of smaller ones. Most of the companies that shape enterprise and Inter-
net computing today are represented on OMG’s Board of Directors.

OMG’s flagship specification, and the basis for future OMG specifications, is
the multi-platform Model Driven Architecture (MDA). Unifying the modeling
and middleware spaces, the MDA supports applications over their entire lifecy-
cle from Analysis and Design, through implementation and deployment, to
maintenance and evolution. Based on normative, platform-independent Unified
Modeling Language (UML) models, MDA-based applications and standards
may be expressed and implemented, equivalently, on multiple middleware plat-
forms; implementation are produced automatically, for the most part, by MDA-
enabled tools that also generate cross-platform invocations, making for a truly
interoperable environment. Because the UML models remain stable as the tech-
nological landscape changes around them over time, MDA-based development
maximizes software ROI as it integrates applications across the enterprise, and
one enterprise with another. Adopted by members as the basis for OMG specifi-
cations in September 2001, the MDA is truly a unique advance in distributed
computing. To learn more about the MDA, see www.omg.org/mda.

OMG’s modeling specifications form the foundation for the MDA. These
include the UML, the MetaObject Facility (MOF), XML Metadata Interchange
(XMI), and the Common Warehouse Metamodel (CWM). The industry’s

standard for representation of analysis and design, the UML defines Use Case
and Activity diagrams for requirements gathering, Class and Object diagrams
for design, Package and Subsystem diagrams for deployment, and six other
diagram types. The MOF defines a standard metamodel for applications,
allowing UML models to be interchanged among tools and repositories; and
XMI standardizes the format for these interchanges. Finally, CWM establishes
metamodels in the field of data warehousing, completing OMG’s standardiza-
tion in the modeling space.

The Common Object Request Broker Architecture (CORBA) is OMG’s
vendor-neutral, system-independent middleware standard. Based on the
OMG/ISO Interface Definition language (OMG IDL) and the Internet Inter-
ORB Protocol (IIOP), CORBA is a mature technology represented on the mar-
ket by more than 70 ORBs (Object Request Brokers) plus hundreds of other
products. Scalable to Internet and Enterprise levels, CORBA more than meets
business computing requirements through its robust services-providing direc-
tory, distributed event handling, transactionality, fault tolerance, and security.
Specialized versions of CORBA form the basis for distributed Realtime com-
puting, and distributed embedded systems.

Building on this foundation, OMG Domain Facilities standardize common
objects throughout the supply and service chains in industries such as Tele-
communications, Healthcare, Manufacturing, Transportation, Finance/
Insurance, Biotechnology, Utilities, Space, and Military and Civil Defense
Logistics. OMG members are now extending these Domain Facilities, origi-
nally written in OMG IDL and restricted to CORBA, into the MDA by con-
structing UML models corresponding to their underlying architecture;
standard MDA procedures will then produce standards and implementations
on such platforms as Web Services, XML/SOAP, Enterprise JavaBeans, and
others. OMG’s first MDA-based specification, the Gene Expression Facility,
was adopted less than six months after the organization embraced the MDA;
based on a detailed UML model, this specification is implemented entirely in
the popular language XML.

In summary, the OMG provides the computing industry with an open,
vendor-neutral, proven process for establishing and promoting standards.
OMG makes all of its specifications available without charge from its Web site,
www.omg.org. Delegates from the hundreds of OMG member companies con-
vene at week-long meetings held five times each year at varying sites around
the world, to advance OMG technologies. The OMG welcomes guests to their
meetings; for an invitation, send your email request to info@omg.org or see
www.omg.org/news/meetings/tc/guest.htm.

Membership in OMG is open to any company, educational institution, or
government agency. For more information on the OMG, contact OMG head-
quarters by telephone at +1-781-444-0404, by fax at +1-781-444-0320, by email
to info@omg.org, or on the Web at www.omg.org.

xii About the OMG

For Nancy
—Tim Grose

For my mother and father
—Gary Doney

For Sharon and Alicia
—Stephen Brodsky

List of Figures, Tables, and Code .xxi

Acknowledgments .xxvii

Introduction .xxix

Part 1 XMI Explained .1

Chapter 1 XMI: Representing Objects in XML .3
The Importance of Objects .4

The Importance of XML .5

The Gap between XML and Objects .7

How XMI Bridges the Gap .8

Benefits of XMI .10
XMI Uses XML .10
Modeling and XML .12
Creating Schemas from Models .12
Working with Objects and XML .13
Exchanging XML Documents .13
Evolving Your XML Applications .14
XMI Is Flexible .15
XMI and Meta Data .15

Summary .16

Chapter 2 Related Standards: XML and UML .17
XML .18

The Basics .18

Contents

xv

Namespaces .20
XML Element Relationships .21
Document Type Definitions .23
Schemas .25

Schema Elements .26
Element and Type Declarations .26
Element Content .27
Attribute Declarations .31
Attribute Groups .32
Namespaces in Schemas .32
Type Extension .34
Schema Import .35

Mapping Data to XML .35

UML .37
The Java Object Model .38
The UML Object Model .39
Object Identity .51

Summary .53

Chapter 3 XMI Concepts .55
UML Terminology and Use .56

Writing Objects Using XMI .58
Objects .58

XMI Documents .58
XML Documents .60
Object Identity .61

Attribute Values .62
Data Values .63
Object Values .64
Namespaces and Values .67

References .67
Representing References Using XML Attributes 68
Representing References Using XML Elements 69
Namespaces and References .69

Objects in Different Documents .70
Object Values in Different Documents .70
Referenced Objects in Different Documents 71

Additional Information .72

Generating Schemas from Models .74
Default XMI Schemas .75

Packages .75
Classes .76
Datatypes .77
Attributes .78
Association Ends .80
Inheritance .81

xvi Contents

Tailoring XMI Schemas .82
Packages .82
Classes .83
Datatypes .86
Attributes .87
Association Ends .95
Inheritance .100
Tagged Value Summary .101

The XMI Model .104
XML Attribute Declarations .105
Extension Element .105
Identifying Models .106
Describing a Document .108
Differences .108
XMI XML Element .115

Summary .116

Part 2 How to Use XMI .117

Chapter 4 Creating Your XMI Process .119
Overview of the XMI Process .120

Define Your Objects .122
Create an XMI Schema .123
Design Your Files .125

Describing Your Documents .126
Cross-File References .126
Extensions .127
Embedding XMI .128
Recommendations .128

Generate the Code .129
Implement the System .129

XMI Process Example .130
The Situation .131
Defining the Objects .132
Creating an XMI Schema .135
Designing the Files .138
Generating the Code .138
Implementing the System .141

Summary .141

Chapter 5 Creating Models for XMI .143
UML Modeling Issues .144

Names .144
Multiplicities .145
Attributes .145
Datatypes .146

Contents xvii

Association Ends .147

Reverse Engineering Models from XML .147
XML Documents to UML .149
XML DTDs to UML .152
XMI DTDs to UML .157
XML Schemas to UML .162
XMI Schemas to UML .163

Summary .164

Chapter 6 Creating and Reading Simple XMI Documents with
Standard XML APIs .165
Car Rental Agency Application .166

Using Standard XML APIs .168
Using DOM .168

Overview Algorithm .170
Object Algorithm .172

Using SAX .180
CRAHandler1: Accessing and Printing Data in the XMI File 190
CRAHandler2: Making Java Instances of the XMI

Document Objects .192
CRAHandler3: Setting the Fields of the Java Instances 196
CRAHandler4: Dealing with References .199

Summary .204

Chapter 7 Creating and Reading Simple XMI Documents with
the XMI Framework .205
Using the Java Object Bridge (JOB) .206

Creating an XMI Document .206
Reading an XMI Document .215

Using the XMI Framework .216
Creating an XMI Document .217

Using the Framework Object Model .217
Using Your Own Java Classes .223

Reading an XMI Document .230

Summary .248

Chapter 8 Creating and Reading Advanced XMI Documents
with the XMI Framework .251
A Quick Review .252

Namespaces .253

Describing Your Documents .261
Documentation Information .261
Model Information .263

XMI Extensions .273

xviii Contents

ZIP Files .277

Cross-File References .280

Code Generation .290
How to Generate Java Code .292
The Generated Interfaces .293
Using the Generated Code .295
Understanding the

Implementation Classes .301

Summary .305

Chapter 9 XMI Schemas .307
Creating XMI Schemas .308

Creating an XMI Schema with the XMISchema
Framework Class .308

Validating Documents with the Framework .311

Validating with XMI Schemas .314
XML Validation .314
Errors Detected by Default XMI Schemas .316
Errors Detected by Tailored XMI Schemas .317

Summary .325

Chapter 10 Model Driven Architecture (MDA) and XMI327
What Is the Model Driven Architecture? .328

Benefits of Modeling .329

Information Representations and Modeling .331
XMI and MOF .332
Model Information Hierarchy .333

The Flow Composition Model (FCM) .335

Using FCM with the Car Broker Application .336

Summary .350

Chapter 11 A Real-World Use of XMI: WebSphere Studio
Application Developer .351
The XML to XML Mapping Editor .352

The CD Example .353
The Source Schema .354
The Target Schema .354
The Mapping .355
The Mapping Metamodel .361

Using Models and EJBs .361

Meta Data in WebSphere Studio .364

EJB XMI Mapping Example .372

Summary .373

Contents xix

Appendix A The XMI Framework: Supplemental Documentation 375
Purpose .376

Overview .377
Framework Object Model .377
XMI Files, DTDs, and Schemas .378
Adapters .380
Helper Classes .380

Suggestions for Using the Framework .380

Framework Object Model .381
Objects and Values .381

XMIObjects .382
Attribute Values .383
Link Ends .384
Creating and Setting Values .386

Classes and Features .388
Features .388

Definers .392
Inheritance .392

Packages .393
Models .393
XMI Names .393
Namespaces .395
Encoding Non-XMI Information .396
Implementing Framework Object Model Interfaces 396

XMI Files .398
Creating Single XMI Files .398

Default Write Option .399
Other Write Options .401

Loading Single XMI Files .402
Header Data .403
Related XMI Files .404
Registering Models with the Framework .404

XMI DTDs .405

XMI Schemas .405

Code Generation .406

Using the Framework by Implementing Adapters 407

DeclarationFactory Class .407

Notes .409

References .413

Index .417

xx Contents

Figures

Figure 1.1 An XML representation of car data .6

Figure 1.2 The bridges required for different XML representations7

Figure 1.3 Transforming objects to XML elements .8

Figure 1.4 Using XMI software .9

Figure 1.5 The relationship between a UML model, an XMI document,
and an XMI schema .9

Figure 1.6 XMI builds upon XML .11

Figure 1.7 XMI documents and schemas are XML documents
and schemas .11

Figure 1.8 Using XMI to exchange objects among tools 14

Figure 2.1 UML class notation .41

Figure 2.2 Classes F and G .42

Figure 2.3 UML inheritance notation .43

Figure 2.4 UML package notation .44

Figure 2.5 UML association notation .45

Figure 2.6 UML unidirectional association notation 45

Figure 2.7 UML aggregation notation .46

Figure 2.8 UML composition notation .47

Figure 2.9 UML attribute representing composition 48

Figure 2.10 A simple object diagram .48

List of Figures,
Code and Tables

xxi

Figure 2.11 Attribute values .49

Figure 2.12 Object links .50

Figure 2.13 UML datatype notation .50

Figure 2.14 UML enumeration notation .51

Figure 3.1 The Car class with a part object attribute 57

Figure 3.2 The Car class with the style object attribute 65

Figure 3.3 A car with three kinds of parts .66

Figure 3.4 A car has drivers .68

Figure 3.5 The Driver class inherits from the Person class 82

Figure 3.6 The Car class with attributes and association ends 85

Figure 3.7 The Car class with the available attribute 89

Figure 3.8 A Car with passengers .97

Figure 3.9 A Car has a driver and a Person has a car 98

Figure 3.10 The Extension class .106

Figure 3.11 Class declarations for identifying models 107

Figure 3.12 The Documentation class .109

Figure 3.13 Difference classes .110

Figure 3.14 The Car, Part, Engine, and Cylinder model 111

Figure 3.15 The XMI class .115

Figure 4.1 The XMI process .121

Figure 4.2 Dave’s model .132

Figure 4.3 Bob’s model .133

Figure 4.4 The final model .134

Figure 5.1 Attribute multiplicity specified using a UML stereotype146

Figure 5.2 A UML attribute corresponding to a nested XML element . . .151

Figure 5.3 A UML association corresponding to a nested
XML element .152

Figure 5.4 A UML attribute corresponding to text in an
XML document .152

Figure 5.5 A UML enumeration corresponding to an
XML enumeration .155

Figure 5.6 A UML association corresponding to an XML
attribute of type IDREFS .157

Figure 5.7 Two unidirectional associations between the
Person and Car classes .158

Figure 5.8 The class hierarchy for classes O, M, and N 162

xxii List of Figures, Code and Tables

Figure 6.1 Car rental agency model .167

Figure 6.2 Car rental agency objects .167

Figure 6.3 A simple DOM tree .170

Figure 7.1 The XMIObject and related interfaces .219

Figure 7.2 Kinds of AttributeValues .220

Figure 7.3 Using an object writer adapter with the Framework224

Figure 7.4 Framework object model .234

Figure 9.1 The Car1 model .318

Figure 9.2 The Car2 model .323

Figure 10.1 Different levels of information abstraction333

Figure 10.2 The UML model for the car broker application 337

Figure 10.3 Clients of the car dealer’s inventory application 339

Figure 10.4 FCM model for the dealer’s negotiation component 341

Figure 10.5 FCM model for the dealer’s inventory query component 342

Figure 10.6 The inventory query application as a Web service 349

Figure 11.1 The relationship between a mapping in memory
and the corresponding saved files .353

Figure 11.2 The XML to XML mapping editor .358

Figure 11.3 A graphical representation of the mapping XMI file 360

Figure 11.4 The Mapping and RefObject classes .361

Figure 11.5 The Mapping and MappingRoot classes 362

Figure 11.6 Database tag structure .369

Figure 11.7 Meta data file relationships .372

Source Code and XML Examples

Source Code 2.1 A simple implementation of Container and Part 49

Source Code 6.1 DOMWrite program - creating a DOM tree 173

Source Code 6.2 DOMRead program-reading an XMI document
using DOM .177

Source Code 6.3 SAXPrintHandler - a simple SAX handler 181

Source Code 6.4 SAXPrint program parsing an XML file using SAX . . .183

Source Code 6.5 The Style class .186

Source Code 6.6 The Person class .187

Source Code 6.7 The Car class .188

List of Figures, Codes, and Tables xxiii

Source Code 6.8 The Option class .189

Source Code 6.9 SAXRead program .191

Source Code 6.10 CRAHandler1 .193

Source Code 6.11 CRAFactory .194

Source Code 6.12 CRAHandler2 .195

Source Code 6.13 New methods for the CRAFactory 196

Source Code 6.14 CRAHandler3 .198

Source Code 6.15 New methods for the CRAFactory 200

Source Code 6.16 CRAHandler4 .202

Source Code 7.1 The Car class .207

Source Code 7.2 The Option class .209

Source Code 7.3 The Style class .210

Source Code 7.4 The Person class .211

Source Code 7.5 The makeExample() method in the
CRAFactory class .212

Source Code 7.6 The JOBWrite program .213

Source Code 7.7 The JOBRead program .215

Source Code 7.8 The makeFOMExample() method in the
CRAFactory class .222

Source Code 7.9 The FrameWrite program writing XMIObjects
in an XMI document .223

Source Code 7.10 The ValueWriteData class .226

Source Code 7.11 The CRAObjectWriterAdapter class 227

Source Code 7.12 The CRAAdapterFactory class .229

Source Code 7.13 The FrameWrite2 program .230

Source Code 7.14 The FrameRead program .231

Source Code 7.15 The CRAModel program .234

Source Code 7.16 The FrameRead2 program .239

Source Code 7.17 CRAFactory methods used by CRAReaderAdapter . . .243

Source Code 7.18 The CRAReaderAdapter class .246

Source Code 7.19 The completed CRAAdapterFactory class 248

Source Code 7.20 The FrameRead3 program .249

Source Code 8.1 Methods in CRAFactory to assign a Framework
namespace to a Collection of XMIObjects 255

Source Code 8.2 The NamespaceWrite program .256

xxiv List of Figures, Code and Tables

List of Figures, Codes, and Tables xxv

Source Code 8.3 A new and updated method in CRAObjectWriterAdapter

for namespaces .257

Source Code 8.4 The NamespaceWrite2 program 258

Source Code 8.5 The FrameRead program .259

Source Code 8.6 The DocumentationWrite program 262

Source Code 8.7 The DocumentationRead program263

Source Code 8.8 The ModelWrite program .265

Source Code 8.9 The PrintModel program .266

Source Code 8.10 The Repository class .268

Source Code 8.11 The LoadModelAdapter class .269

Source Code 8.12 The LMAdapterFactory class .270

Source Code 8.13 The LoadModel program .270

Source Code 8.14 The Extension1 program .274

Source Code 8.15 The Extension2 program .276

Source Code 8.16 The ZipOut program .278

Source Code 8.17 The ZipIn program .279

Source Code 8.18 The ZipIn2 program .280

Source Code 8.19 The CrossFileHelper class .283

Source Code 8.20 The CrossWrite program .284

Source Code 8.21 The getPerson() method in the
CrossFileHelper class .286

Source Code 8.22 The CrossRead program .287

Source Code 8.23 The CrossRead2 program .290

Source Code 8.24 The CrossRead3 program .291

Source Code 8.25 The GeneratedWrite program .296

Source Code 8.26 A generated UserFactory class .297

Source Code 8.27 The GeneratedRead program .301

Source Code 8.28 A generated implementation class for the
Style interface .302

XMI Example 10.1 Segment of an XMI file for an FCM model343

XMI Example 10.2 COBOL INV-REQ-IN record expressed in XMI345

XMI Example 10.3 Element from the TDINV-REQ-IN.xml file 348

Schema 11.1 The schema for the source XML document355

XML Example 11.1 The source XML document .356

Schema 11.2 The schema for the target XML document 357

XML Example 11.2 The target XML document .358

XMI Example 11.1 The XMI document containing the mapping 359

XML Example 11.3 An EJB deployment descriptor .363

XMI Example 11.2 The schema.dbxmi file .368

XMI Example 11.3 The map.mapxmi file .370

Source Code A.1 Subclasses that inherit from XMIObjectImpl 397

Tables

Table 1.1 XMI Works with Meta Data and Data .15

Table 2.1 UML and Java Comparison .39

Table 2.2 Multiplicity Examples .40

Table 3.1 XMI Tags and the UML Constructs They Affect 102

Table 3.2 XMI Tags for Each UML Construct .103

Table 3.3 XMI Tags and Their Scope .103

Table 3.4 XMI Tags and Their Default Values .104

Table 3.5 Documentation Information .109

Table 4.1 Datatype Mapping .135

Table 5.1 XML to UML .149

Table 5.2 XML Multiplicities to UML Multiplicities158

Table 7.1 Framework Values .220

Table 7.2 addXMIValue() Behavior .221

Table 7.3 FrameRead Output Key .232

Table 7.4 Output Symbols and Value Types .238

Table 7.5 Behavior of setValue() .242

Table 8.1 Framework Datatype Mapping .294

xxvi List of Figures, Code and Tables

The authors wish to thank the many people who contributed to XMI and to
this book: Donald Baisley, Daniel Berg, Dr. Arne Berre, Juergen Boldt, Frank
Budinsky, Daniel Chang, Magnus Christerson, Dr. Steven J. Cook, Dr. Stephen
Crawley, Philippe Desfray, Dr. Ravi Dirckze, Tom Doucher, Keith Duddy, Ray-
mond Ellersick, David Frankel, Jun Ginbayashi, Alexander Glebov, Mike
Golding, Jask Greenfield, Craig Hayman, Shyh-Mei Ho, Anita Huang, Hsin-
Liang Huang, Mario Jeckle, G. K. Kalsa, Gary Karasiuk, Dr. John Knapman,
Cris Kobryn, Rich Kulp, Suresh Kumar, Malvina Lai, Christina Lau, Martin
Matula, Simon McBride, John McLean, Ed Merks, Chuck Mosher, Dr. Gene
Mutschler, Lee Nackman, Martin Nally, Van Pham, Dr. Robert Phippen,
Woody Pidcock, Kevin Poole, Dr. Kerry Raymond, Jim Rhyne, Scott Rich, Pete
Rivett, James Rumbaugh, Danny Sabbah, Ashit Sawney, Marc-Thomas
Schmidt, Dr. Jon Siegel, Harm Sluiman, Dr. Richard Soley, Dave Stringer, Peter
Thomas, Tony Tsai, Celia Tung, Leo Uzcategui, Shu Wang, and Andrew Wat-
son.

The authors would also like to thank Barbara Price for designing the MDA
application in Chapter 10, and Kyle Brown for contributing the EJB material
used in Chapter 11.

Tim wishes to thank his mother and father, Harryette and Jim Grose, his sis-
ter Cindy, and his brothers, Mike and Dan, for all their support through the
years. He also thanks Nancy Z. Liu for her patience and understanding while
this book was being written.

Gary wishes to thank his mother and father, Lillian and Charles Doney, and
his sister Karen, for all their support and encouragement through the years.

Acknowledgments

xxvii

The conveniences of our modern, daily lives are made possible by standards.
Already today you may have made a phone call on your cell phone, sent or
received a fax from a friend or business associate, or read some email, possibly
including attachments that could be viewed with applications that were
already on your computer. Perhaps you decided to listen to some music
recorded on a favorite CD. You had your choice of playing it on the sound sys-
tem in your home, your car stereo, your CD Walkman, or even the CD-ROM
drive in your computer. When you bought that CD at the music store or per-
haps over the Web, you didn’t need to worry that it would not play on any of
those four devices. You didn’t need to worry about buying a special adapter to
be able to play it. You knew it would work on all of them because the musical
information on the CD was written in a standard way. Like musical CDs, many
modern conveniences at your disposal provide you with benefits and a free-
dom of choice because they are designed and built to work with accepted
industry standards.

XMI, which stands for Extensible Markup Language (XML) Metadata Inter-
change, is the standard for representing object-oriented information using
XML. The Object Management Group (OMG), an industry-wide consortium
that promotes standards for enabling interoperability among heterogeneous
systems, adopted XMI 1.0 in February of 1999. XMI 1.0 was developed in
response to the OMG’s Request for Publication (RFP) for a stream-based
standard to represent object-oriented information and was supported by 29
industry-leading companies. Because of XMI’s capability to represent many
forms of object-oriented information, software that supports XMI can be used
to provide lightweight integration among Java applications, the Web, XML,
and different kinds of models.

Introduction

xxix

XMI has evolved following the OMG’s open process and procedures. Thus
far, four versions of XMI have been submitted to the OMG. In addition to XMI
1.0, XMI 1.1, which provides support for XML namespaces, was adopted in
February of 2000. XMI 2.0 is the most recent version, and the version upon
which this book is based. XMI 1.2 and XMI 2.0 were adopted by the OMG in
November of 2001. XMI 2.0 provides support for XML schemas and supports
reverse engineering from schemas, documents, and DTDs. (If you are unfa-
miliar with namespaces, Document Type Definitions [DTDs] or schemas at
this point, do not be concerned. We explain these terms in detail in the early
chapters of this book.) Finally, there is still some ongoing work on the earlier
versions of XMI in resolving outstanding issues.

Depending on your experience, you probably have some familiarity with
the concept of an object in the programming sense of the word. If you’ve been
working with Java, you know that objects (along with the classes that describe
them) are the fundamental units of organization in the language. When your
Java programs run, the Java virtual machine creates objects that carry out the
programming instructions in the methods that you have written. If you’ve
worked with a visual modeling tool, you may have created classes and objects
using the Unified Modeling Language (UML) or a similar methodology. You
may also have worked with objects if you have done programming with lan-
guages like C�� and Smalltalk.

If you’ve been working with objects, you probably also know that there are
many different ways to represent them. The tools that you have worked with
probably have some special file format that they use to save your models or
instances of your objects. These formats probably work well for the tools that
use them, and you may have never thought there was a need for any other way
to represent the objects that you have been working with. You probably rea-
soned that as long as the application that needed your objects was able to
access them, there was no need for a different way to represent them.

However, the computing world today is changing rapidly. More than ever,
interoperability is becoming a key requirement. Advances in communications
technology and the rapid growth of the Web have provided more demand, as
well as opportunities, for systems that work together. As a result, the data
those systems depend on need to be shared in ways that were not thought of
when the systems were originally developed. Although in some cases it is pos-
sible to build customized software bridges from one application to another, the
only cost-effective way to enable object-oriented data to be shared universally
is through the use of a standard way of representing it.

Let’s consider a simple, hypothetical scenario from everyday life that illus-
trates how standards expand the freedom you have in making choices. Sup-
pose you decide to buy a new vacuum cleaner. You look at the ones available
in several local department stores, but can’t quite decide which one to buy.
Then, late one evening, you see an infomercial for a new vacuum cleaner sold

xxx Introduction

exclusively by mail order—the new, revolutionary Vac-o-matic. As the
infomercial explains, the Vac-o-matic is made exclusively by Vactron Corpora-
tion. What makes the Vac-o-matic special from other vacuums is its use of rev-
olutionary sound blast technology. The infomercial explains that the
Vac-o-matic has a new space-age component that emits a special sound
through its patented sonic dirt blaster as it glides across the carpet.
Researchers at Vactron claim that the sonic dirt blaster helps to shake dirt loose
from the carpet fibers, thereby enabling the Vac-o-matic to collect up to 10 per-
cent more dirt than a conventional vacuum cleaner. Also, Vactron claims that
anecdotal reports from early adopters indicate that the special sound may
have a calming effect on household pets and small children.

You immediately decide that the Vac-o-matic is for you, and call the 800
number shown on the infomercial. You speak to someone named Carol at Vac-
tron, and she takes your order. In a few days, your new Vac-o-matic arrives. As
promised, it comes with 10 free filter bags. The instructions explain that you
should change the filter bag in your Vac-o-matic after every use to avoid dam-
aging the delicate components in the sonic dirt blaster.

The first time you use your Vac-o-matic, you are impressed with how easy it
is to use, and your carpeting looks great. However, you notice that your dog
seems disturbed by the sound the Vac-o-matic makes, and that he starts to
howl every time you turn it on. Alarmed that something may be wrong with
your Vac-o-matic, you call Vactron. Carol answers the phone and listens to
your concern. To check if your Vac-o-matic has a problem, Carol asks you to
turn it on and place the receiver of the phone near your Vac-o-matic so she can
listen to it. To your relief, Carol tells you that your Vac-o-matic is fine. The
problem, she says, must be with your dog. However, she tells you that other
customers who have had similar problems have found that placing their dogs
outside while they vacuum usually stops the howling. You are somewhat con-
cerned, but decide that this is what you’ll need to do.

After a couple of months, you run out of the filter bags that came with your
Vac-o-matic and decide to pick some up at the store. After checking in three
local department stores, you find out that none of them stocks replacement
bags for the Vac-o-matic. One of the sales managers at the last store you go to
explains that the filter bags for the Vac-o-matic are different from other filter
bags they sell. Moreover, they do not work with any of the other vacuums on
the market. He also relates that since so few Vac-o-matics are sold, stocking fil-
ter bags for them is not cost effective. He suggests that you call Vactron to see
if they have them available by mail order.

When you get home, you call Vactron and again you talk to Carol. Carol
explains that they included a special mail order form in the box that your Vac-
o-matic was shipped in. Although they don’t take orders for replacement bags
over the phone, you can use this form to order them through the mail. After
you get off the phone, you search through your Vac-o-matic’s packaging

Introduction xxxi

materials and find the filter bag order form at the bottom of the box. You find
out that replacement filter bags are available only in quantities of 100, are
much more expensive than the filter bags you saw at your local stores, and that
you will need to wait six to eight weeks for them to arrive. Since you can’t use
your Vac-o-matic without one of the special filter bags, you decide to order
them from Vactron.

After a couple of months, your replacement filter bags arrive, and you again
start using your Vac-o-matic. However, this time you notice a strange, high-
pitched sound coming from the motor. Alarmed, you call Vactron and speak
with Carol again. Carol asks you to describe the sound, and when you do, she
tells you that most likely the vortex in your sonic dirt blaster has given out. She
tells you that the only way you can get it fixed is to send your Vac-o-matic back
so that one of their repairmen can take a look at it. She also tells you that it
would be pointless to take it to a local repair shop, since they would only have
standard tools, and specially made tools that only Vactron has are required to
work on the Vac-o-matic’s sonic dirt blaster.

At this point, you ask Carol if you can have a refund, since you’ve now
decided that the Vac-o-matic isn’t for you after all. Although it may be a won-
derful machine, it’s too different from anything else to be practical to maintain.
Carol says she understands how you feel, but since it is now past the warranty
period, Vactron is unable to give you a refund. However, she does say that Vac-
tron will allow you to trade in your Vac-o-matic towards the purchase of their
new vacuum, the Vac-o-magic. Carol explains that the vortex in the Vac-o-
matic’s sonic dirt blaster frequently goes bad because it uses twirl-a-whirl
technology. The vortex in the Vac-o-magic’s sonic dirt blaster, however, is
made with their new, proprietary spin-a-tron technology and therefore is
much more durable. She also tells you that with the trade-in value for your
Vac-o-matic, you would only need to pay $299.99 to get a Vac-o-magic.

After quickly thinking this over, you tell Carol that you’ve decided not to
upgrade at this point. Instead you will purchase a vacuum made by a more
reputable manufacturer. You go to the local department store where you can
actually try out the vacuum cleaners. You find one that you like, and you make
sure that the store stocks replacement filter bags that you can use with it. To
your surprise, there are many manufacturers that make filter bags for your
new vacuum because the filter bag is based on a standard and can be used in
other vacuum cleaners. You now have a choice of manufacturers to choose
from. You can also decide on the quantity you want to buy, and what’s more,
you can buy them from a nearby store when you need them. Further, if you
have a problem with your new vacuum, you can take it to one of the several
repair shops located in your hometown, because it doesn’t require special tools
to open and repair it. All of this is possible because you moved away from a
machine based on proprietary technology to one based on widely adopted
standards.

xxxii Introduction

As this hypothetical scenario illustrates, making a choice that locks you into
the proprietary technology of one company can have profound repercussions
down the line, although the choice to use open standards has many benefits.
Open standards level the playing field by removing the barriers that lock cus-
tomers into one company’s vision of the marketplace. When open technologies
are utilized, all vendors are free to create new tools and applications that work
together with existing products, thus providing greater value. As a result, cus-
tomers enjoy a large array of choices and possess the freedom to select the
tools, systems, and products that best meet their needs. In a similar way, XMI,
as an adopted industry standard, brings the same kinds of benefits to users of
object technology through its capability to facilitate the exchange of data,
enhance application integration, and achieve a level of program interoperabil-
ity not available with proprietary data formats.

Although the M in XMI stands for meta data, you can use XMI in your appli-
cations, even though you may be unfamiliar with the term meta data or not
think that your applications use it. The distinction between meta data and data
is useful for some applications, especially those involving multiple levels of
abstraction for the data, but it is less vital for applications that work with data
at only one level of abstraction. Even if your application works with data at
one level of abstraction, you will still benefit from using XMI. In this book
we’ll show how XMI and modeling are part of an overall model-driven archi-
tecture that integrates Java, software models, XML, and the Web.

As you learn more about the power of XMI in this book, you will see why
IBM and other leading software companies have adopted XMI as a fundamen-
tal technology for their application tools. IBM’s WebSphere Studio Application
Developer, included on the CD-ROM with this book, and DB2 Universal Data-
base Warehouse Manager both use XMI. As of the writing of this book, XMI is
already in use by the products of over a dozen software companies.

Overview of This Book

Most likely you have chosen to read this book because you are trying to decide
if XMI is right for the technology you are developing and, if so, how you can
get started using it. You want to know what XMI is about and how you can
start writing applications that both create and read XMI files. We believe peo-
ple learn best by seeing examples and by doing. As such, this is very much a
practical, hands-on book. Throughout the text, we’ve included sample pro-
grams written in Java that show you how to create and read XMI files.

The general format that we follow is to introduce a concept, explain it in
detail, and then show example programs, models, or XMI information that
illustrate that concept. Most of the programs we include are one or two pages
long, and where they are longer, we have tried to develop them in a step-like

Introduction xxxiii

way to make it easier for you to follow them. Additionally, we’ve included
comments throughout the programs’ source listings that tie them back to the
concepts or algorithms discussed in the text that precedes them. We feel this is
the best way to facilitate your understanding of the concepts and to help you
move from knowledge to implementation in your own development efforts.

In addition to discussing XMI, we provide some information on a number of
related technologies. Among these are UML, the OMG’s Meta Object Facility
(MOF), XML (including DTDs and schemas), and two XML Application Pro-
gramming Interfaces (APIs)—the Document Object Model (DOM), and the
Simple API for XML (SAX). Since a complete discussion of any one of these
topics is worthy of at least one book on its own, we do not attempt to cover all
the details of these topics; rather we provide enough background and detail
for you to understand how these technologies relate to XMI, and to follow the
examples we present. To help you delve deeper into these topics, we’ve pro-
vided a list of references to related documents and specifications that have
additional information.

As you will learn, XMI is based on the OMG’s MOF. MOF provides a hier-
archy that enables you to represent information at progressively higher levels
of abstraction. Currently, the OMG is working to align UML 2.0 and MOF 2.0,
and we expect this alignment to happen in the very near future. As a result, it
should be possible to use UML and MOF models as if they are the same.
Because the common capabilities of UML and MOF are sufficient for the mod-
els we present to help you understand XMI, and because many people already
know UML and have worked with UML tools, we will be using UML exam-
ples throughout this book to explain XMI. In Chapter 10, we explain MOF, the
Model Driven Architecture (MDA), and how UML fits into it. Because the
examples we present in this book are not dependent on being at a certain level
in the MOF hierarchy, it is sufficient for us to use UML.

Finally, as we mentioned earlier, XMI has evolved following the OMG’s
open process. This book is based upon the most recent version, XMI 2.0.
Although we do not specifically cover XMI 1.0, 1.1, and 1.2, there are cases
where we do explain differences between the current version and the previous
versions if it is relevant to the topic. The OMG will continue to revise XMI in
the future. Although we have made every attempt to make this book reflect the
XMI 2.0 specification in its current form, we anticipate some changes may
occur as the specification continues to evolve along with the XML, MOF, and
UML technologies.

xxxiv Introduction

How This Book Is Organized

This book contains the following two parts:

■■ Part One, “XMI Explained”

■■ Part Two, “How to Use XMI”

Part One provides an overview of what XMI is about. We also include an
introduction to XML and UML, two technologies you need to know to under-
stand XMI and the sample models we use in this book. Part One includes the
following three chapters:

■■ Chapter 1, “XMI: Representing Objects in XML,” explains that XMI pro-
vides a standard way for you to represent objects in XML. In this chap-
ter, we develop the motivation for using XMI by showing how the
existence of a standard way of representing objects in XML eliminates
ambiguities that arise when no such standard exists. We also explain
how XMI facilitates the integration of different tools that work with
objects, and we discuss other related benefits of utilizing the XMI stan-
dard.

■■ Chapter 2, “Related Standards: XML and UML,” provides basic intro-
ductions to the concepts in XML and UML that you will need to know
in order to understand XMI and the examples we present in this book.
Our coverage of XML includes elements, attributes, namespaces, DTDs,
and schemas. For UML, our coverage includes classes, objects, attrib-
utes, associations, association ends, and packages. If you are already
familiar with either XML or UML, you may wish to skip those sections
in this chapter or to skim them lightly as a review.

■■ Chapter 3, “XMI Concepts,” covers the details of representing object-
oriented information in XMI 2.0. Building on our introduction to UML
in Chapter 2, we explain how to represent concepts in the UML object
model in XML according to the XMI standard. We also cover the issues
related to creating XMI schemas. Finally, we examine the elements and
attributes provided by the XMI model, and how they can be used to
represent additional information in XMI documents. Included among
these are extensions, differences (additions, deletions, and replace-
ments), and details about the data in the document, such as the model
that the data is based on.

Introduction xxxv

In Part Two, we utilize the understanding of XMI you have gained in Part
One to help you learn how to use XMI in your own Java applications. In Part
Two, we introduce a general development process you can use, detail guide-
lines you should follow when developing your models for use with XMI, and
step through some programming examples that work with software designed
for XML and XMI. Part Two includes the following eight chapters:

■■ Chapter 4, “Creating Your XMI Process,” covers a five-step develop-
ment process that we recommend you follow if you decide to utilize
XMI in your development projects. The process is presented in a
generic form that you can tailor as necessary to meet your needs. To
give you a better understanding of how the process works, we walk
through an application of the process by developing a model for a sim-
ple application, and then generate an XMI schema for the model we
have developed. Additionally, we show Java code that is generated
from the model.

■■ Chapter 5, “Creating Models for XMI,” begins by detailing issues
involving UML modeling and XMI. Following that, we present some
general algorithms for reverse engineering UML models from XML
documents, DTDs, and schemas.

■■ Chapter 6, “Creating and Reading Simple XMI Documents with Stan-
dard XML APIs,” covers how you can use a couple of standard XML
interfaces, DOM and SAX, to read and write XMI files. We also intro-
duce a car rental agency model that we use in this chapter as well as
some of the chapters that follow. If you are not interested in learning to
work with standard XML interfaces and instead prefer to learn about
software designed especially to work with XMI, you may wish to skip
or lightly skim this chapter. You should, however, read the car rental
agency model example covered in the beginning of this chapter so that
you can follow the examples that utilize it later in this book.

■■ Chapter 7, “Creating and Reading Simple XMI Documents with the
XMI Framework,” introduces software designed to work with XMI that
is included with this book. At the beginning of the chapter, we intro-
duce the Java Object Bridge (JOB). We show how this very simple inter-
face can be used to read and write XMI files that contain
representations of Java programming objects. Next, we introduce the
XMI Framework, which provides an API designed to work with XMI.
We demonstrate how you can use the Framework API to read and write
XMI files, and how you can represent your UML models within the
Framework.

■■ Chapter 8, “Creating and Reading Advanced XMI Documents with the
XMI Framework,” builds upon the introduction to the XMI Framework

xxxvi Introduction

that we provided in Chapter 7. In this chapter, we present program-
ming examples that utilize some of the more advanced features of XMI.
Among the topics we cover are XML namespaces, XMI extensions, the
use of ZIP files, and cross-file references.

■■ Chapter 9, “XMI Schemas,” explains how you can use the XMI Frame-
work to generate a schema for one of your models and how to do vali-
dation when loading an XMI document using the Framework. The
chapter also details the type of errors that validation detects and
explains how choosing different XMI options for generating schemas
affects validation.

■■ Chapter 10, “Model Driven Architecture (MDA) and XMI,” provides an
introduction to the MDA approach to developing software. In the early
part of this chapter, we explain what the goals of MDA are and give an
overview of the MOF’s taxonomy for representing different levels of
information abstraction. We next develop an example using a modeling
methodology other than UML [the Flow Composition Model (FCM)].
We show how this example can be represented in XMI, thereby
enabling information sharing that is key to the MDA approach.

■■ Chapter 11, “A Real-World Use of XMI: WebSphere Studio Application
Developer,” explores how XMI is being used in IBM’s WebSphere Stu-
dio Application Developer, which is included on the CD-ROM. In this
chapter we first examine how XMI is being used in a tool that provides
the capability to specify a mapping either from one XML DTD to
another or from one XML schema to another. Then we look at how XMI
is used in an example involving Enterprise JavaBeans (EJBs).

An appendix is also included that contains in-depth information on the XMI
Framework that supplements the material on the Framework provided in
Chapters 7, 8, and 9.

Who Should Read This Book

This book is primarily written for Java software developers who are consider-
ing using XMI. Because XMI is based on XML, and because most of the mod-
eling we do in this book is based on UML, previous experience with XML,
UML, or both will help you understand this book. However, in Chapter 2, we
provide an introduction to the features in XML and UML that are needed to
understand the contents of this book, so prior knowledge of XML and UML is
not required. If you feel fairly comfortable with these two topics, you may
choose to skip Chapter 2 or to focus only on the areas where your knowledge
is limited.

Introduction xxxvii

The example programs that we present are all written in Java. To under-
stand the examples, you should have some prior experience programming in
Java, or at least be comfortable with the syntax of the language. You do not
need to have experience with advanced features in Java. As long as you under-
stand concepts like classes, interfaces, flow-of-control constructs, and inheri-
tance, you should be able to follow all the examples we present. Although in
some cases we make passing mention of more advanced Java concepts like
serialization and reflection, you do not need to know these concepts to benefit
from the examples in this book. If you have had previous experience with a
language that has a syntax similar to Java’s (such as C��), you can probably
still understand the general flow of the examples, although you may need to
learn more about Java to run them on your own system.

If you are not a software developer, but are interested in learning what XMI
is about and whether it’s a technology you or your organization should con-
sider using, you may still benefit from reading this book. In particular, the first
two chapters, which introduce XMI, XML, and UML, provide a good overview
of these technologies and should give you a sense of what XMI is all about and
how using it can help you. In addition, you may benefit from reading Chapter
10, which describes MDA, a new software development approach that utilizes
XMI. Finally, you may benefit from reading Chapter 11, which describes how
XMI is being used in WebSphere Studio Application Developer.

Mastering XMI contains 11 chapters. Although reading all the chapters is
certainly one way we intended for this book to be read, we show a chapter-by-
chapter roadmap in Figure I.1 that you might find helpful in determining the
best path for you to take as you read this book. In the roadmap, we show
which sections of the book we consider to be optional material. Depending on
your background or your needs, you may choose to skip those sections or skim
them lightly. For example, Chapter 2 contains introductions to XML and UML
for readers who are either new to those areas or have limited experience with
them. If you have considerable experience with either or both of those areas,
you may choose to skip those sections.

If you are primarily interested in getting a quick introduction to what XMI
is about, and you do not intend to do any programming that uses XMI, you
can follow the overview roadmap shown in Figure I.2. Following this path will
give you an idea of why XMI is valuable without covering the details of how
to represent information in XMI or how to write programs that work with
XMI.

What’s on the CD-ROM

A CD-ROM is included with this book. The CD-ROM includes the following:

xxxviii Introduction

■■ A full-featured trial edition of WebSphere Studio Application Devel-
oper, a Java 2 Platform Enterprise Edition (J2EE)-compliant server-side
Java tool, focusing on relational databases, Web site building, Web ser-
vices, and EJB development, deployment, and profiling. It also contains
all the functionality of IBM’s WebSphere Studio Site Developer.

■■ The example programs we present in this book. These include examples
from Chapters 6, 7, 8, and 9.

■■ The XMI Framework, which provides an API for reading and writing
XMI files. We cover examples that utilize the XMI Framework in Chap-
ters 7, 8, and 9.

■■ The JOB, which converts between the objects that you create in your
Java programs and XMI. We present examples with JOB in Chapter 7.

Introduction xxxix

Chapter 6
Car rental agency
model required.
DOM and SAX sections
optional, depending on
interest.

Chapter 1

Chapter 9

Chapter 8Chapter 7Chapter 5

Chapter 2
Both XML and UML topics
optional,
depending on need.

Chapter 3

Chapter 10

Chapter 4

Chapter 11

Figure I.1 Mastering XMI roadmap.

Chapter 2
Both XML and UML topics
optional, depending on
need

Chapter 1 Chapter 10 Chapter 11

Figure I.2 Mastering XMI overview roadmap.

■■ The XML4J-J-bin.3.2.1.zip file for IBM’s XML4J parser (which includes
all the capabilities of the Apache Software Foundation’s Xerces Java
XML Parser) Version 3.2.1. The XML4J Parser is used to run the exam-
ples we present in Chapters 6, 7, 8, and 9.

See the Readme.htm file in the root directory of the CD-ROM for the installa-
tion instructions for the software on this CD-ROM.

What You Will Need to Use the CD-ROM

The following covers the requirements for running the programs on the CD-
ROM that are included with Mastering XMI. Note that these requirements are
not the same for all the software on the CD-ROM. In general, the requirements
to run IBM’s WebSphere Studio Application Developer exceed those of the
other software included on the CD-ROM. Therefore, if your system meets the
requirements to run WebSphere Studio Application Developer, you will also
be able to run the other programs included on the CD-ROM on your system.

The following are the requirements for running the XMI Framework, JOB,
and the programming examples in this book. These requirements are also ade-
quate for running the XML4J Parser included on the CD-ROM:

■■ The minimum hardware is equivalent to a Pentium, at 90 MHz, with 64
MB of RAM. The recommended hardware is equivalent to or greater
than a Pentium II, at 300 MHz, with 128 MB of RAM.

■■ Windows 2000, Windows ME, Windows 98, or Windows NT 4.0 with
Service Pack 6a or higher.

■■ JDK 1.2.2 or above.

WebSphere Studio Application Developer has the following software and
hardware prerequisites:

■■ Windows 2000, Windows ME, Windows 98, or Windows NT 4.0 with
Service Pack 6a or higher.

■■ Microsoft Internet Explorer 5.5 or higher.

■■ TCP/IP installed and configured.

■■ A mouse or an alternative pointing device.

■■ Pentium II processor or higher recommended.

■■ SVGA (800 � 600) display or higher (1024 � 768 recommended).

■■ 256 MB RAM minimum.

xl Introduction

■■ Disk space requirements: 400 MB minimum (based on the NT File
System [NTFS], actual disk space on the File Allocation Table [FAT]
depends on hard [disk] drive size and partitioning).

Additional information on installation, deployment platforms, supported
software, and related topics is included with the documentation provided
with WebSphere Studio Application Developer. The Readme.htm file included
on the CD-ROM provides details on how to access this information.

What’s on the Companion Web Site

The companion Web site, www.wileybooks.com/compbooks/grose, will
include the latest errata, corrections, and updates for Mastering XMI; hints,
tips, and updates for the XMI Framework and book examples.

A Few Thoughts before You Begin

We are very excited by the promise of open standards like XMI. We have been
using XMI and the MDA approach in the software we have developed over the
past few years, and we have seen the realization of what open standards can
offer in providing value for our customers. It is our hope that by reading this
book you will understand what XMI is about so that you can decide if XMI is
a good choice for the projects you are either working on now or that you plan
to undertake in the future. If you do decide to use XMI, we hope that from see-
ing the programming examples we present, you’ll quickly be able to begin
implementing your own applications that utilize XMI, or even develop your
own software that supports XMI or works with other XMI tools.

Introduction xli

XMI Explained

“It is only in the world of objects that we
have time and space and selves.”

T. S . E L I O T

One

PA R T

3

XML Metadata Interchange (XMI) is a standard that enables you to express
your objects using Extensible Markup Language (XML), the universal format
for representing data on the World Wide Web. XMI is much more than a set of
serialization rules though. XMI is closely related to modeling standards,
enabling you to employ modeling effectively in your XML efforts. XMI 2.0
specifies how to create XML schemas from models, and previous versions of
XMI specified how to create XML Document Type Definitions (DTDs) from
models. Both schemas and DTDs define the content of XML documents. In
addition, XMI specifies how to reverse engineer models from XML docu-
ments, XML DTDs, and XML schemas. The primary benefits of XMI include
the following:

■■ XMI provides a standard representation of objects in XML, enabling the
effective exchange of objects using XML.

■■ XMI specifies how to create XML schemas from models.

■■ XMI enables you to create simple XML documents and make them
more advanced as your applications evolve.

■■ XMI enables you to work with XML without becoming an XML expert;
however, you can use your XML expertise to tailor the XML representa-
tion of your objects, if you wish.

XMI: Representing
Objects in XML

C H A P T E R

1

XMI is necessary because XML is not object-oriented, so it is necessary to
map objects to XML. There is more than one way to do this mapping, due to
the flexibility of XML. However, the flexibility is also a drawback when it
comes to exchanging XML documents. If one tool maps objects to XML one
way, and another tool maps objects to XML a different way, it is unlikely that
the two tools will be able to properly interpret each other’s XML documents.
XMI uses models to ensure objects are shared consistently. A tool that uses XMI
can exchange objects with other tools that also use XMI.

This chapter describes the benefits of XMI without explaining many details
about the specific features of XMI itself. It describes the importance of objects
and XML, the gap between objects and XML, how XMI bridges the gap, and
the benefits of using XMI. You do not need to be an XML expert or a modeling
expert to understand the material in this chapter. Although we provide only
brief descriptions of XML and the Unified Modeling Language (UML), a mod-
eling standard, in this chapter, Chapter 2 describes in detail the parts of XML
and UML that are relevant to XMI. We explain XMI in detail in Chapter 3.

The Importance of Objects

Many popular programming languages have object-oriented features. Java
and C�� are two such languages that are used today in a wide range of appli-
cations. Object-oriented features help programmers organize their applica-
tions and manage their complexity. Many scripting languages like Perl and
Python also provide support for object-oriented programming.

It is desirable to make different applications work effectively with each
other. If those applications are written in object-oriented languages, it is desir-
able for the applications to share objects with each other. If the applications are
implemented in the same programming language, but they represent objects
differently, it is difficult to share the objects. Therefore, some programming
languages provide support for serializing objects in binary form and restoring
them. However, this does not make the objects accessible to applications writ-
ten in other languages. Also, different programming languages have different
object-oriented features, which makes sharing objects even more difficult.

To share objects written in different programming languages, it is necessary
to define what an object is regardless of the programming language. UML pro-
vides such a definition. UML also provides a standard graphical notation for
analyzing and designing object-oriented systems. UML can be used regardless
of the programming language the system will be implemented in. UML
enables programmers to model their applications and then implement the
model in the programming language best suited for the application.

UML has been adopted by the Object Management Group (OMG), a soft-
ware industry consortium that supports the interoperability of object-oriented

4 Chapter 1

technology through open standards. Since UML provides a standard defini-
tion of what an object is, it can be used to define the objects that are to be
shared among applications. Combining UML with a standard way to repre-
sent data enables objects to be shared effectively using standards rather than
proprietary technology.

The Importance of XML

XML has emerged as a powerful and easy way to save data in files. Because it
is a standard, XML enables you to save data in a form that can be accessed by
applications other than the ones that created the data. XML software, much of
it free, enables you to access the data in XML documents using standard appli-
cation programming interfaces (APIs). You can also use DTDs and schemas to
provide syntactic validation for your XML documents using XML software.

Although we explain the relevant parts of XML in detail in Chapter 2, there
are some basic concepts you need to know about XML to understand this
chapter. XML represents data using XML elements, which consist of the fol-
lowing parts (see Figure 1.1):

■■ A start tag, which has a name for the element.

■■ XML attributes; each attribute has a name and a value.

■■ Content, which consists of text, other XML elements, or a combination
of the two.

■■ An end tag, which has a name that matches the name of the start tag.

XML documents consist of XML elements. The content of an XML document
can be defined using an XML DTD or an XML schema. An XML parser can
determine whether a document matches the definitions in an XML DTD or an
XML schema using a process called validation. For the purposes of this chap-
ter, you don’t need to know the syntax of XML elements, DTDs, or schemas;
we explain the syntax in Chapter 2.

XML is flexible. Data can be represented in more than one way. This flexibil-
ity is good because it enables you to design an XML representation that is right
for your applications, but it causes problems when attempting to share XML
documents. To exchange data using XML, you need to do the following:

1. Define the data to be exchanged.

2. Decide how to represent the data in XML.

If you do not define your data, you cannot exchange it with others, regard-
less of the representation of the data, so the first step is necessary to exchange
data using any technology. You might think that the second step is trivial, since
XML documents consist of elements and attributes, but if the data is

XMI: Representing Objects in XML 5

represented in different ways, it complicates the exchange of that data.
For example, consider how to represent data about cars. You want to use

XML to represent the year a car was made and the kind of car (sedan, sports
car, convertible, and so on). Figure 1.1 shows four valid ways of representing a
convertible that was made in the year 2002.

If tools represent the same data differently in XML, it is difficult to exchange
the data among the tools. In fact, if there are five different tools, and each tool
represents its data differently, regardless of whether the tools use XML, 20 one-
way bridges or 10 two-way bridges need to be implemented to exchange data
among all the tools. Figure 1.2 illustrates 10 two-way bridges.

If you want to use XML validation with the XML documents to be
exchanged, you also need to agree on the DTDs and schemas (these concepts
are explained in Chapter 2). Unfortunately, to make DTDs and schemas pow-
erful, you may need to define an order for the contents of XML elements.
Defining an order makes it more difficult to produce XML documents than if
document producers can pick their own order. It can take a considerable
amount of work to create large DTDs and schemas, and it also takes work to
reconcile differences in DTDs and schemas.

6 Chapter 1

<Auto
 kind="convertible"
 year="2002"/>

<Car>
 <kind>convertible</kind>
 <year>2002</year>
</Car>

<Convertible>
 <year>2002</year>
</Convertible>

<Automobile kind="convertible">
 <Year value="2002"/>
</Automobile>

Car

Figure 1.1 An XML representation of car data.

XML is a very successful standard. However, although the original XML
standard was small and easily understandable, many additional XML stan-
dards have been created. These additional standards enhance certain aspects
of XML, such as cross-file linking (the XPointer and XLink specifications), and
support multiple elements with the same names (the XML Namespace specifi-
cation). However, some of these additional standards are not as simple as the
original XML standard. For example, the XML schema specification is rather
complex, and the World Wide Web Consortium (W3C) wrote a primer to help
people understand it. Because of this increasing complexity, it can be difficult
to track all of the new developments in XML and effectively adopt new XML
technologies. Since XML is a standard for representing data, it is natural to try
to build upon it to represent objects.

The Gap between XML and Objects

XML is not object-oriented. XML defines XML elements and XML attributes,
not objects. Although XML schemas define types, they do not support such
object-oriented features as multiple inheritance, nor do they include an object

XMI: Representing Objects in XML 7

Tool1

Tool5 Tool2

Tool4 Tool3

Figure 1.2 The bridges required for different XML representations.

model. Even if you use XML schemas, you still need to map objects to schema
features. As we explained in the previous section, if tools represent their data
in XML differently, it is difficult to share the data among the tools. The same
situation is true for representing objects in XML; if objects are represented dif-
ferently in XML, it is difficult to share them.

Figure 1.3 illustrates that there are two steps involved when you represent
your objects in XML and use a standard XML parser. After a parser reads XML
elements from XML documents, you need to transform those XML elements
into your objects. In the reverse direction, you need to transform your objects
into XML elements that are then saved by an XML parser in XML documents.
You need to write this transformation code yourself unless it can be generated
automatically for you. If either the application code or the XML representation
of your objects changes, you need to update the transformation code. Also, if
applications implement this transformation differently, it will be difficult to
exchange objects among the applications.

How XMI Bridges the Gap

XMI bridges the gap between objects and XML in several ways. It provides a
standard mapping from objects defined by UML to XML. XMI 2.0 also pro-
vides a mapping from UML models to XML schemas. Previous versions of
XMI provided a mapping from UML models to XML DTDs.

Since XMI defines a mapping between XML and objects, once you define the
objects to be exchanged, you do not need to create your own XML representa-
tion of the objects if you use XMI. Also, you do not need to implement your own
transformation code to transform your objects to XML elements and vice versa;
XMI software will do the transformation for you. Since the transformation is
standardized, you can exchange your objects with other software that uses XMI.

Figure 1.4 shows how you can work with XMI documents using XMI soft-
ware by giving the software your application objects; the XMI software puts
your objects in XMI documents and creates your application objects from XMI

8 Chapter 1

XML
Documents

XML
Elements

Application
Objects

XML Parser
Transformation

Code

Figure 1.3 Transforming objects to XML elements.

documents. Although the XMI software probably uses an XML parser to
implement this functionality, the XML parser is not exposed to a user of the
software. Please note that every XMI document is an XML document, so the
application objects are being converted to XML and are restored from XML.
These XML documents, however, conform to the XMI standard.

XMI specifies how to create schemas from models. If you know schemas,
you have the flexibility to tailor the schemas that are produced.

In the previous section, we saw that there were several ways to represent
information about cars in XML. If you model cars in UML, you can use XMI to
produce an XML representation, as shown in Figure 1.5. This figure contains a

XMI: Representing Objects in XML 9

XMI Documents
Application

Objects

XMI Software

Figure 1.4 Using XMI software.

<element name="Car">
 <attribute name="year"/>
 <attribute name="kind"/>
</element>

<Car year="2002"
 kind="convertible"/>

XMI Schema
XMI

Document

UML Model

Car

year:int
kind:String

Generate

Validate

Figure 1.5 The relationship between a UML model, an XMI document, and an XMI
schema.

UML model representing a car, the year the car was made, and the kind of car.
XMI specifies how to create a schema from the model; only the relevant part of
the XMI schema is shown in the figure. XMI also specifies the representation of
the particular car; the figure shows the part of an XMI document that repre-
sents a convertible made in 2002. You can validate the XMI document with the
XMI schema, if you wish.

Another way that XMI bridges the gap between XML and objects is by spec-
ifying how to create models from XML documents, DTDs, and schemas. Doing
this enables you to use your existing XML assets and to use models to define
your software. Once you create the models, you can use them for many pur-
poses, such as generating code and documenting the problem domain.

Benefits of XMI

Now that you know that it is possible for you to use XMI to represent objects
in XML, why would you want to use XMI? There are many benefits to using
XMI. Here is a list of the ones we explain in the rest of this chapter:

■■ XMI leverages XML technologies.

■■ XMI enables you to use modeling with XML.

■■ Software that supports XMI creates schemas from models.

■■ Software that supports XMI provides a higher level of abstraction than
XML elements and attributes.

■■ XMI helps you produce XML documents that can be easily exchanged.

■■ XMI enables you to create simple documents and make more advanced
ones as your application evolves.

■■ XMI enables you to tailor the XML representation of your objects and
document your choices in your models.

■■ XMI enables you to work with data and meta data.

XMI Uses XML
Since XMI uses XML, all of the efforts underway to make XML documents eas-
ier to produce and consume will benefit XMI documents as well. XMI does not
require you to be an XML expert, however. XMI software can make it easy to
produce XMI documents without dealing with XML elements and attributes
directly.

As XML technologies are adopted by the W3C, XMI evolves to use them.
For example, since XML namespaces were not a recommendation of the W3C

10 Chapter 1

when XMI 1.0 was standardized, XMI 1.0 could not use them. However, by the
time XMI 1.1 was standardized, the XML Namespace specification was an offi-
cial recommendation of the W3C, so XMI 1.1 uses XML namespaces to pro-
duce more compact XMI documents than was possible with XMI 1.0. Now that
XML schemas have been officially adopted as a recommendation by the W3C,
XMI 2.0 specifies how to create schemas from UML models as well as how to
produce smaller XMI documents than XMI 1.1. XMI will continue to evolve to
use future XML technologies, as appropriate.

XMI does not extend XML; it builds upon XML. XML builds upon Unicode,
a standard for specifying characters in various languages, in order to represent
data. In the same way, XMI builds upon XML to represent objects. Figure 1.6
illustrates this concept. Because XMI builds upon rather than extends XML,
every XMI document is an XML document, and every XMI schema is an XML
schema. Figure 1.7 illustrates these relationships.

XMI: Representing Objects in XML 11

XMI

XML

Unicode

Objects

Data

Text

Figure 1.6 XMI builds upon XML.

XMI

Documents

XMI

XML

Documents

XML

Schemas

Schemas

Figure 1.7 XMI documents and schemas are XML documents and schemas.

Modeling and XML
XMI enables you to effectively use modeling with XML.1 You can design your
applications without considering the XML representation of your objects if
you wish. If you decide to tailor the XML representation, you can document
your decisions in your models.

There are many books that explain the advantages of modeling. Here is a list
of some of the main benefits you can enjoy by using modeling when develop-
ing software:

■■ Modeling helps you identify potential problems early in the develop-
ment cycle when they are easiest to fix.

■■ Modeling documents your design decisions, which leads to more effec-
tive team development since each member of the team understands the
design.

■■ Modeling helps you plan development work.

■■ Modeling enables you to collect your information in a central place regard-
less of how that information is implemented in various technologies.

You can use models to provide semantic validation for your XMI docu-
ments, because the contents of an XMI document can be matched against a
model to determine if it is valid. XMI enables you to unambiguously identify
which models define the objects in an XMI document.

You can use XMI as part of a model-driven software architecture. XMI is part
of the Model Driven Architecture (MDA) defined by the OMG. In such an archi-
tecture, you define models for the problem domain, and then all of your soft-
ware is based on those models. For example, you can generate programs,
database schemas, and so on from the models. Using XMI, you can also gener-
ate an XML representation for your models. By basing your software on a
model, you can ensure that the different software components are consistent
with each other as well as take advantage of the other benefits that modeling
provides.

Creating Schemas from Models
You can use XMI to produce XML schemas from UML models. This approach
is much easier and less error-prone than generating schemas by hand. Since
schemas have many features, it is very likely that two people creating schemas
for the same data without using XMI will produce schemas that are different.
This difference complicates the exchange of documents that are validated with
the schemas. If two people or programs use XMI to produce schemas from a
common model, the schemas will be identical.

12 Chapter 1

XMI does not require a single XML representation for your objects. You can
tailor the XML representation to suit your needs. The decisions you make to
tailor your schemas are documented as part of your models. XMI does not
ordinarily impose an order on the contents of the XML elements, but you can
impose an order to make your schemas more effective. For example, you can
decide that inheritance among the classes in your model will be represented in
a schema using the XML schema extension mechanism. Doing so imposes an
order on the contents of the XML elements in your documents.

Because the decisions you make about how to tailor the XML representation
are made at the model level and are included with the model, two users of XMI
will produce identical XML representations from the model. As we have seen
already in this chapter, having identical XML representations for objects
enables the effective exchange of those objects.

Working with Objects and XML
When you create UML models for use with XMI, you do not need to be con-
cerned about the XML representation of the objects to be defined. In a similar
way, software that implements the XMI specification enables you to work with
your objects directly, rather than with XML elements and XML attributes. It is
possible for XMI software to create your application objects from XMI docu-
ments, so you do not need to be aware of how the XMI software transforms
XML into your objects.

By allowing you to work with your objects directly, software that imple-
ments the XMI specification enables you to use XML without becoming an
XML expert. For example, without ever reading the XML schema specification,
you can create schemas from your UML models by using software that imple-
ments the XMI specification.

Exchanging XML Documents
XMI enables the effective exchange of documents. To exchange objects with
others, you create a model that defines the objects and you then derive the
XML representation from the model using XMI. This helps you accomplish
both steps we described previously that are required for document exchange:
defining your data and representing your data in XML. Using UML helps you
define your data, while using XMI enables you to easily create the XML repre-
sentation of your data; you do not need to reconcile different XML representa-
tions of your data before exchanging documents.

Consider the case of five tools that want to exchange data. As we saw previ-
ously, if each tool has its own data representation, regardless of whether they use

XMI: Representing Objects in XML 13

XML or not, 20 bridges need to be built for all the tools to exchange data. As
more tools are added, the situation gets even worse. If the tools use XMI, the task
of exchanging data is much simpler. If the tool builders create a UML model that
defines the objects to be exchanged among the tools, and the tools use XMI, the
task of exchanging the objects is much easier. Figure 1.8 illustrates that each tool
only needs to deal with the representation of the objects defined by XMI, rather
than implementing individual bridges to different tools. In addition, for more
tools to exchange objects with the initial tools, each additional tool only needs to
support the XMI representation. Also, the UML model that defines the data
helps the additional tools understand the objects that are exchanged.

To further aid the exchange of XML documents, XMI provides a mechanism
for putting data into XMI documents that is not meant to be shared with other
tools. This additional data does not interfere with the objects that are being
exchanged. Tools that do not understand the additional data can ignore it.

Evolving Your XML Applications
XMI enables your XML applications to evolve as well. XMI provides an infra-
structure for advanced features such as extensions to data, cross-file linking,
and identifying objects in various ways. Although these features are available

14 Chapter 1

Tool1

Tool5 Tool2

Tool4 Tool3

XMI

Figure 1.8 Using XMI to exchange objects among tools.

to you, you do not need to use all of them right away. You can start by creating
simple documents and then use advanced XMI features in the future if you
need to do so.

You can use additional features without creating new schemas. This design
enables you to use only the features you need at first, but additional features
are available if your applications become more advanced.

XMI Is Flexible
XMI enables you to tailor your XML representation to suit your needs. For
example, you can decide to represent data using XML elements or XML attrib-
utes. Since you can modify the XML representation to meet your requirements,
you can use XMI to optimize the XML representation for your applications.
When you do so, the decisions that you make are documented as part of your
models.

XMI creates an effective XML representation for your objects even if you
decide not to optimize it for your applications. This enables you to use soft-
ware that supports XMI without requiring XML expertise.

XMI and Meta Data
Although the letter M in XMI stands for meta data, XMI enables you to work
with data as well. Often, whether something is considered data or meta data
depends on the applications using the data. For example, from one point of
view, a model can be considered to be meta data that is defining objects. How-
ever, for a modeling tool, a model is simply input data, not meta data.

XMI enables you to transmit models using XML as well as instances of those
models. We already saw that XMI specifies how to create schemas from models.
To use XMI with models, you need to define a metamodel, that is, a definition
of models. For example, the UML specification defines UML models using a
UML model; that UML model is a metamodel. A particular UML model is sim-
ply an instance of the UML metamodel. You can also use XMI to transmit meta-
models. Table 1.1 shows examples of data and meta data that XMI can handle.

XMI: Representing Objects in XML 15

Table 1.1 XMI Works with Meta Data and Data

META DATA DATA

Classes Objects

Metamodels Models

Database schemas Database tables

Summary

XMI enables you to work with objects as well as serialize and deserialize them
using XML. XMI also enables you to operate at a higher level of abstraction
than XML elements and XML attributes, and you can use XMI with data or
meta data. XMI specifies how to produce XML schemas from UML models,
enabling you to use a model-driven architecture for producing XML. One of
the great benefits of XMI is that you can use XMI software without becoming
an XML expert. However, you can also tailor the schemas and documents if
you do know XML. Now that you know in general what XMI can do for you,
you can begin to learn the details of XMI.

16 Chapter 1

MOF

Since XMI is related to MOF, which specifies how to express meta data and how
to implement meta data repositories, you can use XMI to develop sophisticated
meta data software if you wish. MOF also enables meta data at various levels
of abstraction to be linked together. XMI works at all levels of the metamodel
architecture defined by MOF. However, XMI works well for data as well as for
meta data, so you can use XMI even if you are not working with meta data. In
addition, there is a standard mapping from MOF models to Java. The Java
Metadata API (JMI) standard was developed as part of the Java Community
Process. Using JMI enables you to use a standard if you generate Java code
from a MOF model.

17

Before we explain the details of XML Metadata Interchange (XMI), you need to
know about two related standards: the Extensible Markup Language (XML)
and the Unified Modeling Language (UML). You need to know about XML
because XMI is based on XML; XMI uses XML to save and load objects from
documents. You need to know about UML because it defines the structure of
objects and classes, and we use that definition to explain how XMI represents
objects and classes in XML.

You will not become an expert in either XML or UML by reading this chap-
ter. We provide you with basic information about both standards to help you
understand the material in the rest of the book. Since this chapter focuses on
aspects of XML and UML that are directly relevant to XMI, we do not explain
other parts of the XML specifications or the UML specifications. For more
information, read the XML and UML specifications or books about them.

You may want to refer to only the sections that you are unfamiliar with. You
can skip all of the XML part, but we encourage you to read the Mapping Data to
XML section even if you know about XML, since it contains material that high-
lights the value of using XMI. Even if you are familiar with UML, you might
want to read the parts of the UML section that discuss object models, and you
might want to skim the UML section to understand the terms we use to
describe constructs in the UML object model. The rest of the book uses the ter-
minology and graphical notation from the UML section. Once you understand

Related Standards:
XML and UML

C H A P T E R

2

some of the basic concepts of XML and UML, you can begin to learn about
XMI, which is explained in detail in Chapter 3.

XML

You can skip most of this section if you are an XML expert, but you should
read the section entitled Mapping Data to XML. If you are unfamiliar with
XML, you should be able to learn enough from this section to understand the
examples in this book. We focus on the aspects of XML that are relevant to
XMI, so you should read an XML book or the XML specifications for informa-
tion about other aspects of XML. The information in this section comes from
the XML specification (W3C, 2000) unless otherwise indicated.

The Basics
XML specifies a way to format data in a file. XML documents consist of ele-
ments, where each element represents some data. An element consists of a start
tag, content, and an end tag. The content and end tag are not always present. A
start tag begins with the less than (�) character and ends with the greater than
(�) character. An end tag begins with the �/ characters and ends with the �
character. Both start tags and end tags have names, and the name of the end
tag matches the name of the corresponding start tag. Here is the general form
of an XML element:

<name attributes>content</name>

The text �name attributes� is a start tag. The name names the data repre-
sented by the element, and attributes is an optional list of attributes and their
values. The element’s content may include text, elements, or both text and ele-
ments. The text �/name� is the end tag for the element. You may omit the end
tag if there is no content by using the following format:

<name attributes/>

Here is an example of legal XML elements:

<specification title="Long and Dull">

<author name="Ima Geek"/>

<author name="Ura Geek, Jr."/>

</specification>

<comment>A wonderful cure for insomnia</comment>

There are four XML elements. The specification element has an attribute
called title and its value is Long and Dull. The specification element’s content

18 Chapter 2

consists of two author elements, each of which has an attribute called name. The
comment element has text in its content. (Any resemblance to actual specifica-
tions and authors is, of course, completely unintentional.)

Elements must be nested; the start and end tags for an element must both be
at the top level of an XML document, or both be in the content of the same
XML element. The following is illegal XML:

<container>

<contained>

</container>

</contained>

It is illegal because the start tag for the container element is at the top level, but
the end tag for the container element is in the content of the contained element. It
is also illegal because the start tag for the contained element is in the content of
the container element, but the end tag for the contained element is at the top level.

XML restricts the characters that can be used in tag names and attribute
names. Tag names and attribute names may include letters, digits, and the
hyphen (-), underscore (_), period (.), and colon (:) characters, but they must
begin with a letter, _ , or :. Other punctuation marks and whitespace are not
allowed. The : character has a special meaning, which we explain in the fol-
lowing section, Namespaces.

Since some characters, such as � and �, define markup in an XML docu-
ment, you need to specify them in a particular form if you want them to be
interpreted as text rather than as the beginning and ending of tags. There are
two ways to do so. You can use XML entities to specify the characters in the
content of XML elements, or you can put the characters in a character data
(CDATA) section. An XML entity is a named sequence of characters, and an
XML parser replaces a reference to the entity with the characters when it
processes an XML document. A reference to an entity consists of an ampersand
(&), the name of the entity, and a semicolon (;). Some entities are predefined,
including entities for the characters � and �. The characters in a CDATA sec-
tion are not treated as XML markup, so the � character is interpreted by an
XML parser as the � character in a CDATA section, rather than as the begin-
ning of a start or end tag. Here is an example of both approaches for specifying
the text �notATag� in the content of an element:

<tag><notATag></tag>

<tag><![CDATA[<notATag>]]></tag>

The entities < and > represent the characters � and �, respectively.
The text <![CDATA[begins a CDATA section, and the text]]> ends a CDATA
section. For complete details about the treatment of characters within an XML
document, refer to the XML specification or an XML book.

Related Standards: XML and UML 19

Namespaces
Now that you know what XML elements look like, consider the following ele-
ments that represent an insect and a software defect:

<bug name="Moth" description="White">Flies toward light</bug>

<bug name="D10589" description="Data on disk erased.">Fix now</bug>

If you include both elements in the same XML document, how does a pro-
gram distinguish insects from defects? The solution is to use XML namespaces.
An XML namespace defines the context for XML elements and attributes. A
namespace consists of a namespace prefix that is used to identify a namespace in
an XML document and a Uniform Resource Identifier (URI) that serves as a
unique identifier for the namespace. Namespaces are declared in XML docu-
ments by using attributes that begin with xmlns:. The following is an XML doc-
ument that includes the previous elements and uses namespaces to
distinguish them (the description attributes and element content are omitted to
make the example shorter):

<document xmlns:INSECTS="http://buglovers.org"

xmlns:PROGRAMS="http://software">

<INSECTS:bug name="Moth"/>

<PROGRAMS:bug name="D10589"/>

</document>

This example includes two namespace declarations, one for insects and one
for programs (computer programs). The two namespaces have namespace pre-
fixes of INSECTS and PROGRAMS, and their URIs are http://buglovers.org and
http://software, respectively. Each name for the bug XML elements includes the
namespace prefix of the namespace for the element. A colon separates the
namespace prefix from the rest of the name. A program can use the namespaces
to differentiate insects from defects. The namespace declarations are available
within the element in which they are declared and any contained elements. In
the previous example, both namespaces are declared in the document XML ele-
ment. You can also use namespaces to specify the context of XML attributes.

The namespace prefix can be the empty string in an XML document. This
specifies the default namespace. To declare the default namespace, use an
XML attribute named xmlns. The following example shows how to make the
namespace that we defined previously for insects be the default namespace:

<document xmlns="http://buglovers.org">

<bug name="Moth"/>

</document>

Since the bug XML element does not have a namespace prefix, and a default
namespace is declared, it is in the default namespace.

20 Chapter 2

You can use the namespace prefix of a namespace declared in an element in
the tag name of that element, as the following XML element demonstrates:

<INSECTS:bug name="Moth" xmlns:INSECTS="http://buglovers.org"/>

XML Element Relationships
So far, the XML attributes in this chapter have been of type CDATA or name-
space declarations. The original XML specification included about 10 types of
attributes. Now, with XML schemas, there are a wide variety of types in addi-
tion to the original ones, as well as standard ways of defining new types based
on the standard ones. The schema types include numeric datatypes, datatypes
related to time and dates, and so on. They also include types that enable XML
elements to be related to each other. Those types include three original ones,
ID, IDREF, and IDREFS, and one new one, anyURI.

An XML element may have exactly one attribute of type ID; this attribute’s
value is an identifier that distinguishes the XML element from other XML ele-
ments in the same document. You can refer to an element by setting the value
of an attribute of type IDREF to the value of the element’s identifier. You can
refer to multiple elements by setting the value of an attribute of type IDREFS
to the values of the elements’ identifiers, separated by one or more spaces.
Consider the following elements:

<student id="S1"/>

<student id="S2"/>

<student id="S3"/>

<class name="Advanced Basket Weaving" students="S1 S2 S3"/>

<class name="Pizza Appreciation" students="S1"/>

The type of attribute id in each student element is ID, and the type of
attribute students in each class element is IDREFS. It is valid to include only one
identifier in an XML attribute of type IDREFS, as we have done for the second
class element in the previous example. Three students are enrolled in the class
Advanced Basket Weaving, and one student is enrolled in the class Pizza Appreci-
ation. The attributes of type ID are named id in the previous example, but you
may use any legal attribute name for attributes of type ID.

The values of attributes of type ID should be unique within a document;
otherwise, it is not possible to determine which element is being referenced
from other elements. The following example illustrates this:

<student name="Mary" id="S1"/>

<student name="Sue" id="S1"/>

<class name="Pizza Appreciation" students="S1"/>

Is Mary or Sue enrolled in the class?

Related Standards: XML and UML 21

The previous two examples showed how to use XML attributes of the ID
and IDREFS types to refer to XML elements in the same document. Can an
XML element refer to an XML element in another document? Yes. An entire
XML specification, XLink (W3C, June 2001), is devoted to that topic. XLink
enables simple and advanced techniques to be used to make cross-document
references. At the time this book is being written, the Object Management
Group (OMG) is deciding how to use XLinks in XMI. We describe cross-
document references that are very similar to simple XLinks. Please see the final
XMI 2.0 specification for a complete description of how to use XLinks with
XMI; in the current XMI 2.0 specification, the use of XLinks is optional.

You use an XML attribute of type anyURI to specify a link from the XML ele-
ment that has the attribute to an XML element in another document. You can
also use an attribute of this type to link two elements in the same document.
Imagine that some student XML elements are in an XML document called stu-
dents.xml:

<student name="Mary" id="S1"/>

<student name="Sue" id="S2"/>

We can refer to the XML element representing Mary by using an attribute of
type anyURI. We can specify that Mary is a student in the Pizza Appreciation
class by putting the following XML elements in an XML document called
classes.xml:

<class name="Pizza Appreciation">

<student href="students.xml#S1"/>

</class>

The href attribute is of type anyURI. The first part of its value, the part before
#, identifies the XML document where the student XML element is located, and
the second part, the part after #, specifies the identifier of the XML element in
that document. In this example, the first part is students.xml, the document
containing the student XML elements, and the second part is S1, the identifier
of the XML element representing Mary. Please refer to the schema datatype
specification or the URI specification for more details about the valid values of
XML attributes of type anyURI.

You can also use attributes of type anyURI to link two elements in the same
XML document. For example, if the XML elements in classes.xml and stu-
dents.xml are in the same document, you can specify the link from the student
XML element inside the class XML element to the XML element representing
Mary this way:

<student href="#S1"/>

22 Chapter 2

Since no document is specified in the first part of the value of the href
attribute, the second part contains the identifier of an XML element in the
same document. In this case, the identifier is S1.

Document Type Definitions
Applications that work with XML data typically use an XML parser to read the
contents of XML documents before working with the data. In the previous sec-
tion, we showed an XML document that contained two XML elements with the
same identifier. It would be convenient if the XML parser we use reported this
error, so that our application doesn’t need to include error-checking code for it.
To detect this kind of error, a parser needs to know the types of the XML attrib-
utes. Document Type Definitions (DTDs) are one way to specify the types of
attributes as well as the valid elements in an XML document and the valid con-
tent of those elements. Although schemas have superceded DTDs, we provide
a brief description of DTDs to help you understand the material in Chapter 5
on reverse-engineering models from DTDs. If you are not interested in that
topic, you can safely skip this section.

Any XML parser is capable of reporting some basic errors that occur in XML
documents. For example, if an XML element has an end tag but no start tag, an
XML parser will report the error. Other types of errors can only be detected if
an XML parser processes a DTD (or schema) that defines an XML document.
Parsers that process DTDs and schemas are called validating parsers. If an XML
document has elements that match the element declarations in a DTD or
schema, the document is said to be a valid document.

An element declaration in a DTD consists of the name of the element, the
element’s content, and the attributes of the element. The general format for an
element declaration appears as follows:

<!ELEMENT name content>

<!ATTLIST name attribute-decls>

The name is the tag name, the content specifies what can be put inside the
tags, and the ATTLIST, which is optional, contains attribute declarations
(attribute-decls) for each attribute of the element.

The content in an element declaration can be EMPTY or ANY, indicating
that the element must be empty or can contain any combination of text or other
XML elements, respectively. Here are some examples:

<!ELEMENT mustBeEmpty EMPTY>

<!ELEMENT anythingGoes ANY>

Related Standards: XML and UML 23

You can also specify which elements and how many of them can be in the
content. You put the names of the elements in the content of element declara-
tions to identify which elements can be included in other elements. You can
separate the element names with a comma (,), which means the elements must
be in the order specified, or you can use a pipe (|), which means that you can
choose which elements appear in the content. Here’s an example:

<!ELEMENT A EMPTY >

<!ELEMENT B EMPTY >

<!ELEMENT C (A, B) >

<!ELEMENT D (A | B) >

Elements A and B are empty, element C contains one A element followed by
one B element, and element D contains either one A element or one B element.

You indicate how many elements can appear in the content of other ele-
ments by using XML multiplicities. The explicit XML multiplicities are * for 0 or
more, � for 1 or more, and ? for 0 or 1. As you can see from the previous exam-
ple, if you do not specify a multiplicity, the multiplicity is 1. Here are some
examples:

<!ELEMENT A EMPTY>

<!ELEMENT B (A) >

<!ELEMENT C (A*) >

<!ELEMENT D (A?) >

<!ELEMENT E (A+) >

Element B contains one A element, element C contains zero or more A ele-
ments, element D contains zero or one A element, and element E contains one
or more A elements.

You can include #PCDATA in an element’s content to indicate that text is
allowed. For example:

<!ELEMENT text1 (#PCDATA)>

<!ELEMENT A EMPTY>

<!ELEMENT text2 (#PCDATA | A)* >

Element text1 contains only text, no XML elements. Element text2 contains
any combination of text and A elements.

An attribute declaration has the general form:

name type default

The name is the name of the attribute. The values for type may be CDATA, a
set of legal values, ID, IDREF, or IDREFS. You indicate a set of legal values like
this:

(v1 | v2 | v3)

24 Chapter 2

where v1, v2, and v3 are the legal values.
The default, which is optional, is one of the following:

■■ #REQUIRED

■■ #IMPLIED

■■ #FIXED followed by an attribute value

■■ An attribute value

Here are some examples of attribute declarations:

<!ELEMENT e EMPTY>

<!ATTLIST e

a1 CDATA "default"

a2 (v1 | v2 | v3) #IMPLIED

a3 ID #IMPLIED

a4 IDREF #IMPLIED

a5 IDREFS #IMPLIED

a6 CDATA #FIXED "default"

>

In these examples, attribute a1 has type character data; a validating XML
parser provides the value default for it if it does not appear in an XML element
e. Attributes a2 through a5 are optional, and attribute a6 must be present and
must have the value default. The value of attribute a2 must be v1, v2, or v3, if it
is present.

You specify the DTD an XML parser uses to validate a document in a DOC-
TYPE statement in the document to be validated. Here is the format of a DOC-
TYPE statement:

<!DOCTYPE name SYSTEM "some.dtd">

The name is the tag name of the top-level element for the XML document,
and some.dtd is a URI that specifies the location of the DTD.

You should now have an understanding of some of the basic concepts of
DTDs. There are many more details about DTDs that are not covered here.
Please consult the XML specification or a book about XML for more details.

Schemas
Schemas are an exciting new development for XML. Schemas replace DTDs,
and they enable you to specify more constraints on XML documents than
DTDs do. A schema document is an XML document, so you do not need to
learn another syntax for specifying constraints. Although XML was origi-
nally very simple, schemas are much more complex. They are so complex, in
fact, that the World Wide Web Consortium (W3C) has published a primer

Related Standards: XML and UML 25

describing schemas in addition to the two specifications, XML Schema Part 1:
Structures (W3C, 2001), and XML Schema Part 2: Datatypes (W3C, 2001).

There is no way to cover schemas completely in one chapter of a book, let
alone part of a chapter. We describe only the aspects of schemas that are rele-
vant to XMI 2.0. As you will see later in the book, XMI 2.0 produces XML
schemas and enables you to tailor them in various ways. We describe the fea-
tures of schemas that XMI uses and the features that you can tailor so you can
more easily understand your options for using XMI to produce schemas. We
do not attempt to describe all aspects of schemas, however.

Schema Elements

With those caveats, we can begin. Schemas are XML documents. There is a
schema namespace that defines the context for the XML elements, and there
are attributes that schemas use to declare XML elements and XML attributes.
All schema documents have a schema XML element as the root XML element.
Here is a schema document that does not contain any element or attribute dec-
larations:

<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"/>

In the previous example, as in all examples in this section on schemas, we
will use a namespace prefix of xsd for the schema namespace to make it clear
which elements are defined by the schema specification. If we show parts of
schemas, we will still use the xsd namespace prefix, although we may omit the
xsd:schema element so you can focus on the schema construct we are introduc-
ing. You may use whatever namespace prefix you wish for the schema name-
space in your own schemas.

Element and Type Declarations

You will probably not create too many empty schemas; you will create
schemas that have element and type declarations. Each element declared in a
schema uses the predefined XML element called element. The name attribute of
that element is the name of the element. Here are some element declarations:

<xsd:element name="A"/>

<xsd:element name="B"/>

The first element has a name of A, and the second element has a name of B.
XML elements that validate against these schema declarations will have tag
names of A and B, respectively. Since you have not defined any content or
attributes for either element, they must be empty and have no attributes. The
order in which XML elements are declared in a schema need not match the

26 Chapter 2

order of the XML elements in the documents. You can specify an order for ele-
ments within the content of XML elements, as the next section describes.

Schemas enable you to declare types. The types themselves do not appear in
XML documents, but they are used to declare elements and attributes that do
appear in XML documents. There are two kinds of types in schemas, simple
types and complex types. Simple types represent data values, whereas com-
plex types represent data that has structure. You can specify the type of an ele-
ment by using the type attribute for the element XML element. You declare a
complex type by using a complexType XML element. The following example
declares a complex type called empty and specifies that an element C is of that
type:

<xsd:complexType name="empty"/>

<xsd:element name="C" type ="empty"/>

Element C must not have attributes or content, since none have been defined
for it.

You can also declare a type when you declare an element. To do so, you put
a complexType XML element inside an element XML element; the nested com-
plex type is called an anonymous type because you do not specify a name for it.
The previous declaration of C could be written using an anonymous type as
follows:

<xsd:element name="C">

<xsd:complexType/>

</xsd:element>

Element Content

You specify the content of an XML element by using XML elements in the con-
tent of the complexType element that defines the type of the XML element. Here
is an example of how to specify that a complex type must have three elements,
D, E, and F, inside it in that order:

<xsd:complexType name="orderedContent">

<xsd:sequence>

<xsd:element name="D"/>

<xsd:element name="E"/>

<xsd:element name="F"/>

</xsd:sequence>

</xsd:complexType>

Now, if we want an element G to have this content, we can declare it as fol-
lows:

<xsd:element name="G" type="orderedContent"/>

Related Standards: XML and UML 27

In the declaration of the orderedContent type, the elements D, E, and F are
declared inside the type. The declarations are local; they are not available to
other types or element declarations in the same schema. If elements are
declared directly in the schema element, you can refer to them in the declara-
tion of types and elements in other places in the schema. You use the ref
attribute of the element XML element to refer to an element declared in the
schema.

Here is the previous example with the elements D, E, and F declared in the
schema element and with references to those elements in the declaration of the
complex type orderedContent:

<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema">

<xsd:element name="D"/>

<xsd:element name="E"/>

<xsd:element name="F"/>

<xsd:complexType name="orderedContent">

<xsd:sequence>

<xsd:element ref="D"/>

<xsd:element ref="E"/>

<xsd:element ref="F"/>

</xsd:sequence>

</xsd:complexType>

</xsd:schema>

You can express alternatives in element content by using the choice XML ele-
ment. If you use choice, you specify that one of the elements inside the
xsd:choice element may appear in the element content. You can specify that
multiple choices can be made from among the elements inside the choice ele-
ment by using attributes to express multiplicities, which we explain later. Here
is the declaration of a type called choiceContent that specifies that one of the ele-
ments H, I, or J may appear in the content of elements of type choiceContent:

<xsd:complexType name="choiceContent">

<xsd:choice>

<xsd:element name="H"/>

<xsd:element name="I"/>

<xsd:element name="J"/>

</xsd:choice>

</xsd:complexType>

You can nest sequence and choice elements to express more complicated ele-
ment content.

You use the any element in a sequence or choice XML element to express con-
tent that consists of any XML element that belongs to a namespace. You can
specify whether to validate the content or not, depending on the value of the
processContents attribute. For example, the following declaration of the com-

28 Chapter 2

plexType anyContent enables one XML element to appear in the content of
XML elements of type anyContent, as long as the element is in a namespace:

<xsd:complexType name="anyContent">

<xsd:sequence>

<xsd:any/>

</xsd:sequence>

</xsd:complexType>

The default value of the processContents attribute of the any XML element is
strict, meaning that a validating parser attempts to validate the XML element
in the content in the normal way. If there is no declaration for the element in
the schema, the parser reports an error. If you set the value of processContents
to lax, the parser will not report an error if the declaration of the XML element
cannot be found. However, the parser will still report an error if there is a dec-
laration and the element does not match it. If the value of processContents is
skip, the parser will not attempt to validate the XML element. To specify empty
content, you simply do not include a sequence or a choice element in the decla-
ration of a complex type.

You can specify that content may include text as well as elements by setting
the mixed attribute for the complexType element to true. For example, the fol-
lowing type mixedContent declares that there must be one element K in the con-
tent of elements of this type, but text can appear before or after element K in
the content:

<xsd:complexType name="mixedContent" mixed="true">

<xsd:sequence>

<xsd:element name="K"/>

</xsd:sequence>

</xsd:complexType>

So far, we have seen how to specify which elements appear in the content of
other elements, but we have not seen how to specify how many elements
should appear in the content. To specify the number of occurrences of ele-
ments in element content, use the minOccurs and maxOccurs attributes in the
element, sequence, or choice XML elements. The minOccurs attribute contains the
minimum number of occurrences that are allowed; the maxOccurs attribute
contains the maximum number of occurrences that are allowed. The maxOc-
curs attribute can be set to a number or to unbounded, meaning that there is no
restriction on the maximum number of elements that can occur. The default
value of both of these attributes is 1.

Here are some type declarations that demonstrate the use of the minOccurs
and maxOccurs attributes. The following type doubleContent declares that the
sequence of elements L and M must be in the content twice:

Related Standards: XML and UML 29

<xsd:complexType name="doubleContent">

<xsd:sequence minOccurs="2" maxOccurs="2">

<xsd:element name="L"/>

<xsd:element name="M"/>

</xsd:sequence>

</xsd:complexType>

Here is an example of an element with content that matches the declaration
of doubleContent:

<someElement>

<L/>

<M/>

<L/>

<M/>

</someElement>

The following declaration of type orderedContent2 constrains the content to
be a sequence of one N element followed by two or more O elements:

<xsd:complexType name="orderedContent2">

<xsd:sequence>

<xsd:element name="N" minOccurs="1" maxOccurs="1"/>

<xsd:element name="O" minOccurs="2" maxOccurs="unbounded"/>

</xsd:sequence>

</xsd:complexType>

The following declaration of type choiceContent2 constrains the content to be
either three P elements or three Q elements:

<xsd:complexType name="choiceContent2">

<xsd:choice>

<xsd:element name="P" minOccurs="3" maxOccurs="3"/>

<xsd:element name="Q" minOccurs="3" maxOccurs="3"/>

</xsd:choice>

</xsd:complexType>

The following declaration of type choiceContent3 constrains the content to be
three elements; any combination of R and S elements may make up the three
required elements:

<xsd:complexType name="choiceContent3">

<xsd:choice minOccurs="3" maxOccurs="3">

<xsd:element name="R"/>

<xsd:element name="S"/>

</xsd:choice>

</xsd:complexType>

30 Chapter 2

Attribute Declarations

You can declare attributes as well as elements and element content in schemas.
You use the xsd:attribute XML element to do so. That element has name, type,
use, default, and fixed attributes that enable you to specify information about
the attribute and its values. The type must be a simple type, not a complex
type. The use attribute constrains whether or not an attribute may appear in an
element. If the value of the use attribute is required, the attribute must appear.
If use is optional, the attribute may appear. If use is prohibited, the attribute must
not appear. An XML attribute can never appear more than once in an XML
element.

If use is optional, you may specify a default value for the attribute that the
parser will supply if an element does not have the attribute. If the attribute
appears in an element, the actual value of the attribute is used, rather than the
default one. You specify the default value of an attribute using the default XML
attribute of the attribute XML element. You may also require that an attribute
has a specific value by using the fixed XML attribute of the attribute XML ele-
ment to hold the fixed value.

You specify attributes after you specify content in a complex type declara-
tion. Here are some examples of attribute declarations:

<xsd:complexType name="someAttributesAndContent">

<xsd:sequence>

<xsd:element name="T"/>

</xsd:sequence>

<xsd:attribute name="a1" type="xsd:string"/>

<xsd:attribute name="a2" type="xsd:string" use="required"/>

<xsd:attribute name="a3" type="xsd:string" use="optional"

default="MyDefault"/>

<xsd:attribute name="a4" type="xsd:string" fixed="FixedValue"/>

</xsd:complexType>

In this example there are four attribute declarations. All of the attributes
have type string, which is one of the predefined schema datatypes. The xsd
namespace prefix is used to identify predefined schema types, just as that pre-
fix is used to identify the elements defined by schemas. Attribute a1 is
optional, because the default value of use is optional. Attribute a2 must appear.
Attribute a3 is optional; if it does not appear, a validating parser will supply
the value MyDefault for it. If it does appear, the parser will use the actual value
that appears. Attribute a4 is also optional; however, if it does appear, it must
have the value FixedValue.

You use the anyAttribute element to indicate that any attribute can appear in
an XML element. The anyAttribute element has a processContents attribute that
is used in a similar way to the processContents attribute of the any element.

Related Standards: XML and UML 31

The following complex type declaration specifies that any XML element can
appear in the content of an XML element of this type in a document, and the
element in the document can have any XML attributes:

<xsd:complexType name="anyContent">

<xsd:sequence>

<xsd:any/>

</xsd:sequence>

<xsd:anyAttribute/>

</xsd:complexType>

Just like elements, you can declare attributes directly inside the schema ele-
ment and then refer to the declarations in other places in the schema.

Attribute Groups

You can declare XML attributes in a group and then refer to that group in the
declaration of complex types. This allows you to reuse groups of attribute dec-
larations rather than refer to the declaration of each attribute. The attribute-
Group XML element has a name attribute for the name of the group. You put
attribute declarations inside the attributeGroup element.

Here is an example of an attribute group called MyGroup that declares
attributes a1 and a2. The attribute group is used to declare types MyType1 and
MyType2:

<xsd:attributeGroup name="MyGroup">

<xsd:attribute name="a1" type="xsd:string"/>

<xsd:attribute name="a2" type="xsd:string"/>

</xsd:attributeGroup>

<xsd:complexType name="MyType1">

<attributeGroup ref="MyGroup"/>

</xsd:complexType>

<xsd:complexType name="MyType2">

<attributeGroup ref="MyGroup"/>

</xsd:complexType>

Namespaces in Schemas

In the examples we have seen so far, we have not used namespaces except to
identify the XML elements in a schema that belong to the schema namespace
and to identify types that are predefined schema types. You can specify that
the top-level elements, types, and attributes in a schema belong to a specific
namespace by using the targetNamespace attribute of the schema XML element.
You set the targetNamespace attribute to the URI of the namespace that top-level

32 Chapter 2

elements, types, and attributes belong to. When you specify a target name-
space using the targetNamespace attribute, you also need to declare the target
namespace for the schema so you can refer to the elements, types, and attrib-
utes at the top level using a namespace prefix. For example, consider the fol-
lowing schema:

<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"

targetNamespace="http://myURI"

xmlns:myStuff="http://myURI">

<xsd:element name="U"/>

<xsd:complexType name="MyType">

<xsd:sequence>

<xsd:element ref="myStuff:U"/>

<xsd:element name="V"/>

</xsd:sequence>

</xsd:complexType>

<xsd:element name="MyElement" type="myStuff:MyType"/>

</xsd:schema>

Notice that we used the namespace prefix myStuff to identify the element U
in the content of MyType, and to identify the type of element MyElement. Since
we specified a target namespace for the schema, without the namespace dec-
laration for the target namespace we would not have been able to refer to
them.

Here is a document that conforms to the previous schema. Note the use of
the namespace URI and the presence or absence of namespace prefixes for the
elements in the document:

<p:MyElement xmlns:p="http://myURI"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://myURI myURI.xsd">

<p:U/>

<V/>

</p:MyElement>

The namespace that has the prefix xsi is the schema instance namespace
that is used in several ways in XML documents. One of the ways it is used is
to specify a schemaLocation attribute that identifies where a schema for a par-
ticular namespace can be found. That attribute specifies pairs of URIs and
schema documents; in this case, it specifies the URI http://myURI and the
schema document myURI.xsd. The previous schema needs to be in a file called
myURI.xsd. A parser may use this information to locate a schema, but is not
required to do so.

Note that MyElement and U use the namespace prefix p, but element V does
not. This is because the element V was declared locally, whereas the elements
MyElement and U were declared at the top level. Note also that the namespace

Related Standards: XML and UML 33

prefix p is used in the document, whereas the namespace prefix myStuff is used
in the schema. This works because schemas use the namespace URI, not the
prefix, to identify the namespace that is defined in a particular schema.

By default, locally declared elements and attributes must not use a name-
space prefix. You can override this behavior by using the form attribute on ele-
ment and attribute XML elements in a schema though. If form is set to qualified,
the element or attribute must have a namespace prefix in a document. By
default, form is set to unqualified, meaning that the element or attribute must
not have a namespace prefix.

Type Extension

We have seen one way to reuse element and type declarations by referring to
top-level elements and types in a schema. Another way to reuse types is to
specify that a given type inherits the content and attributes from another type,
possibly adding its own content and attributes. This capability is called exten-
sion. You use the complexContent and extension XML elements to specify that a
complex type extends another complex type. Here is an example of a complex
type, MyExtension, that extends another complex type MyBase:

<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema">

<xsd:complexType name="MyBase">

<xsd:choice>

<xsd:element name="Choice1"/>

<xsd:element name="Choice2"/>

</xsd:choice>

<xsd:attribute name="baseAttrib" type="xsd:string"/>

</xsd:complexType>

<xsd:complexType name="MyExtension">

<xsd:complexContent>

<xsd:extension base="MyBase">

<xsd:choice>

<xsd:element name="ExtensionElement1"/>

<xsd:element name="ExtensionElement2"/>

</xsd:choice>

<xsd:attribute name="extensionAttrib" type="xsd:string"/>

</xsd:extension>

</xsd:complexContent>

</xsd:complexType>

</xsd:schema>

You should already understand the declaration of complex type MyBase
from our previous explanations. Type MyExtension is declared to be an exten-
sion of MyBase, so it inherits the content of MyBase and the attributes from
MyBase. It adds one of two XML elements to the content of MyBase and

34 Chapter 2

attribute extensionAttrib. Note that the declaration of MyExtension is equivalent
to the following declaration:

<xsd:complexType name="MyExtension">

<xsd:sequence>

<xsd:choice>

<xsd:element name="Choice1"/>

<xsd:element name="Choice2"/>

</xsd:choice>

<xsd:choice>

<xsd:element name="ExtensionElement1"/>

<xsd:element name="ExtensionElement2"/>

</xsd:choice>

</xsd:sequence>

<xsd:attribute name="baseAttrib" type="xsd:string"/>

<xsd:attribute name="extensionAttrib" type="xsd:string"/>

</xsd:complexType>

The content from the extended type appears first, followed by the content
declared locally. This means that in an element of type MyExtension, a Choice1
or Choice2 element must appear before an ExtensionElement1 or ExtensionEle-
ment2 element.

Schema Import

You can use XML elements, types, and attributes from other schemas when
creating your own schemas. To do so, use the import XML element. This ele-
ment enables you to specify which other schemas a particular schema depends
on. The import XML element has a namespace attribute and its value is the URI
of the target namespace of the schema being imported. You can also use the
schemaLocation attribute to identify the file for the imported schema. XMI uses
the import mechanism in the schemas it produces because there is a schema
that defines XML elements and attributes pertaining to XMI, and schemas that
XMI produces will import that schema to use the elements and attributes
defined in it.

Mapping Data to XML
There is frequently more than one way to map your data to XML, so you must
choose how to do it. If you are producing XML documents for your own use,
it may not matter how you map your data to XML. However, if you plan to
exchange XML documents, you need to ensure that all parties involved under-
stand how the data to be exchanged is represented in the XML documents. For
example, if your program puts some data in an XML attribute, but another
program expects the data to be an XML element, the other program will not

Related Standards: XML and UML 35

find the data. Two of the most common decisions you will need to make when
considering how to put your data in an XML document are whether to use
XML elements or XML attributes for your data and how to represent contain-
ment in XML.

For string values, you can use XML attributes to store them, or you can put
them in the content of XML elements. For example, here are two ways to rep-
resent names of authors:

<author name="I. M. Geek"/>

<author>

<name>I. M. Geek</name>

</author>

The first way is shorter than the second and may be easier for programs to
process because standard interfaces to XML parsers, such as the Document
Object Model (DOM) and Simple API for XML (SAX), enable you to access the
attributes of an XML element before accessing the content. We explain DOM
and SAX in Chapter 6. The second way may be desirable, though, if the data is
not a simple string. For example, if it is important to split the name into its
parts (first name, middle initial, and last name), you should probably put the
name into XML either this way:

<author>

<name firstName="I" middleInitial="M" lastName="Geek"/>

</author>

or this way:

<author>

<name>

<firstName>I</firstName>

<middleInitial>M</middleInitial/>

<lastName>Geek</lastName>

</name>

</author>

rather than parsing the value of a name attribute to get the parts of the name.
Representing containment is another issue you will face when mapping

your data to XML. There are two basic approaches you can use. The first
approach is to use the textual containment of XML elements to represent logi-
cal containment. This approach may be done in a couple of ways. The con-
tained elements may be put directly in a container element, or they may be put
in elements that indicate their relationship to their container element. As an
example of the first way, if you want to indicate that a car contains an engine
and a radio, you can represent it very simply in XML as follows:

36 Chapter 2

<car>

<engine/>

<radio/>

</car>

As an example of the second way, if you also need to indicate that the engine
is a critical part for the car (while the radio is not), you could represent it in
XML in this way:

<car>

<criticalPart>

<engine/>

</criticalPart>

<noncriticalPart>

<radio/>

</noncriticalPart>

</car>

The second approach to representing containment uses attributes that have
an ID, IDREF, or IDREFS type. With this approach, you indicate that an ele-
ment contains another element by giving it an attribute with a value that is the
same as the identifier of the contained element. For example, using this
approach, you can represent the previous example in XML like this:

<engine id="E1"/>

<radio id="R1"/>

<car criticalPart="E1" noncriticalPart="R1"/>

In this example, the value of the car element’s criticalPart attribute, E1, is the
same as the value of the engine element’s id attribute. This indicates that the
engine is contained by the car. Similarly, the value of the car element’s noncrit-
icalPart attribute, R1, is the same as the value of the radio element’s id attribute,
indicating that the radio is also contained by the car.

Since there are at least three ways in XML to specify that a car contains an
engine and a radio, you can see that it is important to agree not only on what
data to exchange, but also how that data will be represented in XML. The map-
ping of data (in particular, object-oriented data) to XML is precisely the issue
that XMI addresses.

UML

To use XMI, your data must be in objects or be mapped to objects. Most object-
oriented systems implement the concepts of classes, instances, and inheri-
tance, among others. Java implements all of these concepts, for example. These
concepts are defined by object models, and UML is an example of such a

Related Standards: XML and UML 37

model. Another object model, the Meta Object Facility (MOF), is the object
model for XMI. Since UML and MOF are closely aligned, and the OMG is
working to make them even more closely aligned in the future, you do not
need to know about MOF to use XMI. UML models can be mapped to MOF
models, so we use UML models in this book rather than MOF models.

The object-oriented concepts that are relevant to XMI are the concepts that
describe the state of objects. Behavioral aspects of objects, such as their meth-
ods, are not part of an object’s state, so it is not necessary to preserve them. For
example, the state of a Java object is the value of its fields. UML defines the
state of objects, too. UML also defines a graphical notation for UML models
that is convenient for accurately defining your data.

An object’s identity may be related to an object’s state or it may be separate.
XMI provides a standard mechanism for identifying objects, so you do not
need to create your own means of specifying an object’s identity in your mod-
els, although you may do so if you wish. Although you need to map your data
to objects, you can represent the values of simple and complex datatypes using
XMI.

Chapter 5 contains more information about the issues involved in defining
your data using UML models; the remainder of this chapter presents the
object-oriented concepts of Java and UML that you need to know to under-
stand the rest of the book.

The Java Object Model
The Java Language Specification (Gosling, 2000) completely defines the Java
object model, which consists of classes, objects (instances), inheritance, inter-
faces, and primitive types, among other things. Each of these concepts is also
present in the UML object model, so we briefly consider how Java implements
these concepts before discussing UML.

Java classes consist of fields, methods, and constructors. Fields are variables
that have types. The types of fields are either primitive types such as int, dou-
ble, or char, or reference types such as arrays, classes, and interfaces. Methods
consist of a name, a return type, parameters, and a body. Java classes, fields,
methods, and constructors have visibility modifiers as well, but they are not
relevant to XMI so we won’t cover them here.

Java supports single inheritance between classes. The members of a class
consist of the locally declared members for the class as well as the inherited
members. A Java class can implement more than one interface, even though it
can only inherit from a single class.

Java classes can be grouped in packages. The qualified name of a class con-
sists of the name of the package containing the class followed by a . and the
name of the class. You can use qualified names to distinguish between two
classes with the same names in different packages.

38 Chapter 2

Java objects are instances of classes. When a class is instantiated, an instance
variable is created in the instance for each of the nonstatic fields in the class.
The instance variables hold the values that comprise the state of an object. You
can invoke instance methods on an object if the visibility modifier of the
method enables you to do so in a particular scope.

The UML Object Model
The Java language provides a definition of objects and classes; other program-
ming languages have other definitions. An object model can be used to define
objects independent of their implementation in a particular programming lan-
guage. UML is an example of such an object model. It also provides a useful
graphical notation for specifying object-oriented programming systems. UML
defines many concepts, but only a few of the basic concepts that are related to
the structure of classes and objects are relevant to XMI.

UML models can be implemented in programming languages. In this sec-
tion, we include Java implementations of some simple UML models to help
you understand UML concepts, and to help you understand the relationship
between UML models and programming languages.

Only the parts of UML that are relevant to XMI are explained here. There are
many excellent books that describe UML and how to use it if you want more
information about UML and how to create models using it.

Table 2.1 lists the concepts in UML that are relevant to XMI and the corre-
sponding Java concept, if there is one.

Many of the UML concepts correspond to Java language features, although
UML has several concepts such as multiple inheritance and associations that

Related Standards: XML and UML 39

Table 2.1 UML and Java Comparison

UML CONCEPT JAVA CONCEPT

Class Class

Attribute Field

Association None

Association end None

Single inheritance Inheritance

Multiple inheritance None

Instance Instance

Package Package

Datatype Primitive type

are not part of the Java language. The UML concepts that are not in the Java
language can be implemented in Java though.

In Java, a class consists of members; in UML, a class consists of features. The
two kinds of features are structural and behavioral. One kind of structural feature
is an attribute, which corresponds to a Java field. An attribute has a type and mul-
tiplicity. Like Java, UML classes and features have visibility modifiers, which are
not relevant to XMI, so we do not explain them. The multiplicity of an attribute
indicates the number of values for the attribute that an instance of the class can
hold. The multiplicity can be a single number, such as 1, or a range of numbers,
such as 2..4. More than one range of numbers can be used. The * symbol is used
to represent unbounded. You can specify a multiplicity of 0 or more as 0..* or as *.
Table 2.2 shows some examples of how multiplicities can be specified.

Consider a simple UML model that consists of one class, C1, that has an
attribute a with a multiplicity of 0..*. The type of a is a primitive datatype, inte-
ger. This UML class can be implemented in Java as follows:

public class C1 {

int a[];

}

The attribute can also be implemented using one of the collection classes in
the java.util package:

import java.util.*;

public class C1 {

Collection a;

}

This implementation of the class requires that each int value be represented
by an instance of the Java Integer class, since the values of primitive types can-
not be added to collections in Java.

40 Chapter 2

Table 2.2 Multiplicity Examples

MULTIPLICITY MEANING

1 Exactly 1

1..1 Exactly 1

0..* 0 or more

* 0 or more

0..1 0 or 1

1..4, 7..10 1 to 4 or 7 to 10

There are several behavioral features of UML classes, such as operations and
methods. However, since they are not relevant to XMI, we do not explain
them. Does this mean that XMI cannot be used to save all parts of UML mod-
els? No, when a UML model is saved, all parts of the UML model, including
any behavioral features of classes, are saved. However, when saving an
instance of a UML class, the state of the instance consists of the values of the
instance’s structural features, not the behavioral features, so only the values of
the structural features need to be saved.

A class is represented by a rectangle in UML notation. The rectangle may
have three sections: The top section contains the name of the class, the middle
section contains the attributes, and the bottom section contains the operations.
Not all of these sections need to be displayed in a class diagram. Figure 2.1
illustrates three representations of the same class C, with attributes a1 and a2
and operation o. Attribute a1 has a multiplicity of 0..* and type int. Attribute a2
has a multiplicity of 1 and type float. The multiplicities and types for the attrib-
utes are displayed in the representation on the right in Figure 2.1.

In this book, we often need to make the distinction between a UML attribute
that has a type that is a datatype and a UML attribute that has a type that is a
class (we explain UML datatypes later). We call a UML attribute with a type
that is a datatype a data attribute. We call a UML attribute with a type that is a
class an object attribute. The value of a data attribute is a data value. The value of
an object attribute is an object value.

There is an important difference between an object attribute in UML and a
field in Java with a type that is a class. The value of an object attribute in UML
has a composition relationship to the object that has the value. A composition
relationship is a container-part relationship where the part is deleted if the
container is deleted, and a part can be in only one container. This means that
an object can be the value of only one object attribute in an object. In contrast,
a Java field does not have composition semantics, so a Java object can be the
value of more than one field.

Consider two UML classes, F and G, where class F has an attribute attrib of
type G and a multiplicity of 1. They are displayed in Figure 2.2. An implemen-
tation of these classes in Java is:

// F.java

public class F {

public G attrib;

Related Standards: XML and UML 41

C a1
a2

C

o()

a1[0..*] : int
a2[1] : float

C

Figure 2.1 UML class notation.

}

// G.java

public class G{}

It is legal in Java for an instance of G to be the value of the attrib field for two
instances of F, as follows:

F f1 = new F();

F f2 = new F();

G g = new G();

f1.attrib = g;

f2.attrib = g;

However, this violates the composition semantics of object attributes in
UML. Because of these semantics, the values of f1.attrib and f2.attrib cannot
both be g. The value g can only be related to the one instance of F that has the
value by a composition relationship. The instance of F is the container and g is
the part. The part g can only have one container, not two. So, it is illegal for it
to be the value of attrib for both f1 and f2, because then g would have two con-
tainers, f1 and f2. Object g can be the value of attrib in f1 or f2, but not both. The
container can change, however. You can set g to the value of attrib in f1, set the
value of attrib in f1 to null, and then set g to the value of attrib in f2.

UML classes can have one or more superclasses. Each UML class inherits
features from its superclasses. Inheritance in UML is represented by arrows
between classes. The arrow points from the subclass to the superclass. Figure
2.3 illustrates this notation in a class diagram that specifies that classes A and
B are superclasses of class C2.

If you want to implement this model in Java, you need to simulate multiple
inheritance. One way to do so is to create an interface for each class and an
implementation for each interface. Here is one implementation of this model:

// A.java

public interface A {}

// AImpl.java

public class AImpl implements A {}

// B.java

42 Chapter 2

attrib[1] : G

F G

Figure 2.2 Classes F and G.

public interface B {}

// BImpl.java

public class BImpl implements B {}

// C2.java

public interface C2 extends A, B {}

// C2Impl.java

public class C2Impl implements C2 {}

Each UML class has an interface and a Java class that implements the inter-
face. For class C2, its implementation, class C2Impl, implements the interface
for C2, which extends the interfaces for A and B. By doing this, an instance of
the C2Impl class acts like an instance of A and an instance of B, although it does
not inherit from any class. There are other ways to implement the model in
Java as well, but this example demonstrates that multiple inheritance can be
simulated in Java when classes implement multiple interfaces.

UML has packages, just like Java, that may contain classes. Packages are
represented in UML notation by folders, as demonstrated in Figure 2.4, which
contains package P.

One relationship between classes is inheritance, which we have already
explained. Other relationships between classes can be explicitly represented in
UML using associations. Associations in UML are not directly connected to
classes; they have association ends that are connected to classes. An associa-
tion end has a name and multiplicity, navigability, and aggregation properties. The
multiplicity of an association end is specified the same way as the multiplicity
of an attribute. You can think of navigability as characterizing whether an
association end provides the capability of one class to reach, or navigate to, the

Related Standards: XML and UML 43

A B

C2

Figure 2.3 UML inheritance notation.

other class participating in the association. If both ends of the association are
navigable, the association appears as a straight line between the two classes. If
only one end of the association is navigable, then the navigable end is distin-
guished with an arrow. The aggregation property is used to indicate no aggre-
gation, aggregation, or composition. We explain aggregation and composition
later.

Figure 2.5 includes an association between two classes, D and E, with ends
that are named r1 and r2; r1 has a multiplicity of 1 and r2 has a multiplicity of
0..*.

Because of the way that an association end is used, it is scoped not by the
class that it appears adjacent to in the class diagram, but by the class it appears
across from. For example, in Figure 2.5, the end r1 is in the namespace of class
E, while the end r2 is in the namespace of class D. Figure 2.6 contains a dia-
gram of the same association displayed in Figure 2.5, except that only r2 is
navigable. Since only r2 is navigable, it is distinguished by an arrow.

In this case, r2 is in the namespace of D, but r1 is not in the namespace of E,
since r1 is not navigable.

There are many ways to represent associations using Java. Consider the
UML diagram in Figure 2.5. A simple way to implement this model in Java is
as follows:

// D.java

public class D {

public E[] r2;

}

// E.java

public class E {

public D r1;

}

Since the multiplicity for the association end r1 is 1, we can implement it
using a field of type D in class E. Since the multiplicity for the association end
r2 is 0..*, we can implement it using a field of type E[] in class D. Of course, we
probably want the fields to be private or protected and to implement accessor
methods on classes D and E to access the values of r1 and r2, but this simple
example demonstrates a direct way to represent associations in Java.

44 Chapter 2

P

Figure 2.4 UML package notation.

In the previous example, instances of class D have references to instances of
class E and vice versa. It is not a requirement that this be the case, however.
The model indicates that, given an instance of class D, the r2 end can be used
to obtain instances of class E and, given an instance of class E, the r1 end can
be used to obtain an instance of class D. We can also implement the model so
that class D has no knowledge of class E and vice versa, with a third class man-
aging the relationships between instances of D and instances of E:

//D.java

public class D {}

// E.java

public class E {}

// AssociationManager.java

import java.util.HashMap;

public class AssociationManager {

// key is instance of D, value is array of E

private HashMap r2;

// key is instance of E, value is instance of D

private HashMap r1;

public AssociationManager() {

r2 = new HashMap();

r1 = new HashMap();

}

public E[] getR2(D d) { (E[]) return r2.get(d); }

public D getR1(E e) { (D) return r1.get(e); }

public void setR2(D d, E[] e) { r2.put(d, e); }

Related Standards: XML and UML 45

D Er1

1

r2

0..*

Figure 2.5 UML association notation.

D Er1

1

r2

0..*

Figure 2.6 UML unidirectional association notation.

public void setR1(E e, D d) { r1.put(e, d); }

}

In this implementation, the AssociationManager class handles the relation-
ship between instances of D and instances of E. This particular class is very
simple, but you can easily imagine many enhancements that can be made to it
to extend its capability.

Aggregation indicates a container-part relationship. A part can be in more
than one container, and there is no relationship between the life of the part and
the life of the container. An aggregation relationship is represented by a clear
diamond at the end of the association connected to the container. Figure 2.7
shows that a container has parts. XMI treats an aggregation relationship the
same way it treats the relationships in Figures 2.5 and 2.6.

A stronger containment relationship is called composition, which indicates
that if the container is deleted, the parts are deleted also, and a part can have
only one container. This type of relationship is indicated by a solid diamond at
the container end, as you can see in Figure 2.8.

Another way to represent composition in UML is by using object attributes,
as we discussed earlier in this chapter. In this book, we almost always repre-
sent composition using object attributes (the only exception is a model in
Chapter 4); we do not use the notation in Figure 2.8. We do this to simplify our
discussion of XMI. In your models, you can represent composition either way.
Because we use object attributes to represent composition when we discuss
association ends in this book, the association ends do not have aggregation
properties with a value of composition.

46 Chapter 2

Container

Part

container*

part*

Figure 2.7 UML aggregation notation.

Figure 2.9 shows a model that is semantically equivalent to the model in Fig-
ure 2.8. Class Container in Figure 2.9 has an object attribute called part.

In Java, you do not explictly control the deletion of objects; the Java garbage
collector deletes objects for you. However, you can implement composition in
Java by marking part objects as deleted when the container object is deleted.
To employ this strategy, you need to implement a delete method for both the
container and the part. Source Code 2.1 contains a simple implementation of
the UML model in Figure 2.8 (or Figure 2.9).

Using these classes, you can detect whether a container or part is deleted and
avoid handling containers or parts that have been deleted. Notice that if a part
is added to a container and then removed from it, and the container is deleted,
the part is not deleted since it does not belong to the container anymore.

There is one final UML concept that pertains to classes and their parts that is
used by XMI. It is called a tagged value. A tagged value consists of a tag and a
value, and it can be used to specify additional properties for UML constructs.
For example, you can specify that an implementationLanguage tag for a class has
the value Java, meaning that the UML class is implemented in Java. XMI uses
tagged values to enable you to specify how to tailor XML schemas that are
produced from models.

UML contains the concept of an object as well as a class. A UML object is an
instance of a UML class. UML objects have attribute values and link ends, which
are instances of association ends.

Objects can be illustrated in UML object diagrams. Each object is repre-
sented by a rectangle. The name of the object and the name of the class can be
included in the object. Figure 2.10 shows an object diagram representing an
object called obj1 that is an instance of a class F.

Related Standards: XML and UML 47

Container

Part

container1

part*

Figure 2.8 UML composition notation.

If an object has attribute values, they can be displayed as well. For example,
if the same object in Figure 2.10 has two attributes, a1 and a2, and they have
values string and 2, respectively, the diagram in Figure 2.11 displays their
values.

If two classes have an association between them, instances of the classes can
have links between them. A link is an instance of an association, and links have
link ends. In this book, we use the term reference for a link end. For example,
Figure 2.5 indicates that an instance of class E can access one instance of class
D through its r1 reference. Similarly, instances of D can access zero or more
instances of class E through their r2 references.

Links between objects can be shown in an object diagram. Each link is rep-
resented by a line between two objects. The names of the references for the link
can be shown. Consider three objects, d1, e1, and e2. Object d1 is an instance of
class D from Figure 2.5, and e1 and e2 are instances of class E from Figure 2.5.
Objects e1 and e2 are related to d1 via its r2 references, and d1 is related to e1
and e2 through their r1 references. This situation is illustrated in the object dia-
gram in Figure 2.12.

So far, we have discussed classes and instances of classes. UML also has a
concept very similar to a Java primitive type called a datatype. Attributes of
classes in UML can have types that are either classes or datatypes. A datatype
can be represented in UML notation as a class with a ��datatype�� stereotype.

48 Chapter 2

part[*] : Part

Container

Part

container1

Figure 2.9 UML attribute representing composition.

obj1:F

Figure 2.10 A simple object diagram.

Related Standards: XML and UML 49

// Container.java

import java.util.*;

public class Container {

private Collection parts;

private boolean deleted;

public Container() { parts = new ArrayList(); }

public void addPart(Part p) { parts.add(p); }

public void removePart(Part p) { parts.remove(p); }

public boolean isDeleted() { return deleted; }

public void delete() {

deleted = true;

Iterator p = parts.iterator();

while(p.hasNext())

((Part) p.next()).delete();

parts = new ArrayList();

}

}

// Part.java

public class Part {

private boolean deleted;

public void delete() { deleted = true; }

boolean isDeleted() { return deleted; }

}

Source Code 2.1 A simple implementation of Container and Part.

a1 = string
a2 = 2

obj1:F

a1
a2

F

Figure 2.11 Attribute values.

In UML, you can use stereotypes to extend UML with your own constructs, if
you wish. Stereotypes also enable you to use the UML notation for a given con-
struct, such as a UML class, to represent another construct. By using a stereo-
type for a UML class in a UML diagram, you indicate that the construct is
actually not a class, but another type of construct. For example, the class dia-
gram in Figure 2.13 contains an Integer datatype.

How do you represent this datatype using Java? A natural way to do so is to
use the Java int primitive type; however, the definition of Integer in the dia-
gram may not exactly match the definition of a Java int. In general, it is not
possible to unambiguously map from arbitrary datatypes in a UML model to
concrete datatypes in an implementation of the model. Part of the task of
implementing a model is to map the datatypes in the model to the datatypes
that are available in the environment in which the model is implemented.

You can also specify enumerations in UML; an enumeration is a datatype
with a legal value that is restricted to a set of values. To indicate an enumera-
tion, use the enumeration stereotype for a class and add an attribute to the
class for each legal value, where the name of the attribute matches the legal
value. For example, Figure 2.14 contains a UML diagram for a Boolean enu-
meration that has legal values of true and false.

Although this particular enumeration maps to a Java boolean primitive type,
Java does not provide direct support for arbitrary enumerations. Consider an
enumeration with the legal values of v1, v2, and v3. This enumeration is the
type of an attribute a in class C3. This model can be implemented in Java as
follows:

50 Chapter 2

d1:D e1:E

e2:E

r1 r2

r1

r2

Figure 2.12 Object links.

«datatype»
Integer

Figure 2.13 UML datatype notation.

// C3.java

public class C3 {

private String a;

public String getA() { return a; }

public void setA(String value) {

if (value == null || (!value.equals("v1") && !value.equals("v2")

&& !value.equals("v3")))

throw new IllegalArgumentException(value);

a = value;

}

}

There are other ways to implement this model in Java as well.
Chapter 5 contains suggestions for handling datatypes when you define

your objects using UML.
This concludes our tour of the parts of UML that are relevant to XMI.

Although there are many concepts in UML, you can see that only a few of
them are relevant to XMI, so you do not need to be a UML expert to use XMI.

Object Identity
Regardless of the object model that defines what objects are, object identity is
an important concept in many object-oriented applications. An object’s iden-
tity may depend on an object’s state or be independent of it.

Consider how Java handles object identity. Two objects are considered equal
using the �� operator if the objects are the same object. For example, for a
class C, the following lines of Java print obj1 is equal to obj2:

C obj1 = new C();

C obj2 = obj1;

if (obj1 == obj2)

System.out.println("obj1 is equal to obj2");

This handling of objects is not sufficient for any program that saves objects
and restores them, because the restored objects will not be the exact objects
that were saved. Instead, they will be copies of them. The state of the restored
objects should equal the state of the original objects, even though they are dif-
ferent objects.

Related Standards: XML and UML 51

true
false

«enumeration»
Boolean

Figure 2.14 UML enumeration notation.

Java enables you to specify equality for your objects by implementing the
equals() method in your classes; its signature is boolean equals(Object object). You
can specify that two objects are equal according to the state of the objects. For
example, consider a Java class C that has two fields, a String and an int. You can
define an equals() method for the class that returns true if two objects are
instances of C, and they have the same values for their fields, as follows:

public class C {

private int number;

private String string;

public int getNumber() { return number; }

public String getString() { return string; }

public void setNumber(int value) { number = value; }

public void setString(String value) { string = value; }

public boolean equals(Object object) {

if (!(object instanceof C))

return false;

C obj = (C) object;

return number == obj.number && string.equals(obj.string);

}

}

Given this declaration of class C, the following lines of code print obj1 equals
obj2:

C obj1 = new C();

obj1.setNumber(5);

obj1.setString("s");

C obj2 = new C();

obj2.setNumber(5);

obj2.setString("s");

if (obj1.equals(obj2))

System.out.println("obj1 equals obj2");

In this program, although obj1 is not the same object as obj2, it is equal to obj2
because its state matches the state of obj2. In other contexts, though, it may be
expensive to compare the entire state of two objects to determine whether they
are equal. It may be possible to distinguish objects based on a subset of their
states. For example, for a Person class, it may only be necessary to compare two
persons’ Social Security numbers to determine whether they are the same per-
son, rather than comparing all of the other fields of the Person ojects.

As you will see in Chapter 3, XMI uses strings to identify objects, rather than
using the entire state of each object. Please see Chapter 3 for more details about
how to identify objects using XMI.

52 Chapter 2

Summary

This chapter has discussed two standards that are related to XMI: XML and
UML. You have learned some of the basic concepts in both standards that are
most relevant to XMI. You saw how to represent data in XML elements and
attributes, and how to write schemas that define the legal content of XML ele-
ments and the values of XML attributes. You also know the basic constructs of
the UML object model that define the state of objects, and you saw that you can
use Java to implement UML models. Now that you are familiar with XML and
UML, you are ready to learn details about how XMI represents objects in XML.

Related Standards: XML and UML 53

55

Now that you know the basic concepts of the Extensible Markup Language
(XML) and the Unified Modeling Language (UML), you are ready to begin
learning the core concepts of XML Metadata Interchange (XMI) itself. We
explain the latest version of XMI, XMI 2.0, in this chapter. The Object Manage-
ment Group (OMG) is currently finalizing XMI 2.0 as we write this book, so
there may be some differences between the final specification of XMI 2.0 and
the current specification (OMG, 2001). Also, in some cases, we believe there are
errors in the current specification that will be fixed in the final specification.
We describe in this chapter what we believe XMI 2.0 will be when the final
specification is approved by the OMG. We note differences between this chap-
ter and the current specification as we explain XMI.

This chapter explains how XMI works with the UML object model we
explained in Chapter 2, and it also describes the XML elements and XML
attributes that XMI defines. Before explaining XMI itself, though, we define
the terminology we use in this chapter and the rest of the book. The terminol-
ogy enables us to succinctly refer to parts of the UML object model. We also
describe how we represent UML composition in this book. UML enables you
to represent composition in two ways; by using only one way in this book, we
simplify our discussion of XMI.

XMI Concepts

C H A P T E R

3

After explaining our terminology, this chapter describes the following
aspects of XMI:

■■ Writing objects and their parts using XMI

■■ Generating schemas from models and how to tailor the schemas XMI
creates

■■ Defining XMI XML elements and attributes using the XMI model

We explain XMI by focusing our discussion on one part of the UML object
model at a time. For example, we describe how to write objects using XMI by
first describing how to write objects that have no attribute values and no ref-
erences, then by describing how to write attribute values, and then by discuss-
ing how to write references. Similarly, we discuss how to generate schemas for
classes with no attributes or association ends; then we discuss how attributes
are represented in schemas and we look at association ends. This approach
enables us to focus on the issues that pertain to a specific part of the object
model, rather than attempt to discuss many issues at the same time.

After we discuss how to generate a schema from a model, we define some
XML elements and XML attributes used by XMI in a model, and then derive
the corresponding schema from it. We also explain any XMI elements and
attributes that we have not yet explained.

As mentioned in the introduction, we describe XMI in terms of the UML
object model rather than the Meta Object Facility (MOF) object model, the one
used by the XMI specification. We do so for the following reasons:

■■ UML 2.0 and MOF 2.0 will be closely aligned because the OMG is
working to eliminate the differences between the class-modeling capa-
bilities of UML and MOF.

■■ Since we expect UML and MOF to be closely aligned, we expect that
UML models can be transformed into MOF models very easily.
Although an MOF model is at a higher level of abstraction than a corre-
sponding UML model, that difference does not matter unless you are
writing an application that needs to work with data at different levels
of abstraction, such as an MOF repository. We expect that many appli-
cations work with data at one level of abstraction that is defined by a
model. In these applications, multiple levels of abstraction are not used.

■■ We believe that more people are familiar with UML than with MOF.

UML Terminology and Use

We define several terms that enable us to refer to parts of the UML object
model. Also, we explain our choice for representing UML composition. This

56 Chapter 3

simplifies our discussion of XMI. We are not redefining UML; we are simply
defining terms to make the discussion of XMI easier to understand.

Classes have attributes and association ends. Using our terminology, there
are two kinds of attributes. A data attribute is a UML attribute that has a UML
datatype as its type. An object attribute is a UML attribute that has a class as its
type. Each attribute has a corresponding value in an object. A data value is the
value of a data attribute, and an object value is the value of an object attribute.
An object value represents UML composition; the object value is contained in
the object that has the value, and if the object that has the value is deleted, so
is the object value. Because of the composition semantics, only one object has
an object value; an object value cannot belong to two objects.

Consider the class diagram in Figure 3.1. The Car class has a part object
attribute and its type is the Part class. A Part object can be a value (an
object value in this case) of the part attribute in a particular Car object. If the
Car object is deleted, the Part object is deleted also, because of the composition
semantics of object attributes and object values. Also, if a Part object, Part1, is a
value of the part attribute in a Car object, Part1 cannot be the value of the part
attribute in any other Car objects.

We use the term reference for an instance of an association end. A reference
represents a relationship between two objects, the object that has the reference
and another object, which we call the referenced object. The relationship does
not represent composition.

In this book, we always use object attributes to represent composition; we
do not use associations to do so. We do this merely to simplify the discussion
of XMI; in your models, you can use either attributes or associations to repre-
sent composition. The choice of how to represent composition in a UML model
does not affect how XMI handles composition.

To summarize this discussion, classes have attributes and association ends.
Each attribute is either a data attribute or an object attribute. Because we do
not use associations to represent composition, the association ends in this book
do not have composition semantics. Objects have attribute values and refer-
ences. Each value is either a data value or an object value. An object value rep-
resents a composition relationship between the object that has the value and
the object that is the value. A reference is a relationship between the object that
has the reference and the referenced object; there are no composition semantics
for this relationship.

XMI Concepts 57

part[0..*] : Part

Car Part

Figure 3.1 The Car class with a part object attribute.

Writing Objects Using XMI

This section explains how to write objects and their parts using XMI. We start
by explaining how to write objects that have no attribute values or references,
focusing on where to put the objects in XML documents and the XML attrib-
utes that XMI defines to identify objects. We also introduce the XMI XML ele-
ment, which can be used to hold objects. Then we discuss how to write
attribute values and references, and how to refer to objects in different docu-
ments. We end this section by explaining how to write additional information
with objects, information that is not in attribute values or references. After
reading this section, you should be able to write objects in XML using XMI,
and you should be able to read XMI documents and understand the objects
that are saved in them.

Objects
The simplest objects to write are objects that do not have any attribute values
or references. Furthermore, they are not object values themselves. We discuss
objects that are object values later.

XMI specifies two alternatives for writing such objects. You can put them in
XMI documents, where all the XML elements in the document comply with
the XMI specification, or you can write them inside any XML element. In the
latter case, you could have a single XML document that contains XML ele-
ments that are not related to the XMI specification as well as objects serialized
using XMI.

In both cases, you need to use the XMI namespace, which is the context for
all the XML elements and attributes defined by the XMI specification. The
namespace Uniform Resource Identifier (URI) is http://www.omg.org/XMI. For
the examples in this chapter, we use the namespace prefix xmi for this name-
space, but you can use any namespace prefix you wish in your documents.

XMI Documents

Because XMI documents are XML documents, you should put the XML pro-
cessing instruction at the beginning of them. The processing instruction
includes the version of XML and identifies the encoding of the characters in
the document. We always use UTF-8 encoding in this book. The XML process-
ing instruction is:

<?xml version="1.0" encoding="UTF-8"?>

If the encoding is UTF-8, the processing instruction is not required in an
XML document. We sometimes do not include it in our examples. However, it

58 Chapter 3

is probably best to include it in your XMI documents even if it is not required,
since the XML specification [World Wide Web Consortium (W3C), 2001] says
that you should include it.

One way to write your objects in XMI is to put your objects in an XMI XML
element that is the root element for an XML document. The XMI XML element
has an XML attribute called version that must have the value 2.0, and that
attribute must use the namespace prefix for the XMI namespace. Here is an
empty XMI document:

<xmi:XMI xmi:version="2.0" xmlns:xmi="http://www.omg.org/XMI"/>

XMI represents each object using an XML element. The tag name of the ele-
ment corresponds to the name of the class that the object is an instance of. You
may use XML namespaces to distinguish classes with the same names. Since
your class name may not be a legal XML tag name, you may need to convert
from the class name to a legal XML tag name.

Here is how an object that is an instance of a Car class can be represented in
XMI:

<xmi:XMI xmi:version="2.0" xmlns:xmi="http://www.omg.org/XMI">

<Car/>

</xmi:XMI>

You specify the XML namespaces to use with your objects in models, as
described in the Generating Schemas from Models section of this chapter. You
provide the namespace URI for an XML namespace when you specify an XML
namespace in a model, so you must choose a namespace prefix to use with that
namespace in a particular XMI document. You can choose a different prefix for
different documents if you wish. For example, if an XML namespace with a
URI of http://cars is specified for the Car class, you can choose to use a name-
space prefix of cars for that namespace in an XMI document. Here is an XMI
document that uses that namespace:

<xmi:XMI xmi:version="2.0" xmlns:xmi="http://www.omg.org/XMI"

xmlns:cars="http://cars">

<cars:Car/>

</xmi:XMI>

In UML, like Java, the fully qualified name of a class consists of the name of
the class and the name of the package that contains it, along with the packages
that contain that package. For example, the class name p1.p2.Car is the fully
qualified name for a Car class that is in package p2, where p2 is contained in
package p1. You can use the fully qualified names of classes to distinguish two
classes with the same name. Class p1.p2.Car is different than class p3.Car, for
example.

XMI Concepts 59

If you do not use namespaces, you need to use the fully qualified names of
classes to distinguish XML elements corresponding to instances of classes with
the same name. This technique may result in very large documents that are
rather difficult to read. You should use XML namespaces to distinguish them
instead, because the resulting documents are shorter and easier to read. In fact,
you should probably provide XML namespaces for your models even if all the
class names are unique, so you can put objects defined by different models in
the same XMI document without causing name collisions.

For the classes p1.p2.Car and p3.Car, if you specify a namespace for each
class, you can use those namespaces in the tag names of XML elements in an
XMI document, rather than using the fully qualified names. If the namespace
for the first Car class has a URI of http://car1, you may decide to use the prefix
car1 for that namespace. If the namespace for the second Car class has a URI of
http://car2, you may decide to use a prefix of car2 for that namespace. Then an
instance of both classes can be written to an XMI document as follows:

<xmi:XMI xmi:version="2.0" xmlns:xmi="http://www.omg.org/XMI"

xmlns:car1="http://car1"

xmlns:car2="http://car2">

<car1:Car/>

<car2:Car/>

</xmi:XMI>

The first Car object is an instance of the class p1.p2.Car since the namespace
for the Car XML element is the namespace for class p1.p2.Car. The second Car
object is an instance of p3.Car since its namespace is the namespace for class
p3.Car.

The XMI XML element need not be used if there is only one object at the top
level. You can use the version XML attribute defined by XMI in the XML ele-
ment for an object to indicate that the object was serialized using XMI. The fol-
lowing is a legal XMI document with one instance of a Car class:

<Car xmi:version="2.0" xmlns:xmi="http://www.omg.org/XMI"/>

When there is only one object at the top level in the document, you do not
need to put that object in an XMI XML element, but you may do so if you wish.

XML Documents

You saw in the previous section how the root element of an XMI document is
either the XMI XML element or an XML element that is an object serialized
using XMI. However, these elements do not need to be the root element of a doc-
ument; you can put them inside other XML elements. This enables you to use
XMI with other standards that use XML. You can use XMI to serialize objects in
the body of a Simple Object Access Protocol (SOAP) document, for instance.

60 Chapter 3

Here is an example of serializing an instance of a Car class inside an XMI
XML element that is inside another XML element:

<containerElement>

<xmi:XMI xmi:version="2.0" xmlns:xmi="http://www.omg.org/XMI">

<Car/>

</xmi:XMI>

<moreContent/>

</containerElement>

Here the same Car object is serialized without using an XMI XML element.
Instead, the version XML attribute defined by XMI is placed inside the Car ele-
ment:

<containerElement>

<Car xmi:version="2.0" xmlns:xmi="http://www.omg.org/XMI"/>

<moreContent/>

</containerElement>

You can serialize multiple objects without using an XMI XML element if you
wish:

<containerElement>

<Car xmi:version="2.0" xmlns:xmi="http://www.omg.org/XMI"/>

<Car xmi:version="2.0" xmlns:xmi="http://www.omg.org/XMI"/>

<moreContent/>

</containerElement>

To avoid declaring the XMI namespace multiple times, it is more convenient
to declare the XMI namespace once in an XML element that contains the XML
elements corresponding to the objects, as follows:

<containerElement xmlns:xmi="http://www.omg.org/XMI">

<Car xmi:version="2.0"/>

<Car xmi:version="2.0"/>

<moreContent/>

</containerElement>

In the previous two examples, you can put any XML elements you wish
between the two Car XML elements, before them, and after them.

Object Identity

As you saw from the discussion of object identity in Chapter 2, the state of an
object consists of its attribute values and references. Two objects with the same
state are considered identical. XMI enables you to specify the identity of an
object with three XML attributes defined by XMI, rather than using the object’s
state. Each attribute has different semantics.

XMI Concepts 61

The id XML attribute has the type ID, so its value must be a legal identifier
for an XML element. The value of the id attribute must be unique within a doc-
ument, but is not guaranteed to be unique among documents. It is used to
specify relationships among objects, as we explain in the following References
section. XMI enables you to specify another name for this attribute, as we
explain in the Generating Schemas from Models section later in this chapter.

The uuid XML attribute must contain a globally unique identifier; it needs to
be unique among all objects regardless of the documents they are saved in. The
name uuid is an abbreviation for universally unique identifier. XMI does not
specify the format for the uuid, so you can use any algorithm you wish to gen-
erate its value. The Distributed Computing Environment (DCE) specification
describes an algorithm for generating globally unique identifiers, for example.

The label XML attribute contains any other piece of information that you
wish to associate with an object. XMI does not define the label attribute’s value.

The names of these XML attributes must include the namespace prefix for
the XMI namespace when the attributes occur in a document. All of these
attributes are optional, so you should only use the ones that are needed for
your applications. Here are some examples of instances of a Car class that use
these attributes:

<xmi:XMI xmi:version="2.0" xmlns:xmi="http://www.omg.org/XMI"/>

<Car xmi:id="_1" xmi:uuid="CA 9ABC123" xmi:label="clunker"/>

<Car xmi:id="_2" xmi:label="clunker"/>

<Car xmi:id="_3"/>

</xmi:XMI>

Note that each of the values of the id attributes is unique, as required by
XML. Also, since the first Car object has a uuid attribute with the value CA
9ABC123, no other Car object should have the same uuid attribute value in any
other documents. Since XMI does not define the value of the label attribute, it
is legal for two objects to have the same value for that attribute.

Attribute Values
Now that you know where to put objects in XMI and XML documents, and
how to use the XML attributes defined by XMI for identifying objects, you are
ready to learn how to represent an object’s attribute values. XMI represents
attribute values using either XML elements or XML attributes. Recall from
Chapter 2 that there are two kinds of UML attribute values: data values and
object values. A UML attribute has a multiplicity that defines the number of
values for that attribute that can appear in an object. It is possible for an object
to have multiple values for the same UML attribute.

XMI enables you to put a UML attribute value either in an XML attribute or
an XML element if both of the following conditions are true:

62 Chapter 3

■■ The value is a data value.

■■ There can be at most one value for the UML attribute in an object.

XMI requires the use of an XML element to represent a UML attribute value
in any of the following cases:

■■ The value is an object value.

■■ The value is one of several values for an attribute in an object.

■■ The value is nil.

First, we explain how XMI represents data values and then we explain how
XMI represents object values.

Data Values

XMI specifies that an attribute’s data value be put in either an XML attribute or
an XML element. If it is put in an XML attribute, the name of the XML attribute
is the name of the attribute. Similarly, if it is put in an XML element, the tag name
of the XML element is the name of the attribute. If the name of the attribute is not
a legal XML attribute name or tag name, you need to convert it to a legal one.

Consider a class Person that has an attribute called name of type string, the
XML schema string datatype. The multiplicity of the attribute is 0..1. If an
object is an instance of Person and has an attribute value of John Doe for the
name attribute, you can serialize the object and its attribute value this way:

<Person name="John Doe"/>

For brevity, we do not show the enclosing XMI XML element for the exam-
ples in this section.

You can also serialize the object as follows, using an XML element for the
data value:

<Person>

<name>John Doe</name>

</Person>

XMI enables you to specify in a model whether a data value is written using
an XML element or an XML attribute. Details of how to do so are in a later sec-
tion on generating schemas from models.

One reason for putting a data value in the content of an XML element rather
than an XML attribute is to preserve whitespace. XML parsers normalize
whitespace in the values of XML attributes. For example, XML parsers convert
tab characters and end-of-line characters to space characters. If your data
value contains whitespace that will be normalized, you should put the value
in the content of an XML element to preserve the whitespace.

XMI Concepts 63

Another reason to use an XML element is to serialize a nil data value. You
represent a nil value by setting the nil XML attribute in the XML schema
instance namespace to true on an XML element with empty content. For exam-
ple, if there is a nil value for the name attribute of an instance of the Person
class, it is serialized this way:

<Person xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

<name xsi:nil="true"/>

</Person>

The declaration of the schema instance namespace does not need to be in the
Person XML element; it can be in the root element of the document, for example.

You are required to use XML elements to save data values if an attribute has
multiple data values. For example, if a Person class has an attribute called hobby
that has a multiplicity of 0..* and type string (the XML schema string datatype),
the values for the hobby attribute in an instance of the Person class are written
as follows:

<Person>

<hobby>Reading specifications</hobby>

<hobby>Programming computers</hobby>

<hobby>Surfing the Internet</hobby>

</Person>

Since we are biased, we do not comment on the merit of this person’s hobbies.

Object Values

Unlike a data value, an attribute’s object value must always be serialized using
an XML element rather than an XML attribute. The tag name of the XML ele-
ment is the name of the attribute. The object value can be in a different XMI
document than the object that has the value; we describe how to handle such a
case in the Objects in Different Documents section. We describe the case where
the object value and the object that has the value are in the same document in
this section.

For example, consider a Car class with an object attribute called style that has
Style as its type, where Style is a class. The Style class has two data attributes
called make and model of type String (which is mapped to the XML schema
string datatype). Figure 3.2 contains the class diagram for these two classes and
the String datatype. You can serialize an instance of the Car class (and the
object value for its style attribute) as follows:

<Car>

<style make="Jalopy" model="Deluxe"/>

</Car>

64 Chapter 3

The XML element style represents the value of the style attribute for the Car
object. The value of the make attribute in the Style object is Jalopy, and the value
of the model attribute in the Style object is Deluxe. Note that the class name Style
for the Style object is not used as the tag name of the XML element represent-
ing the object; the tag name is style, the name of the attribute that the Style
object is a value of.

Since the tag name of an XML element representing an object value is not the
name of the class the object value is an instance of, you need to determine
the class for the object value by examining the model that defines the objects.
If the model has classes that inherit from each other, you may not be able to
determine the class for the object value, because the object value may be an
instance of one of several classes. In this case, you need to specify the class for
the object value using either the type XML attribute defined by XMI or the type
XML attribute defined by the XML schema specification. The following exam-
ple clarifies this point.

Consider a Car class that has an object attribute called part with a multiplic-
ity of 0..* and type Part. The Part class has two subclasses, Engine and Trans-
mission. The UML class diagram for these classes appears in Figure 3.3.

Now consider a Car object that has one value for the part attribute. The Car
object appears as follows:

<Car>

<part/>

</Car>

We know that this car has a part, but what kind of part is it? XMI specifies
that the class for an object value must be specified if it is a subclass of the class
that is the type of the attribute. So, in the previous example, the object value for
the part attribute is an instance of class Part since the type of the part attribute
is Part. If the object value for the part attribute is an instance of class Engine, it

XMI Concepts 65

style : Style

Car
make : String
model : String

Style

«datatype»
String

Figure 3.2 The Car class with the style object attribute.

is written with an XML attribute called type. The following example uses the
type attribute defined by XMI:

<Car>

<part xmi:type="Engine"/>

</Car>

Remember that the namespace associated with the prefix xmi is the XMI
namespace, and its URI is http://www.omg.org/XMI.

If you specify a namespace URI for the Car, Part, Engine, and Transmission
classes, the value of the type attribute needs to specify the namespace as well.
For example, if you specify the namespace URI http://cars for these classes and
decide to use the namespace prefix CAR for that namespace URI in an XMI doc-
ument, the Car and Engine objects in the previous example appear as follows:

<xmi:XMI xmi:version="2.0" xmlns:xmi="http://www.omg.org/XMI"

xmlns:CAR="http://cars"/>

<CAR:Car>

<part xmi:type="CAR:Engine"/>

</CAR:Car>

</xmi:XMI>

Note that the Car XML element has a tag name that includes the name-
space prefix CAR, and the value of the type attribute also includes that
namespace prefix. If we used the type attribute in the XML schema instance
namespace instead of the type attribute in the XMI namespace, the value of
the attribute would still be CAR:Engine.

When do you use the type attribute defined by XMI rather than the type
attribute defined in the XML schema instance namespace? As you will see in
the section Generating Schemas from Models, you can use schema extension to

66 Chapter 3

part[0..*] : Part

Car Part

Engine Transmission

Figure 3.3 A car with three kinds of parts.

represent inheritance. If you choose to do so, you need to use the type attribute
defined in the XML schema instance namespace. If you do not use schema
extension to represent inheritance, you need to use the type attribute defined
by XMI.

Namespaces and Values

We have seen that XMI uses either an XML attribute or an XML element to rep-
resent an attribute value. In each of our examples so far, the names of the XML
attributes for attribute values have not included a namespace prefix. Also, the
tag names of the XML elements for attribute values have not included a name-
space prefix. A namespace prefix may need to be included in these names,
though, depending on the schema created from the model.

As we described in Chapter 2, XML schemas can require that namespace pre-
fixes be used in attribute names and in the tag names of XML elements. In XMI
schemas, the XML attributes and XML elements for attribute values do not nor-
mally require namespace prefixes in their names. However, you can specify in
your models that namespace prefixes must be used. Please refer to the Generat-
ing Schemas from Models section for a complete description of how to specify
that namespace prefixes are to be used and how that affects XMI schemas.

References
Like attribute values, XMI serializes references using either XML attributes or
XML elements. Recall from the terminology section of this chapter that a refer-
ence is an instance of an association end. Because we use object attributes in
this book to represent composition rather than association ends, a reference is
a relationship between two objects that does not have composition semantics.
We use the term referenced object for the object that is related to the object that
has the reference.

An object may have more than one reference that is an instance of a particu-
lar association end. The number of references in an object is constrained by the
multiplicity of the association end. XMI serializes the references that are
instances of an association end using either an XML attribute to represent all
the references or an XML element for each reference.

XMI uses an XML attribute for the references that are instances of an associ-
ation end if both of the following conditions are true:

■■ The referenced object of each reference is in the same document as the
object that has the reference.

■■ You use XML attributes of type ID and IDREFS to refer to objects in the
same document.

XMI Concepts 67

XMI uses an XML element for each reference in the following situations:

■■ The referenced object of any of the references that are instances of an
association end is in another XMI document.

■■ You choose to use a URI to refer to objects in the same document (we
explain how to specify this choice in a model in the Generating Schemas
from Models section).

We describe how to use an XML attribute to represent references first and
then how to use an XML element to represent references. For both cases, we
discuss how to represent a reference that has a referenced object in the same
document as the object that has the reference. We also discuss how to represent
a reference that has a referenced object in another document in the Objects in
Different Documents section.

Representing References
Using XML Attributes

By default, XMI uses an XML attribute to represent all the references in an
object that are instances of a particular association end if all the referenced
objects are in the same document as the object that has the references. The
name of the attribute is the name of the association end. If the name of the
association end is not a legal XML attribute name, you need to convert it to a
legal name.

The XML attribute has type IDREFS. The value of the attribute consists of
the identifiers of the XML elements corresponding to the referenced objects,
separated by spaces.

Consider a model consisting of a Car class and a Person class, with a unidi-
rectional association between the two classes. The association end attached to
the Person class is called driver, and it has a multiplicity of 0..*. The class dia-
gram for this model appears in Figure 3.4.

Consider a Car object that has two references that are instances of the asso-
ciation end driver. Each reference relates a Person object to the Car object. The
three objects can be written using XMI as follows (excluding the XMI XML ele-
ment):

68 Chapter 3

Car Persondriver

0..*

Figure 3.4 A car has drivers.

<Car driver="P1 P2"/>

<Person xmi:id="P1"/>

<Person xmi:id="P2"/>

The driver XML attribute represents the two driver references. The value of
the driver XML attribute contains the identifiers of the two Person XML ele-
ments that represent the two Person objects related to the Car object.

Representing References
Using XML Elements

If you specify in a model that URIs are to be used to refer to objects in the same
document, XMI represents each reference using an XML element. The tag
name of the XML element is the name of the association end that the reference
is an instance of. If the name of the association end is not a legal XML tag
name, you need to convert it to a legal name. The XML element has an href
XML attribute that contains a URI fragment identifier that references an XML
element in the document.

Here is how XMI writes the Car and Person objects in the previous section
using URIs to refer to objects in the same document:

<Car>

<driver href="#P1"/>

<driver href="#P2"/>

</Car>

<Person xmi:id="P1"/>

<Person xmi:id="P2"/>

The two driver XML elements inside the Car XML element refer to the Person
XML elements outside the Car XML element.

Namespaces and References

We have seen that XMI uses either an XML attribute or an XML element to rep-
resent a reference. In each of our examples so far, the names of the XML attrib-
utes for references have not included a namespace prefix. Also, the tag names
of the XML elements for references have not included a namespace prefix. A
namespace prefix may need to be included in these names, though, depending
on the schema created from the model.

As we described in Chapter 2, XML schemas can require that namespace
prefixes be used in XML attribute names and the tag names of XML elements.
In XMI schemas, the XML attributes and XML elements for references do not
normally require namespace prefixes in their names. However, you can spec-
ify in your models that namespace prefixes must be used. Please see the

XMI Concepts 69

Generating Schemas from Models section for a complete description of how to
specify that namespace prefixes are to be used and how that affects XMI
schemas.

Objects in Different Documents
So far, we have only considered the case where all the objects are saved in one
XMI document. XMI gives you the flexibility of saving your objects in differ-
ent documents. When you use multiple documents, it is possible that a refer-
enced object of a reference or an object value of an attribute is in a different
document than the object being serialized. XMI uses an XML element to repre-
sent the reference or the object value in this case. The XML element has an href
attribute with a value that is a URI that points to the XML element corre-
sponding to the referenced object or object value in the other document. The
tag name of the XML element is the name of the attribute or the name of the
association end corresponding to the reference.

We provide an example of an object value in a different document than the
object that has the value. Then we provide examples of references where the
referenced objects are in a different document than the object that has the ref-
erence.

Object Values in Different Documents

Consider a Car object and a Part object that are instances of the Car class and
Part class in Figure 3.3. The Part object is the object value of the part attribute in
the Car object. You can serialize a Part object in the file parts.xmi, and the Car
object in the file car.xmi. The Car object in car.xmi appears as follows:

<Car>

<part href="parts.xmi#P1"/>

</Car>

70 Chapter 3

USE OF XLINKS IN XMI

At the time this book is being written, the OMG is considering how to use
XLinks from the XLink specification (W3C, 2001) in XMI. It is likely that XMI will
enable the use of the attributes defined in the XLink specification in addition to
the href attribute defined by XMI, as described in this section. If so, you may be
able to use an xlink:href attribute, where xlink is the namespace prefix for the
XLink namespace. You may also be able to set the xlink:type attribute to the
value simple to indicate that the XML element is a simple XLink. Also, you may
be able to use more sophisticated XLink features than simple XLinks in XMI.

The value of the href attribute indicates that the object value is located in
parts.xmi, and the object value is represented by the XML element with the
identifier P1.

The Part object in parts.xmi appears as follows:

<Part xmi:id="P1"/>

Referenced Objects in Different Documents

Consider an object that has two references that are instances of the same associ-
ation end. One of the referenced objects is in another document, while the other
referenced object is in the same document. Since one of the referenced objects is
in another document, XMI requires that each of the references be represented
using an XML element. If you choose to use URIs to refer to objects in the same
document (as described in the Generating Schemas from Models section), each
XML element for a reference will have an href XML attribute to refer to the XML
element for the referenced object. If you do not specify that option, the XML ele-
ment for the reference with the referenced object in the same document will have
an idref XML attribute. The idref attribute is defined by XMI, and its value is the
identifier of the XML element for the referenced object in the same document.

Here is an example. The model in Figure 3.4 specifies that a Car object can
have Person objects related to it using driver references. If a particular Car object
has two driver references that relate the Car object to two Person objects, we can
save the Car object and one of the Person objects in the file file1.xmi. We can
save the other Person object in the file file2.xmi. Since one of the Person objects
is in another document, XMI requires that each driver reference be represented
by an XML element.

The Person object in file2.xmi appears as follows:

<Person xmi:id="P2"/>

The model in Figure 3.4 does not indicate that URIs are to be used to refer to
objects in the same document (you can use the XMI tagged value href
explained later in this chapter to indicate that URIs are to be used to refer to
objects in the same document), so the Car object and Person object in file1.xmi
appear as follows:

<Car>

<driver xmi:idref="P1"/>

<driver href="file2.xmi#P2"/>

</Car>

<Person xmi:id="P1"/>

The first driver XML element has an idref XML attribute that contains the
identifier of the XML element for the Person object saved in file1.xmi. The

XMI Concepts 71

second driver XML element has an href XML attribute that refers to the Person
object saved in file2.xmi.

If the model in Figure 3.4 indicated that URIs were to be used to refer to
objects in the same document, the contents of the XMI XML element for
file1.xmi would appear as follows:

<Car>

<driver href="#P1"/>

<driver href="file2.xmi#P2"/>

</Car>

<Person xmi:id="P1"/>

Note that each XML element for a driver reference has an href XML attribute
that refers to an XML element representing a Person object.

Additional Information
So far, we have described how XMI represents objects and their parts. XMI also
enables you to put additional information for each object in a document. That
additional information does not need to follow the XMI serialization rules; it
can be represented using any legal XML elements.

Why would you want to put additional information for an object in a docu-
ment? Sometimes you may need to store information in a document that is
useful to your tool but not to other tools. For example, your tool may display
information using a graphical user interface (GUI). You may want to save the
GUI information for an object serialized using XMI. It is doubtful that other
tools will be able to use the GUI information for your tool, unless you create a
model that defines the GUI information. XMI enables you to express this infor-
mation for each object in such a way that it does not interfere with the infor-
mation to be exchanged.

You serialize this information using an Extension XML element. The Exten-
sion XML element can be put inside the XML element representing an object.
You can put as many Extension elements as you wish in the XML element for
an object.

The Extension XML element has two XML attributes, extender and exten-
derID. Both attributes are optional, and the type of both attributes is the XML

72 Chapter 3

EXTENSION ELEMENTS IN THE XMI SPECIFICATION

At the time this book is being written, the XMI specification indicates that an
extension XML element is to be used rather than an Extension XML element.
We believe that a future specification will use Extension for the tag name
rather than extension, so we use Extension in this book.

schema string type. You can use the extender XML attribute to identify the tool
that created the extension, and you can use the extenderID attribute to specify
an identifier for the extension that is specific to your tool. By using these attrib-
utes, you can distinguish extensions that pertain to your tool from extensions
that other tools have serialized with an object.

Consider a tool that displays information about cars using a GUI. The tool
takes instances of a Car class and displays information about them on a screen.
The tool saves Car objects in XMI documents. When the Car objects are
restored from documents, the tool displays the Car objects in the same position
on the screen as they were when the objects were saved. To support this func-
tionality, the tool can save the position information in an Extension XML ele-
ment for each object. The tool can use the extender XML attribute of each
Extension element to store the name of the tool. If the position information can
be expressed as an x-coordinate and a y-coordinate, a particular Car object can
appear as follows in an XMI document:

<Car>

<xmi:Extension extender="ToolName">

<GUIInfo x="35" y="17"/>

</xmi:Extension>

</Car>

Notice that you must use the namespace prefix for the XMI namespace in
the tag name of the Extension XML element. You can put any well-formed XML
elements you wish inside an Extension XML element.

You are not required to put your Extension XML elements inside the objects
that the additional information is for. You can put them directly inside an XMI
XML element and then refer to the objects that the Extension XML elements
pertain to.

For example, you can serialize the GUI information for the previous Car
object as follows:

<xmi:XMI xmi:version="2.0" xmlns:xmi="http://www.omg.org/XMI" >

<Car xmi:id="C1"/>

<xmi:Extension extender="ToolName" extenderID="C1">

<GUIInfo x="35" y="17"/>

</xmi:Extension>

</xmi:XMI>

In this example, the extenderID XML attribute has the identifier of the Car
that the GUI information pertains to. You can also refer to the Car object within
the Extension XML element. For example, you can use a car XML attribute on
the GUIInfo XML element as follows:

<xmi:XMI xmi:version="2.0" xmlns:xmi="http://www.omg.org/XMI" >

<Car xmi:id="C1"/>

XMI Concepts 73

<xmi:Extension extender="ToolName">

<GUIInfo x="35" y="17" car="C1"/>

</xmi:Extension>

</xmi:XMI>

If you anticipate that some of the information you are putting in Extension
XML elements will be used by other tools, you should consider defining the
information in a model. Then the information can be serialized as objects and
their parts using the XMI serialization rules, enabling that information to be
easily exchanged.

As you will see in The XMI Model section of this chapter, putting information
in Extension elements does not hinder schema validation for XMI documents.
Chapter 4 discusses other issues that you should consider when you use Exten-
sion XML elements.

Generating Schemas from Models

Not only can you use XMI to serialize objects in documents, but you can also
use XMI to generate schemas from models. If you are unfamiliar with
schemas, you can use XMI to create valid schemas. However, if you are famil-
iar with schemas, you can tailor the schemas that XMI produces. This section
describes the schemas that XMI specifies and how you can tailor the schemas
for your own purposes.

You specify how to tailor the schemas XMI produces by using tagged values
in your models. Recall from Chapter 2 that tagged values are additional prop-
erties for UML constructs. Each tagged value consists of a tag and a value. XMI
defines tags that affect how XMI creates schemas from models. We describe
each tag that can be used with a particular UML construct, the legal values for
those tags, and the effect that each value has on the schemas XMI creates. We
summarize this information at the end of this section.

Each of the tags defined by XMI contains the prefix org.omg.xmi. For brevity
in the following discussion, we use tag names that do not include the prefix.

74 Chapter 3

UML MODELS IN XMI DOCUMENTS

Software that implements the XMI specification to generate schemas from
models requires that the models be input in a form the software can
understand. Some modeling tools enable you to save your models in XMI
documents; those documents can then by processed by XMI software to
generate schemas. Chapter 9 shows how to use a model in XMI format with the
Framework software included on the accompanying CD-ROM.

Keep in mind that you need to use the prefix unless you are using software
that automatically adds the prefix for you.

You can also use stereotypes rather than some of the tag values. If a tag has
a boolean value, and its default value is false, you can specify a stereotype
rather than set the tag to true. The name of the stereotype is the name of the tag,
excluding the org.omg.xmi prefix. For example, we explain that the ordered tag
can be set to true for a class. Rather than setting the ordered tag to true, you can
add an ��ordered�� stereotype to the class. Note that you cannot use stereo-
types in this manner for tags that do not have boolean values, and you cannot
use stereotypes for tags that have a default value of true.

We first describe the default schemas that XMI specifies and then we
describe how to use tagged values in UML models to tailor the schema repre-
sentation. Each discussion is organized by UML constructs. We describe how
XMI represents packages, classes, datatypes, attributes, association ends, and
inheritance in XML schemas.

We strongly urge you to specify XML namespaces in your models so that
XMI creates schemas with target namespaces. Since we consider this technique
to be very important, we describe how to specify namespaces when we discuss
the default representation for packages.

Default XMI Schemas
XMI creates valid XML schemas from models even if you do not tailor the
schemas in any way, as long as the names in the model are legal XML tag
names and XML attribute names. This section explains how XMI creates XML
schemas from models if you choose not to tailor the schemas. However, since
we urge you to specify XML namespaces in your models, we explain how to
do so when we discuss packages.

Packages

By default, the XML schemas created by XMI do not have target namespaces
(if you do not know what a target namespace is, please read the Schemas sec-
tion of Chapter 2). However, you can specify an XML namespace for each
package, causing XMI to create schemas with target namespaces. If you do
this, there will not be name collisions among the XML tag names in your doc-
uments, even if you write objects from different models in the same document.
This also prevents name collisions if you have multiple classes with the same
names in different packages in your models. Another benefit of using this
approach is that XMI creates a schema for each package in your model.

You specify the XML namespace to use for a package by setting values for
the nsURI and the nsPrefix tags in your model. The value of the nsURI tag is the
XML namespace URI; XMI uses it as the target namespace for the schema

XMI Concepts 75

created from the package. The value of the nsPrefix tag is the namespace prefix
that XMI uses in the schema for the package.

Whether or not you specify an XML namespace for each package, each XMI
schema imports a schema that defines all of the XML attributes and XML ele-
ments in the XMI namespace.

Consider a package called Cars with an nsURI tag that has the value
http://cars and with a nsPrefix tag that has the value cars. The schema corre-
sponding to this package appears as follows:

<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"

xmlns:xmi="http://www.omg.org/XMI"

targetNamespace="http://cars"

xmlns:cars="http://cars">

<xsd:import namespace="http://www.omg.org/XMI"

schemaLocation="xmi20.xsd"/>

</xsd:schema>

As we saw in Chapter 2, the schema is contained in a schema XML element
in a schema namespace defined by the XML Schema specification (W3C, 2001).
We always use the namespace prefix xsd for that namespace in this book.
Because the nsURI tag is specified, the schema has a target namespace. We use
the prefix cars for the target namespace in the schema because that is the value
of the nsPrefix tag. The import XML element makes the declarations in the
schema that defines the XMI namespace available in this schema for the cars
package. The schemaLocation attribute indicates that the schema that defines
the XMI namespace can be found in the file xmi20.xsd. The XMI namespace is
declared in this schema with the prefix xmi, so the contents of the schema that
defines the XMI namespace can be referred to in this schema by using that pre-
fix. We include the file xmi20.xsd on the CD-ROM.

Classes

XMI creates a complex type declaration and an element declaration for each
class in a model. If you use the nsURI and nsPrefix tags, as explained in the
previous section, each complex type declaration and element declaration cor-
responding to a class is in the target namespace for the package that the class
belongs to. In this section, we consider classes that have no attributes or asso-
ciation ends. We discuss the treatment of attributes and association ends later
in this chapter.

Consider a class named Car in a package called Cars that has a nsURI tag
with the value http://cars and an nsPrefix tag with the value cars. The XMI
schema corresponding to this package appears as follows:

<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"

xmlns:xmi="http://www.omg.org/XMI"

76 Chapter 3

targetNamespace="http://cars"

xmlns:cars="http://cars">

<xsd:import namespace="http://www.omg.org/XMI"/>

<xsd:complexType name="Car">

<xsd:choice minOccurs="0" maxOccurs="unbounded">

<xsd:element ref="xmi:Extension"/>

</xsd:choice>

<xsd:attribute ref="xmi:id"/>

<xsd:attributeGroup ref="xmi:ObjectAttribs"/>

</xsd:complexType>

<xsd:element name="Car" type="cars:Car"/>

</xsd:schema>

In the previous section, Packages, you saw the schema XML element, the
namespaces declared in it, and the import XML element. Now you can see the
complex type declaration and the element declaration for the Car class. Notice
that the declaration of the complex type specifies that the content contains any
number of Extension XML elements. We discuss how to use the Extension XML
elements in the Writing Objects Using XMI section of this chapter. We also
describe the declaration of the Extension XML element in The XMI Model sec-
tion of this chapter.

Note that the attribute group ObjectAttribs from the schema that defines the
XMI namespace is included in the complex type declared for the Car class. This
attribute group includes the declarations of the XML attributes uuid, label, idref,
and href. This enables you to use the identity and linking attributes defined by
XMI when serializing an object.

You may wonder why the id XML attribute is not in the ObjectAttribs
attribute group. The reason is because you can rename the id attribute, as we
explain when we describe how you can tailor the representation of classes in
XMI schemas. If you rename the id attribute, the XML attribute declaration for
that attribute replaces the reference to the id XML attribute declared in the XMI
namespace. It would not be possible to do the replacement if the id attribute
was in the ObjectAttribs attribute group.

XMI declares both an element and a complex type for each class to give you
the most options for reusing a schema created by XMI. You can use both the
complex type and the element in your schemas by importing the created
schema, since the declarations are in the target namespace of the created
schema.

Datatypes

XMI maps a UML datatype to an XML schema simple type. The schema type
can be one of the predefined schema datatypes or one of your simple types. We

XMI Concepts 77

discuss how you specify the schema type a UML datatype maps to in the sec-
tion Tailoring XMI Schemas. We describe in this section how XMI represents
UML enumerations in schemas.

Recall from Chapter 2 that a UML enumeration consists of a name for the
enumeration and literals that are the legal values for the enumeration. XMI
creates a simple type for a UML enumeration that restricts the string schema
datatype. The name of the simple type is the name of the enumeration, and
each literal is represented using an enumeration XML element in the XML
schema namespace. The declaration of the simple type is in the schema XML
element, so it can be referred to within the schema and by schemas that import
the schema.

Consider a UML enumeration called MyEnum that has literals v1, v2, and v3.
XMI creates the following declaration for it in an XMI schema:

<xsd:simpleType name="MyEnum">

<xsd:restriction base="xsd:string">

<xsd:enumeration value="v1"/>

<xsd:enumeration value="v2"/>

<xsd:enumeration value="v3"/>

</xsd:restriction>

</xsd:simpleType>

Notice that there is an enumeration XML element for each enumeration lit-
eral. Each literal is put in a value XML attribute.

Attributes

By default, XMI creates an XML element declaration for each UML attribute,
and possibly an XML attribute declaration as well, depending on the type of
the UML attribute and the attribute’s multiplicity. We explain how to cus-
tomize the XMI representation of attributes in the section Tailoring XMI
Schemas; we explain the default XMI representation of attributes here.

An XML attribute is declared for a UML attribute if the UML attribute has
both of the following characteristics:

■■ The multiplicity of the attribute is 1..1 or 0..1.

■■ The attribute is a data attribute (its type is a UML datatype).

Consider a Person class that has an attribute called name, which has string as
its type (the string XML schema type) and 0..1 as its multiplicity. XMI creates
the following complex type declaration for it:

<xsd:complexType name="Person">

<xsd:choice minOccurs="0" maxOccurs="unbounded">

<xsd:element name="name" type="xsd:string"/>

<xsd:element ref="xmi:Extension"/>

78 Chapter 3

</xsd:choice>

<xsd:attribute ref="xmi:id"/>

<xsd:attributeGroup ref="xmi:ObjectAttribs"/>

<xsd:attribute name="name" type="xsd:string"/>

</xsd:complexType>

XMI also creates an element declaration for the Person class, which is not
shown here. Notice that there is an XML element declaration for the UML
attribute in the content of the complex type as well as an XML attribute decla-
ration. If the maximum multiplicity of the UML attribute is greater than 1, XMI
does not create the XML attribute declaration.

Now consider a Car class with an attribute called style, which has Style as its
type and 0..1 as its multiplicity. Style is a class. The style attribute has an XML
element declaration but no XML attribute declaration. The complex type dec-
larations for the two classes are as follows:

<xsd:complexType name="Style">

<xsd:choice minOccurs="0" maxOccurs="unbounded">

<xsd:element ref="xmi:Extension"/>

</xsd:choice>

<xsd:attribute ref="xmi:id"/>

<xsd:attributeGroup ref="xmi:ObjectAttribs"/>

</xsd:complexType>

<xsd:complexType name="Car">

<xsd:choice minOccurs="0" maxOccurs="unbounded">

<xsd:element name="style" type="xmi:Any"/>

<xsd:element ref="xmi:Extension"/>

</xsd:choice>

<xsd:attribute ref="xmi:id"/>

<xsd:attributeGroup ref="xmi:ObjectAttribs"/>

</xsd:complexType>

Notice that the XML element declaration for the style attribute does not have
a type of Style, which you might expect. It has a type called Any. The Any type
is declared as follows in the schema that defines the XMI namespace:

<xsd:complexType name="Any">

<xsd:choice minOccurs="0" maxOccurs="unbounded">

<xsd:any processContents="skip"/>

</xsd:choice>

<xsd:anyAttribute processContents="skip"/>

</xsd:complexType>

The Any type enables any content and any attributes to be used.
The reason we use the Any type rather than the Style type has to do with the

default way that class inheritance is represented in XMI schemas and how it
can affect document validation. For example, suppose that you had a subclass

XMI Concepts 79

of Style called Substyle, and that the object value for the style attribute in a Car
object was an instance of Substyle. XMI does not use schema extension to rep-
resent class inheritance by default, so the Substyle type in a schema would not
be defined by extending type Style. If the Substyle class has attributes, and you
put the values of those attributes in the XML element style, a parser would
report a validation error if the type of the style element were Style. A parser
would report a validation error because the Style type has declarations for the
attributes in the Style class, but it does not have declarations for the attributes
in the Substyle class. If the Substyle type in the schema extends the Style type in
the schema, the type of the style XML element can be Style. We explain how
you specify that schema extension is to be used in the Tailoring XMI Schemas
section of this chapter. We also provide examples of using schema validation
in Chapter 9. Notice also that there is no XML attribute declaration for the style
UML attribute, since the type of the UML attribute is a class.

Association Ends

XMI creates an XML element declaration and an XML attribute declaration for
an association end. The XML element declaration for an association end
enables any content and any attributes to be used with the element in a docu-
ment. Remember that the association ends in this book do not have composi-
tion semantics because we represent composition using object attributes
instead.

Consider the model in Figure 3.4. In it, there is a class called Car that has an
association end driver. XMI creates the following complex type declaration for
the Car class:

<xsd:complexType name="Car">

<xsd:choice minOccurs="0" maxOccurs="unbounded">

<xsd:element name="driver" type="xmi:Any"/>

<xsd:element ref="xmi:Extension"/>

</xsd:choice>

<xsd:attribute ref="xmi:id"/>

80 Chapter 3

ANY TYPE AND THE XMI SPECIFICATION

The current XMI specification does not define the Any type. We have included
the Any type in the schema that defines the XMI namespace (in the file
xmi20.xsd). Doing so allows us to refer to the type rather than declaring it
multiple times. It is possible that the final XMI specification will not include the
Any type in the XMI namespace. If that is the case, you can define this type in
your own schema and reuse it.

<xsd:attributeGroup ref="xmi:ObjectAttribs"/>

<xsd:attribute name="driver" type="xsd:IDREFS"/>

</xsd:complexType>

Notice that the type of XML element driver is Any. Also notice that the type
of the XML attribute declared for the association end is IDREFS. This enables
references to Person elements in the same document as a Car element. The type
of the driver XML element is not Person, as you might expect. This is because
XMI does not use schema extension to represent inheritance unless you choose
to do so. If schema extension is not used, and the driver XML element declara-
tion has type Person, an instance of a subclass of Person serialized using the dri-
ver element in a document may cause schema validation to fail. This reasoning
is analogous to the reasoning we used in the previous section, Attributes, to
explain why the style XML element for the style object attribute was not given
the type of Style.

Inheritance

As mentioned previously, by default XMI does not use schema extension to
represent inheritance. XMI does not do so because XML schema types can only
extend one other type, and UML supports multiple inheritance. This means
that by default XMI puts inherited attributes and inherited association ends in
the complex type declaration for a class, along with the locally declared ones.
We see the effect of using schema extension, and how to tell XMI to use schema
extension, in the section Tailoring XMI Schemas later in this chapter.

Consider the model in Figure 3.5. The Driver class inherits from the Person
class. XMI maps the String datatype to the schema string datatype (we explain
in Tailoring XMI Schemas how you specify this mapping). The default complex
type declaration for the Driver class includes element declarations and
attribute declarations for the inherited name UML attribute and inherited
address association end, as well as the local driverLicenseNumber UML attribute
and car association end. Here is the default complex type declaration for the
Driver class:

<xsd:complexType name="Driver">

<xsd:choice minOccurs="0" maxOccurs="unbounded">

<xsd:element name="name" type="xsd:string"/>

<xsd:element name="driverLicenseNumber" type="xsd:string"/>

<xsd:element name="address" type="xmi:Any"/>

<xsd:element name="car" type="xmi:Any"/>

<xsd:element ref="xmi:Extension"/>

</xsd:choice>

<xsd:attribute ref="xmi:id"/>

<xsd:attributeGroup ref="xmi:ObjectAttribs"/>

XMI Concepts 81

<xsd:attribute name="name" type="xsd:string"/>

<xsd:attribute name="driverLicenseNumber" type="xsd:string"/>

<xsd:attribute name="address" type="xsd:IDREFS"/>

<xsd:attribute name="car" type="xsd:IDREFS"/>

</xsd:complexType>

Tailoring XMI Schemas
This section discusses how to tailor the schema representation for each of the
constructs in a UML model. You will learn that XMI is very flexible in its rep-
resentation of data. XMI defines tags that enable you to specify how you wish
the schemas to be tailored by providing values for the tags in your models. We
discuss the tags that affect each model construct and then we summarize the
tags XMI defines at the end of this section.

Packages

When we discussed packages in the Default XMI Schemas section, we
explained how to specify namespaces for packages by providing values for the
nsURI and nsPrefix tags. There are other tags defined by XMI that can be spec-
ified for packages that affect the classes contained in the packages. We identify
those tags when we summarize the tags in the Tagged Value Summary section
later in this chapter.

82 Chapter 3

name : String

Person

«datatype»
String

driverLicenseNumber : String

Driver

Address

Car

address

1

car

0..*

Figure 3.5 The Driver class inherits from the Person class.

Classes

Numerous XMI tags affect the representation of classes in schemas. The tags
are:

■■ xmiName

■■ idName

■■ contentType

■■ ordered

■■ superClassFirst

xmiName Tag

So far in our discussion, we have seen that XMI uses the names of classes as the
names of complex types and the names of elements that correspond to classes.
You can use the xmiName tag to specify the name to use for a class in a schema.
As you may guess, the value of the xmiName tag must be a legal XML name.
XMI uses the value of the xmiName tag as the name of the complex type decla-
ration and the name in the XML element declaration for the class. Using this
tag enables you to generate valid schemas without changing the names of
classes to make them legal XML names.

For example, if there is a class in a model called My Class, and you do not
wish to change the name of the class, you can set the value of the xmiName tag
for the class to MyClass.

idName Tag

There is at most one XML attribute that has a type of ID in a complex type dec-
laration within a schema. By default, XMI uses the XMI id attribute defined in
the XMI namespace. However, if you provide a value for the idName tag, XMI
uses that value as the name of the attribute of type ID in the complex type for
the class. The attribute of type ID is declared locally in the complex type dec-
laration, and the attribute declaration replaces the reference to the id attribute
declaration in the schema that defines the XMI elements and attributes.

Consider a Car class with an idName tag that has a value of myId. The com-
plex type declaration for the Car class appears as follows:

<xsd:complexType name="Car">

<xsd:choice minOccurs="0" maxOccurs="unbounded">

<xsd:element ref="xmi:Extension"/>

</xsd:choice>

<xsd:attribute name="myId" type="xsd:ID"/>

<xsd:attributeGroup ref="xmi:ObjectAttribs"/>

</xsd:complexType>

XMI Concepts 83

Note that rather than using the id attribute in the XMI namespace, an
attribute named myId is declared locally in the Car complex type. The type of
the myId attribute is ID. Also notice that if the XMI id attribute had been in the
ObjectAttribs attribute group, it would not have been possible to replace the
declaration of the XMI id attribute with another one.

As another example, SOAP uses an XML attribute called id that is not in a
namespace to identify XML elements. If you set the idName tag to id, XMI will
use the same XML attribute as SOAP to identify XML elements in XMI docu-
ments, rather than the id attribute in the XMI namespace.

contentType Tag

XMI defines a number of tags that affect the content of the complex type dec-
larations for classes. Many of the tags for UML attributes and association ends
affect the content, for example. In this section, we discuss one of the tags that
can be used with classes that affect the content: the contentType tag. You can
provide a value for the contentType tag to make the content be mixed or empty.
If the value of the contentType tag is mixed, the content is mixed. If the value of
the contentType tag is empty, the content is empty.

For a Car class with no attributes and no association ends, setting the con-
tentType tag to mixed results in the following complex type declaration:

<xsd:complexType name="Car" mixed="true">

<xsd:choice minOccurs="0" maxOccurs="unbounded">

<xsd:element ref="xmi:Extension"/>

</xsd:choice>

<xsd:attribute ref="xmi:id"/>

<xsd:attributeGroup ref="xmi:ObjectAttribs"/>

</xsd:complexType>

This enables text to be mixed with elements in the content of Car objects in
XMI documents.

You may specify that the content of the complex type for a class be empty by
setting the contentType tag to empty. If you do so, XMI still declares XML attrib-
utes for UML attributes and association ends, as appropriate, for the class. You
cannot set this value for the contentType tag if the class has object attributes or
data attributes that can have multiple values, because XMI uses XML element
declarations in the content of the complex type to represent those constructs.

Setting the contentType tag to empty for the Car class results in the following
complex type:

<xsd:complexType name="Car">

<xsd:complexContent/>

</xsd:complexType>

If the Car class had UML attributes and association ends that resulted in the
declaration of XML attributes, those XML attributes would be included in the

84 Chapter 3

Car complex type declaration. Note that this complex type declaration does
not enable the use of Extension XML elements, since an element with this type
may not contain anything.

ordered Tag

We have seen that the element declarations that appear in the content of the
complex type declaration for a class are inside a choice XML element, so the ele-
ments can appear in any order in a document. However, you can specify that
the content be ordered by setting the ordered tag to true for a class. This results
in the same element declarations as before; however, they are included in a
sequence XML element rather than a choice XML element.

We have not described the order of the element declarations in the content yet,
because the elements have always been in a choice XML element. The order is
determined by the order of the attributes and association ends in an XMI docu-
ment containing the model. This order cannot be determined by examining a class
diagram. The Extension XML element declaration appears last in the content.

Consider the model in Figure 3.6, in which a Car class has an attribute called
available of type Boolean (which is mapped to the schema boolean datatype as
explained later in this chapter) and a style association end attached to the Style
class. If you do not specify a value for the ordered tag, the declaration of the
complex type for the Car class appears as follows:

<xsd:complexType name="Car">

<xsd:choice minOccurs="0" maxOccurs="unbounded">

<xsd:element name="available" type="xsd:boolean"/>

<xsd:element name="style" type="xmi:Any"/>

<xsd:element ref="xmi:Extension"/>

</xsd:choice>

<xsd:attribute ref="xmi:id"/>

<xsd:attributeGroup ref="xmi:ObjectAttribs"/>

<xsd:attribute name="available" type="xsd:boolean"/>

<xsd:attribute name="style" type="xsd:IDREFS"/>

</xsd:complexType>

XMI Concepts 85

Style

available : Boolean

Carstyle

1

«datatype»
Boolean

Figure 3.6 The Car class with attributes and association ends.

Notice that the element declarations for available and style are in a choice
XML element and can appear in any order in a document that validates with
this schema.

If the ordered tag is set to true for the Car class, the complex type declaration
includes a sequence XML element rather than a choice XML element. The order
in which the available and style XML elements are declared inside the sequence
element is determined by the order of the available UML attribute and the style
association end in the XMI document that contains the model. If the style asso-
ciation end appears before the available UML attribute, the complex type dec-
laration is as follows:

<xsd:complexType name="Car">

<xsd:sequence minOccurs="0" maxOccurs="unbounded">

<xsd:element name="style" type="xmi:Any"/>

<xsd:element name="available" type="xsd:boolean"/>

<xsd:element ref="xmi:Extension"/>

</xsd:sequence>

<xsd:attribute ref="xmi:id"/>

<xsd:attributeGroup ref="ObjectAttribs"/>

<xsd:attribute name="available" type="xsd:boolean"/>

<xsd:attribute name="style" type="xsd:IDREFS"/>

</xsd:complexType>

Although you do not need to set the ordered tag to true for the Car class, there
are some situations that require the ordered tag to be set to true. We explain
those situations later.

superClassFirst Tag

Like the ordered tag, the superClassFirst tag imposes an ordering on the contents
of a complex type declaration for a class. If this tag is set to true, XML elements
for inherited attributes and association ends must appear before XML ele-
ments for local attributes and association ends. The content of the complex
type declaration would be identical to the content if schema extension were
used to represent inheritance. We believe that the final XMI 2.0 specification
will either remove this tag or specify that it can be true only if the useSchemaEx-
tensions tag is true. Please see the Inheritance section later in this chapter for a
complete description of the effect of setting the useSchemaExtensions tag to true
on XMI schemas.

Datatypes

When we discussed the default representation of a UML datatype in XMI
schemas, we mentioned that XMI maps a UML datatype to an XML schema
simple type, but we did not explain how this worked. You set the value of the
schemaType tag to indicate the XML schema simple type to use. The simple type

86 Chapter 3

can be one of the predefined schema datatypes as described in the XML
Schema:Datatypes specification (W3C, 2001), or it can be one of your simple
types.

The value of the tag consists of the namespace URI for the type followed by
and the name of the type. For example, to specify that a particular UML
datatype maps to the schema datatype int, you set the schemaType tag to the
value http://www.w3.org/2001/XMLSchema#int. To use a simple type you have
defined called MySimpleType in a namespace URI http://myURI, you set the
value of the schemaType tag to http://myURI#MySimpleType.

If a UML attribute has a datatype for which there is a schemaType tag, the
schema datatype specified in the value of the schemaType tag is the type used
in XML element and XML attribute declarations for the UML attribute. Con-
sider the model in Figure 3.6. When we declared the complex type for the Car
class, we used the schema datatype boolean without explaining why XMI
mapped the Boolean datatype in the model to the schema datatype boolean. XMI
performs that mapping because the Boolean datatype in the model has a
schemaType tag whose value is http://www.w3.org/2001/XMLSchema#boolean.
That tag is not shown in the UML diagram in Figure 3.6.

Attributes

There are numerous tags that affect how XMI represents UML attributes in
schemas. We describe them and how some of the tags affect each other. The
tags are:

■■ xmiName

■■ serialize

■■ attribute

■■ element

■■ includeNils

■■ enforceMaximumMultiplicity

XMI Concepts 87

SCHEMA TYPE MAPPING

As we have explained previously, XMI uses MOF models rather than UML
models. MOF defines Boolean, Integer, Long, Float, Double, and String
datatypes. XMI maps those MOF datatypes to the schema datatypes boolean,
int, long, float, double, and string, respectively. If a UML datatype is mapped to
one of the MOF datatypes, the MOF-to-schema datatype mapping should be
used.

■■ enforceMinimumMultiplicity

■■ form

■■ defaultValue

■■ fixedValue

xmiName Tag

We have already explained the use of the xmiName tag with classes. You can
also set this tag on UML attributes. The value of the tag is the name that XMI
uses for the name of the element declaration and attribute declaration for a
UML attribute in schemas.

serialize Tag

There are some situations when you do not want to serialize attribute values. For
example, the value of a UML attribute may be derived from other attribute val-
ues. Derived attribute values can be computed from other attribute values, so
they don’t need to be serialized when saving objects. If you set the serialize tag to
false on an attribute, XMI creates neither an XML element declaration nor an XML
attribute declaration for the attribute. By default, the value of this tag is true.

element and attribute Tags

For some UML attributes, XMI creates both an XML element declaration and
an XML attribute declaration. You can cause XMI to create only an XML ele-
ment declaration for a UML attribute. You can also cause XMI to create only an
XML attribute declaration for a UML attribute. You cause these effects by pro-
viding the value true for either the element tag or the attribute tag. If the element
tag is true, XMI creates only an XML element declaration for the UML
attribute. If the attribute tag is true, XMI creates only an XML attribute declara-
tion for the UML attribute.

XMI imposes some restrictions when using these tags. You cannot set both
the element tag and the attribute tag to true for a UML attribute. Since multiple
values for an attribute must be represented using XML elements rather than
XML attributes, you cannot set the attribute tag to true for an attribute that can
have multiple values. You also cannot set the attribute tag to true for UML
attributes with types that are classes. Finally, you cannot set the element tag to
true for a UML attribute if the class that has the attribute has a value of empty
for its contentType tag.

The use of these tags enables you to customize your XML documents. You
can choose to serialize the data for objects in XML elements rather than XML
attributes. Or you can choose to serialize the data for objects in XML attributes,
which may result in shorter documents but longer start tags for XML elements.
XMI provides this flexibility so you can create highly readable documents that
are easily integrated with other XML software.

88 Chapter 3

We mentioned that using XML attributes usually results in shorter docu-
ments than using XML elements. There are several reasons you might set the
element tag to true, though. XML parsers may not preserve all of the whitespace
in an XML attribute value, whereas the whitespace is preserved if it is in the
content of an XML element. Also, XML parsers do not preserve the order of
XML attributes in an XML element, but the order of XML elements is pre-
served. Finally, for cross-file references, XML elements must be used.

Consider the model in Figure 3.7. The Car class has a UML attribute called
available of type Boolean. Since the Boolean datatype in the model has a
schemaType tag set to boolean (the actual value is http://www.w3.org/2001/
XMLSchema#boolean, but we shortened it to make the diagram easier to under-
stand), XMI uses the boolean schema datatype for it.

Here is the complex type for the Car class if the element tag for attribute avail-
able is true:

<xsd:complexType name="Car">

<xsd:choice minOccurs="0" maxOccurs="unbounded">

<xsd:element name="available" type="xsd:boolean"/>

<xsd:element ref="xmi:Extension"/>

</xsd:choice>

<xsd:attribute ref="xmi:id"/>

<xsd:attributeGroup ref="ObjectAttribs"/>

</xsd:complexType>

A particular Car object for which the available attribute has the value true is
serialized as follows to validate with the previous schema:

<Car>

<available>true</available>

</Car>

If the attribute tag for the available attribute is true, the complex type for the
Car class is as follows:

<xsd:complexType name="Car">

<xsd:choice minOccurs="0" maxOccurs="unbounded">

<xsd:element ref="xmi:Extension"/>

</xsd:choice>

XMI Concepts 89

available : Boolean

Car
«datatype»
Boolean

{schemaType = boolean}

Figure 3.7 The Car class with the available attribute.

<xsd:attribute ref="xmi:id"/>

<xsd:attributeGroup ref="ObjectAttribs"/>

<xsd:attribute name="available" type="xsd:boolean"/>

</xsd:complexType>

A Car object for which the available attribute has the value true is serialized
as follows to validate with the previous schema:

<Car available="true"/>

includeNils Tag

If you set the includeNils tag to true, XMI creates XML element declarations that
enable nil values to be written in an XMI document. To do this, the XML ele-
ment declarations must include the XML attribute nillable and it must be true.
For example, for a Person class that has an attribute called name of type string
(the schema string datatype), if the includeNils tag is true, the complex type for
the Person class appears as follows in a schema:

<xsd:complexType name="Person">

<xsd:choice minOccurs="0" maxOccurs="unbounded">

<xsd:element name="name" type="xsd:string" nillable="true"/>

<xsd:element ref="xmi:Extension"/>

</xsd:choice>

<xsd:attribute ref="xmi:id"/>

<xsd:attributeGroup ref="xmi:ObjectAttribs"/>

<xsd:attribute name="name" type="xsd:string"/>

</xsd:complexType>

We have seen that the default XML element declaration for attributes does
not include the nillable XML attribute. The includeNils tag cannot be set to true
if the attribute tag is true, because nil values must be represented using XML
elements. Nor can the includeNils tag be set to true for a UML attribute belong-
ing to a class that has its contentType tag set to empty.

Multiplicity Tags

By default, XMI creates an XML element declaration for a UML attribute with-
out using the multiplicity of the UML attribute. Any number of XML elements
can appear in the content, regardless of the multiplicity of the UML attribute.
XMI uses the multiplicity of a UML attribute if you provide the value true for
the enforceMinimumMultiplicity or enforceMaximumMultiplicity tags. You can
specify that XMI enforces minimum multiplicities, maximum multiplicities, or
both minimum and maximum multiplicities.

If you set either (or both) of these tags to true for a UML attribute, the ordered
tag of the class that the attribute belongs to must have the value true, because
XML schemas enforce multiplicities correctly only for ordered content. A con-
sequence of setting either (or both) of these tags to true is that XMI does not

90 Chapter 3

create an XML attribute declaration for the UML attribute unless all of the fol-
lowing conditions are true for the UML attribute:

■■ Its multiplicity is exactly 1.

■■ Its type is a datatype.

■■ Its attribute tag is set to true.

In this case, XMI creates an XML attribute declaration with a use attribute
that is set to required.

Let’s see the effect of using the multiplicity tags on the complex type decla-
ration for a class. Consider a Person class that has a UML attribute called hobby
that has a type of string (the schema string datatype) and a multiplicity of 1..3.
By default, the complex type declaration for this class appears as follows:

<xsd:complexType name="Person">

<xsd:choice minOccurs="0" maxOccurs="unbounded">

<xsd:element name="hobby" type="xsd:string"/>

<xsd:element ref="xmi:Extension"/>

</xsd:choice>

<xsd:attribute ref="xmi:id"/>

<xsd:attributeGroup ref="xmi:ObjectAttribs"/>

</xsd:complexType>

Notice that the multiplicity for the UML attribute is not used in the corre-
sponding XML element declaration.

If you set the enforceMinimumMultiplicity tag to true for the UML attribute
hobby, the complex type declaration appears as follows:

<xsd:complexType name="Person">

<xsd:sequence>

<xsd:element name="hobby" type="xsd:string" minOccurs="1"

maxOccurs="unbounded"/>

<xsd:element ref="xmi:Extension" minOccurs="0"

maxOccurs="unbounded"/>

</xsd:sequence>

<xsd:attribute ref="xmi:id"/>

<xsd:attributeGroup ref="xmi:ObjectAttribs"/>

</xsd:complexType>

Note the presence of a sequence XML element rather than a choice XML ele-
ment. The sequence XML element is used because we are required to set the
ordered tag to true when we set any of the multiplicity tags to true. Also note
that the minOccurs attribute in the hobby XML element declaration is 1, because
the minimum multiplicity of the UML attribute hobby is 1. The maximum mul-
tiplicity of 3 is not enforced in this case.

If you instead set the enforceMaximumMultiplicity tag to true for the UML
attribute hobby, the complex type declaration appears as follows:

XMI Concepts 91

<xsd:complexType name="Person">

<xsd:sequence>

<xsd:element name="hobby" type="xsd:string" minOccurs="0"

maxOccurs="3"/>

<xsd:element ref="xmi:Extension" minOccurs="0"

maxOccurs="unbounded"/>

</xsd:sequence>

<xsd:attribute ref="xmi:id"/>

<xsd:attributeGroup ref="xmi:ObjectAttribs"/>

</xsd:complexType>

Note that, just as for the enforceMinimumMultiplicity tag, there is a sequence
XML element rather than a choice XML element. This time, however, the
minOccurs attribute is 0 and the maxOccurs attribute is 3, because the maxi-
mum multiplicity of the UML attribute is 3. The minimum multiplicity of 1 is
not enforced in this case.

As you might expect, setting both the enforceMinimumMultiplicity and
enforceMaximumMultiplicity tags to true for the UML attribute hobby results in
the following complex type declaration:

<xsd:complexType name="Person">

<xsd:sequence>

<xsd:element name="hobby" type="xsd:string" minOccurs="1"

maxOccurs="3"/>

<xsd:element ref="xmi:Extension"/>

</xsd:sequence>

<xsd:attribute ref="xmi:id"/>

<xsd:attributeGroup ref="xmi:ObjectAttribs"/>

</xsd:complexType>

The value of minOccurs is 1 and the value of maxOccurs is 3 for the hobby
XML element, matching the multiplicity of the UML attribute hobby.

So far, we have seen that the multiplicity tags affect the XML element decla-
ration corresponding to a UML attribute. The enforceMinimumMultiplicity tag
can also affect the corresponding XML attribute declaration as well. Consider
a Person class with a name attribute of type string (the schema string datatype)
that has a multiplicity of 1..1. If the enforceMinimumMultiplicity tag is set to true
for the name attribute, and the attribute tag is true also, the complex type decla-
ration for the class Person is as follows:

<xsd:complexType name="Person">

<xsd:choice minOccurs="0" maxOccurs="unbounded">

<xsd:element ref="xmi:Extension"/>

</xsd:choice>

<xsd:attribute ref="xmi:id"/>

<xsd:attributeGroup ref="xmi:ObjectAttribs"/>

<xsd:attribute name="name" type="xsd:string" use="required"/>

</xsd:complexType>

92 Chapter 3

Notice that the use attribute in the XML attribute declaration is set to
required, meaning that the attribute must appear in Person XML elements in
documents that validate with the schema.

XMI creates only an element declaration for the name UML attribute if you
set the enforceMinimumMultiplicity tag to true as before and also set the element
tag to true for the name attribute:

<xsd:complexType name="Person">

<xsd:sequence>

<xsd:element name="name" type="xsd:string" minOccurs="1"

maxOccurs="unbounded"/>

<xsd:element ref="xmi:Extension"/>

</xsd:sequence>

<xsd:attribute ref="xmi:id"/>

<xsd:attributeGroup ref="xmi:ObjectAttribs"/>

</xsd:complexType>

Notice that the minOccurs attribute has the value 1.
Finally, if you set the enforceMinimumMultiplicity, enforceMaximumMultiplic-

ity, and element tags to true for the name attribute, this is the declaration you get
for the Person class:

<xsd:complexType name="Person">

<xsd:sequence>

<xsd:element name="name" type="xsd:string" minOccurs="1"

maxOccurs="1"/>

<xsd:element ref="xmi:Extension"/>

</xsd:sequence>

<xsd:attribute ref="xmi:id"/>

<xsd:attributeGroup ref="xmi:ObjectAttribs"/>

</xsd:complexType>

The enforceMaximumMultiplicity tag does not apply to UML attributes that
have an attribute tag with the value true, because there can only be one XML
attribute with a particular name in an XML element.

form Tag

You can require the use of a namespace prefix in the tag name of an XML ele-
ment or the name of an XML attribute corresponding to a UML attribute by
setting the form tag to qualified. For example, consider a Person class with a
name attribute of type string (the schema string datatype) and a multiplicity of
0..1. If the form tag is set to qualified for the name attribute, the complex type
declaration for the class Person is as follows:

<xsd:complexType name="Person">

<xsd:choice>

<xsd:element name="name" type="xsd:string" form="qualified"/>

XMI Concepts 93

<xsd:element ref="xmi:Extension"/>

</xsd:choice>

<xsd:attribute ref="xmi:id"/>

<xsd:attributeGroup ref="xmi:ObjectAttribs"/>

<xsd:attribute name="name" type="xsd:string" form="qualified"/>

</xsd:complexType>

Notice the form XML attributes in the XML element declaration and the XML
attribute declaration for the name UML attribute.

Value Tags

The last two tags we discuss that affect UML attributes only affect the XML
attribute declarations for them. If you provide a value for the defaultValue tag,
that value is used as the default value in the XML attribute declaration for the
UML attribute. If you provide a value for the fixedValue tag, that value is used
as the fixed value of the XML attribute declaration for the UML attribute. You
may not set a value for both tags, only one of them.

If the defaultValue tag is set to John Doe for the name attribute of the Person
class, as described in the previous example, the complex type declaration for
class Person appears as follows:

<xsd:complexType name="Person">

<xsd:choice>

<xsd:element name="name" type="xsd:string"/>

<xsd:element ref="xmi:Extension"/>

</xsd:choice>

<xsd:attribute ref="xmi:id"/>

<xsd:attributeGroup ref="xmi:ObjectAttribs"/>

<xsd:attribute name="name" type="xsd:string" default="John Doe"/>

</xsd:complexType>

Note that the default XML attribute in the XML attribute declaration for the
name UML attribute has the value John Doe.

If the fixedValue tag is set to Required Name for the name attribute of the Per-
son class, as described in the previous example, the complex type declaration
for class Person appears as follows:

<xsd:complexType name="Person">

<xsd:choice>

<xsd:element name="name" type="xsd:string"/>

<xsd:element ref="xmi:Extension"/>

</xsd:choice>

<xsd:attribute ref="xmi:id"/>

<xsd:attributeGroup ref="xmi:ObjectAttribs"/>

<xsd:attribute name="name" type="xsd:string" fixed="Required Name"/>

</xsd:complexType>

94 Chapter 3

Note that the fixed XML attribute in the XML attribute declaration for the
name UML attribute has the value Required Name.

Association Ends

Many of the tags that affect attributes affect association ends as well. There are
also two tags that affect association ends that do not affect attributes. Remem-
ber that we do not use association ends in this book to represent composition,
so the following discussion pertains to association ends that do not represent
composition. Here is a list of the tags that affect association ends:

■■ xmiName

■■ serialize

■■ attribute

■■ element

■■ enforceMaximumMultiplicity

■■ enforceMinimumMultiplicity

■■ form

■■ remoteOnly

■■ href

We discuss each of these tags, how they affect the representation of associa-
tion ends in schemas, and how the tags affect each other.

xmiName Tag

We have already explained the use of the xmiName tag with classes and attrib-
utes. You can also set this tag on association ends as well. The value of the tag
is the name that XMI uses for the name of the element declaration and the
attribute declaration for an association end in a schema.

serialize Tag

There are some situations when you do not want to serialize association ends.
For example, you might implement a system that automatically sets both ref-
erences (we use the term reference to mean an instance of an association end)
for objects if one reference is restored for a bidirectional association. In this
case, you do not need to serialize the reference that will be automatically set
when the opposite reference is set. If you set the serialize tag to false on an asso-
ciation end, XMI creates neither an XML element declaration nor an XML
attribute declaration for the association end. By default, the value of this tag
is true.

XMI Concepts 95

element and attribute Tags

XMI creates both an XML attribute declaration and an XML element declara-
tion for an association end. You can specify whether to generate only an
attribute declaration or only an element declaration for an association end. If
the attribute tag is set to true, only an XML attribute declaration is created; if the
element tag is true, only an XML element declaration is created. You cannot set
both the attribute and element tags to true. Note that you cannot set the attribute
tag to true if the href tag is set to true for an association end. We describe the use
of the href tag later in this section.

Multiplicity Tags

By default, XMI does not use the multiplicity of an association end when it cre-
ates an XML element declaration for the association end. If you set the value of
the enforceMinimumMultiplicity or enforceMaximumMultiplicity tags to true,
XMI will use the multiplicity of the association end.

The consequences of using these tags for an association end are similar to the
consequences of using the tags for a UML attribute. First, the ordered tag of the
class that the association end belongs to must be true, so the multiplicity is
enforced correctly. Second, XMI creates only an XML element declaration for the
association end unless both of the following conditions are true for the associa-
tion end, in which case XMI creates only an XML attribute for the association end:

■■ The association end has a multiplicity of 1..1.

■■ The attribute tag of the association end is set to true.

Consider the model shown in Figure 3.8. The Car class has an association
end called passenger with a multiplicity of 1..5. By default, XMI creates the fol-
lowing complex type declaration for the Car class:

<xsd:complexType name="Car">

<xsd:choice minOccurs="0" maxOccurs="unbounded">

<xsd:element name="passenger" type="xmi:Any"/>

<xsd:element ref="xmi:Extension"/>

</xsd:choice>

<xsd:attribute ref="xmi:id"/>

<xsd:attributeGroup ref="xmi:ObjectAttribs"/>

<xsd:element name="passenger" type="xsd:IDREFS"/>

</xsd:complexType>

Notice that there can be any number of passenger XML elements and any
number of identifiers in the passenger XML attribute.

If you set the enforceMinimumMultiplicity tag to true for the passenger associ-
ation end, XMI creates an XML element declaration rather than an XML
attribute declaration for the passenger association end. The complex type dec-
laration for the Car class is as follows:

96 Chapter 3

<xsd:complexType name="Car">

<xsd:sequence>

<xsd:element name="passenger" type="xmi:Any"

minOccurs="1" maxOccurs="unbounded"/>

<xsd:element ref="xmi:Extension" minOccurs="0"

maxOccurs="unbounded"/>

</xsd:sequence>

<xsd:attribute ref="xmi:id"/>

<xsd:attributeGroup ref="xmi:ObjectAttribs"/>

</xsd:complexType>

Notice that the minOccurs attribute is 1 for the passenger XML element.
If you set the enforceMaximumMultiplicity tag to true, the XML element dec-

laration for the association end has a maxOccurs attribute with a value of 5:

<xsd:complexType name="Car">

<xsd:sequence>

<xsd:element name"passenger" type="xmi:Any"

minOccurs="0" maxOccurs="5"/>

<xsd:element ref="xmi:Extension" minOccurs="0"

maxOccurs="unbounded"/>

</xsd:sequence>

<xsd:attribute ref="xmi:id"/>

<xsd:attributeGroup ref="xmi:ObjectAttribs"/>

</xsd:complexType>

If the multiplicity of the passenger association end is 1..1, the enforceMini-
mumMultiplicity tag is set to true, the enforceMaximumMultiplicity tag is set to
true, and the attribute tag for the passenger association end is set to true, the
complex type declaration is as follows:

<xsd:complexType name="Car">

<xsd:choice minOccurs="0" maxOccurs="unbounded">

<xsd:element ref="xmi:Extension"/>

</xsd:choice>

<xsd:attribute ref="xmi:id"/>

<xsd:attributeGroup ref="xmi:ObjectAttribs"/>

<xsd:attribute name="passenger" type="xsd:IDREF" use="required"/>

</xsd:complexType>

Notice that the type of the passenger XML attribute is IDREF, and that
attribute must be present.

XMI Concepts 97

Car Personpassenger

1..5

Figure 3.8 A Car with passengers.

form Tag

By default, the XML element declaration and the XML attribute declaration, if
any, that XMI creates for an association end are declared locally in the complex
type declaration for the class that has the association end. This means that you
are prohibited from using a namespace prefix in the tag name of the XML ele-
ment or the name of the attribute. However, if you set the form tag to qualified,
XMI creates an XML element declaration and an XML attribute declaration
that have the XML attribute form set to qualified. This means that a namespace
prefix must be used if the XML element or XML attribute appears in a docu-
ment.

remoteOnly Tag

If you set the remoteOnly tag to true for an association end, XMI does not create
an XML attribute declaration for the association end, just an element declara-
tion. The reason is that a reference (an instance of an association end) will only
be serialized in this case if the referenced object is in another document. Since
the referenced object is in another document, the reference will be represented
in a document by an XML element that has an href XML attribute with a value
that is a URI that refers to the object in the other document.

Consider the following example. The model in Figure 3.9 includes a Car
class that has a driver association end. The Person class has a car association
end. If you set the remoteOnly tag to true for the driver association end, the com-
plex type declaration for the Car class is as follows:

<xsd:complexType name="Car">

<xsd:choice minOccurs="0" maxOccurs="unbounded">

<xsd:element name="driver" type="xmi:Any"/>

<xsd:element ref="xmi:Extension"/>

</xsd:choice>

<xsd:attribute ref="xmi:id"/>

<xsd:attributeGroup ref="xmi:ObjectAttribs"/>

</xsd:complexType>

Note that there is only an XML element declaration for the driver association
end.

Now consider a Car object and a Person object. The Car object is related to the
Person object via a car reference. The Person object is related to the Car object via

98 Chapter 3

Car Personcar

0..*

driver

0..*

Figure 3.9 A Car has a driver and a Person has a car.

a driver reference. Because the remoteOnly tag is true for the driver association
end, if the Car object and the Person object are serialized in the same file, they
appear as follows:

<Person xmi:id="P1" car="C1"/>

<Car xmi:id="C1"/>

The driver reference for the Car object is not serialized because the Person
object is in the same file as the Car object. Notice that the car reference is serial-
ized, because references are serialized by default.

If the Person object is serialized in the file person.xmi, and the Car object is
serialized in the file car.xmi, the Car object appears as follows:

<Car xmi:id="C1">

<driver href="person.xmi#P1"/>

</Car>

The driver reference is serialized in this case because the Person object is in a
different file than the Car object.

Why use the remoteOnly tag? The remoteOnly tag indicates that a reference is
written only when the referenced object is located in another file. You can load
the other file to obtain the actual object if you wish, but you are not required to
do so. Without the remote object information, you would have no knowledge
of the referenced object by loading the file that has the reference.

In the previous example, imagine that your application sets the driver refer-
ence for a Car object whenever the car reference for a Person object is set. If both
objects are in the same file, the driver reference for the Car is restored even
though it is not serialized because it will be restored when the car reference for
the Person is restored.

Consider the case where the Car object is in car.xmi and the Person object is
in person.xmi. Because the presence of the Person object in person.xmi is indi-
cated in car.xmi, by loading only car.xmi it is possible to know the existence of
the driver reference for the Car object. Now you have the option of loading the
person.xmi file if you wish to fully restore the referenced object. You may be
able to avoid loading person.xmi though, which would be more efficient than
loading both files. If car.xmi did not indicate that the Person object was saved in
person.xmi, you would be unaware of the existence of the driver reference until
both files were loaded.

href Tag

If you set the value of the href tag to true for an association end, XMI does not
create an XML attribute declaration for the association end, just an element
declaration. By setting this tag to true, you are indicating that URIs are to be
used to refer to objects within a document rather than XML IDs. Because of

XMI Concepts 99

this, each reference corresponding to the association end must be represented
by an XML element that has an href XML attribute. The value of the href
attribute is a URI that refers to an XML element in the same document or in
another document. Since only XML elements can be used for the references,
only an XML element declaration is included in the complex type declaration
for the class that has the association end.

Inheritance

You set the useSchemaExtensions flag to true to cause XMI to use schema exten-
sion to represent class inheritance. If the useSchemaExtensions flag is true, the
superClassFirst flag must be set to true as well. The useSchemaExtensions flag
affects the XML elements created for UML attributes and UML association
ends, as well as the representation of inheritance.

Schema extension cannot be used to represent multiple inheritance. That is
a limitation of XML schemas, not of XMI.

Consider the model in Figure 3.5. In the Default XMI Schemas section we saw
the complex type declaration for the Driver class when schema extension is not
used. That complex type declaration includes element declarations for the
inherited name UML attribute and the inherited address association end. The
default declaration for the Driver class is included here so you can compare it
to the declaration when you set the tag useSchemaExtensions to true, which we
show next:

<xsd:complexType name="Driver">

<xsd:choice minOccurs="0" maxOccurs="unbounded">

<xsd:element name="name" type="xsd:string"/>

<xsd:element name="driverLicenseNumber" type="xsd:string"/>

<xsd:element name="address" type="xmi:Any"/>

<xsd:element name="car" type="xmi:Any"/>

<xsd:element ref="xmi:Extension"/>

</xsd:choice>

<xsd:attribute ref="xmi:id"/>

<xsd:attributeGroup ref="xmi:ObjectAttribs"/>

<xsd:attribute name="name" type="xsd:string"/>

<xsd:attribute name="driverLicenseNumber" type="xsd:string"/>

<xsd:attribute name="address" type="xsd:IDREFS"/>

<xsd:attribute name="car" type="xsd:IDREFS"/>

</xsd:complexType>

Notice that both the local and inherited attributes and association ends are
reflected in the declaration. They can appear in any order in the content of the
Driver type.

Consider what happens if useSchemaExtensions is set to true for the classes in
the model in Figure 3.5, the nsURI tag is http://cars, and the nsPrefix is cars for

100 Chapter 3

the classes in that model. The declaration of the complex type for the Driver
class is as follows:

<xsd:complexType name="Driver">

<xsd:extension base="cars:Person">

<xsd:choice minOccurs="0" maxOccurs="unbounded">

<xsd:element name="driverLicenseNumber" type="xsd:string"/>

<xsd:element name="car" type="cars:Car"/>

</xsd:choice>

<xsd:attribute ref="xmi:id"/>

<xsd:attributeGroup ref="xmi:ObjectAttribs"/>

<xsd:attribute name="driverLicenseNumber" type="xsd:string"/>

<xsd:attribute name="car" type="xsd:IDREFS"/>

</xsd:extension>

</xsd:complexType>

Notice that the Driver complex type extends the Person complex type, so
there are no declarations for the inherited name UML attribute or for the inher-
ited address association end. Notice also that the declaration of the XML ele-
ment for the car association end has type Car. This is how using schema
extension affects the element declarations for association ends.

By using schema extension, more of the schema validation capabilities can
be used in your applications. As mentioned before, the type for the car XML
element in the schema that uses extension is the schema type Car, rather than
xmi:Any. A validating parser can detect illegal information in the car XML ele-
ment with the schema that uses extension, but not with the schema that does
not use extension.

Any Extension XML elements in the content of an XML element with type
Driver must appear before an XML element for the local UML attribute driver-
LicenseNumber and the local car association end. This is so because of the way
that schema extension works. When a type extends a base type in a schema,
the elements in the content of the base type must be serialized before the ele-
ments in the content of the type that extends the base type. The Extension XML
element is not included in the content of the Driver type because it is included
in the content of the base type Person, so Extension XML elements must appear
before the driverLicenseNumber and car XML elements.

Tagged Value Summary

We summarize our discussion of XMI tags in this section, using tables to
present various aspects of the XMI tags. For a detailed discussion of these tags,
refer to the previous sections in this chapter.

Table 3.1 enables you to look up the parts of the UML object model that are
affected by a given XMI tag.

XMI Concepts 101

Table 3.2 enables you to look up the tags that affect each UML construct.
Table 3.3 contains the scope of each tag. If the scope is package scope, setting

the tag on a package makes the tag apply to the classes and their attributes and
association ends within the package, as appropriate. If the scope is class scope,
setting the tag on a class affects the attributes and association ends belonging
to a class. If the scope is for a particular construct, the tag affects only the con-
struct the tag is set on.

By setting tags on a package or class, you avoid setting the same tags repeat-
edly for classes in the package and for the attributes and association ends
belonging to the classes. For example, the element tag applies to attributes and
association ends. If the element tag is set to true for a class, the class itself is not
affected, but each attribute and association end belonging to the class is treated
as if the element tag were set to true for each of them. Another example is the con-
tentType tag. If the contentType tag is set to mixed in a package, each class in the
package is treated as if the contentType tag were set to mixed for each of them.

102 Chapter 3

Table 3.1 XMI Tags and the UML Constructs They Affect

XMI TAG UML CONSTRUCT

xmiName Class, attribute, association end

serialize Attribute, association end

element Attribute, association end

attribute Attribute, association end

enforceMaximumMultiplicity Attribute, association end

enforceMinimumMultiplicity Attribute, association end

form Attribute, association end

remoteOnly Association end

href Association end

includeNils Attribute

defaultValue Attribute

fixedValue Attribute

nsURI Package

nsPrefix Package

useSchemaExtensions Class

contentType Class

ordered Class

XMI Concepts 103

Table 3.2 XMI Tags for Each UML Construct

UML CONSTRUCT XMI TAG

Package nsURI, nsPrefix

Class xmiName, useSchemaExtensions, contentType, ordered,
superClassFirst

Attribute xmiName, serialize, element, attribute,
enforceMaximumMultiplicity, enforceMinimumMultiplicity,
form, includeNils, defaultValue, fixedValue

Association end xmiName, serialize, element, attribute,
enforceMaximumMultiplicity, enforceMinimumMultiplicity,
form, remoteOnly, href

Table 3.3 XMI Tags and Their Scope

PACKAGE CLASS CONSTRUCT
XMI TAG SCOPE SCOPE SCOPE

xmiName x

serialize x x x

element x x x

attribute x x x

enforceMaximumMultiplicity x x x

enforceMinimumMultiplicity x x x

form x x x

remoteOnly x x x

href x x x

includeNils x x x

defaultValue x

fixedValue x

nsURI x x x

nsPrefix x x x

useSchemaExtensions x x x

contentType x x x

ordered x x x

Table 3.4 contains the default values of each tag.
You can use these tables to determine which XMI tags to use to create

schemas that are appropriate for your applications.

The XMI Model

Now that you know how XMI generates schemas from models, and how you
can tailor the schemas that XMI creates, you are ready to learn about the XMI
model, the model that defines many of the XMI elements and attributes. The
XMI model gives you information about the contents of an XMI document and
the differences between documents. In this section, we explain the XMI model
and the schema that is created from the model, so you can understand the
schema that is imported by every schema XMI creates. You have already seen
some of the XML attributes and elements defined by that schema, particularly

104 Chapter 3

Table 3.4 XMI Tags and Their Default Values

XMI TAG DEFAULT VALUE

xmiName No default value

serialize true

element false

attribute false

enforceMaximumMultiplicity false

enforceMinimumMultiplicity false

form No default value

remoteOnly false

href false

includeNils false

defaultValue No default value

fixedValue No default value

nsURI No default value

nsPrefix No default value

useSchemaExtensions false

contentType complex

ordered false

the XML attributes defined by XMI for specifying object identity and linking
and the Extension XML element. XMI also defines XML elements that let you
describe a document, identify the model that defines the data in the document,
and specify differences in XMI documents.

We describe the XMI model from the bottom up, so that you do not need to
refer to information later in the discussion to understand a particular part of
the model. All of this information comes from the XMI specification (OMG,
2001).

XML Attribute Declarations
Before we explain the classes in the model from which the XML elements were
created, we show the declaration of the XML attributes defined by XMI:

<xsd:attribute name="id" type="xsd:ID"/>

<xsd:attributeGroup name="IdentityAttribs">

<xsd:attribute name="label" type="xsd:string" use="optional"

form="qualified"/>

<xsd:attribute name="uuid" type="xsd:string" use="optional"

form="qualified"/>

</xsd:attributeGroup>

<xsd:attributeGroup name="LinkAttribs">

<xsd:attribute name="href" type="xsd:string" use="optional"/>

<xsd:attribute name="idref" type="xsd:IDREF" use="optional"

form="qualified"/>

</xsd:attributeGroup>

<xsd:attributeGroup name="ObjectAttribs">

<xsd:attributeGroup ref="IdentityAttribs"/>

<xsd:attributeGroup ref="LinkAttribs"/>

<xsd:attribute name="version" type="xsd:string" use="optional"

fixed="2.0" form="qualified"/>

<xsd:attribute name="type" type="xsd:QName" use="optional"

form="qualified"/>

</xsd:attributeGroup>

You can see the declaration of the identity attributes id, uuid, and label, as
well as the linking attributes href and idref. The ObjectAttribs attribute group
includes those attribute declarations as well as the declaration of the version
XML attribute and the type XML attribute.

Extension Element
We have already seen the Extension XML element used in documents. Figure
3.10 contains the Extension class with attributes extender and extenderID. The

XMI Concepts 105

contentType tag for the Extension class is any, and the processContents tag for the
Extension class is lax. The attribute tag for the Extension class is true. The class
declaration and the values of the XMI tags result in the following complex type
declaration and element declaration:

<xsd:complexType name="Extension">

<xsd:choice minOccurs="0" maxOccurs="unbounded">

<xsd:any processContents="lax"/>

</xsd:choice>

<xsd:attribute ref="xmi:id"/>

<xsd:attributeGroup ref="ObjectAttribs"/>

<xsd:attribute name="extender" type="xsd:string" use="optional"/>

<xsd:attribute name="extenderID" type="xsd:string" use="optional"/>

</xsd:complexType>

<xsd:element name="Extension" type="Extension"/>

You can use any of the object identity or linking attributes for the Extension
element, as well as the extender and extenderID attributes. The Writing Objects
Using XMI section of this chapter contains examples of the Extension XML ele-
ment and its attributes.

Identifying Models
XMI provides the capability to unambiguously identify which models the data
in a document conforms to and what the metamodel is for the data. The Model
and MetaModel classes of the XMI model provide these capabilities. Figure 3.11
shows these classes. Each of them inherits from a PackageReference class since
they each have a name and version attribute. Since the useSchemaExtensions flag
is true for the XMI model, the declarations for this part of the XMI model are as
follows:

<xsd:complexType name="PackageReference">

<xsd:choice minOccurs="0" maxOccurs="unbounded">

<xsd:element name="name" type="xsd:string"/>

<xsd:element name="version" type="xsd:string"/>

<xsd:element ref="Extension"/>

</xsd:choice>

106 Chapter 3

extender : String
extenderID : String

Extension «datatype»
String

Figure 3.10 The Extension class.

<xsd:attribute ref="id"/>

<xsd:attributeGroup ref="ObjectAttribs"/>

<xsd:attribute name="name" type="xsd:string" use="optional"/>

<xsd:attribute name="version" type="xsd:string" use="optional"/>

</xsd:complexType>

<xsd:element name="PackageReference" type="PackageReference"/>

<xsd:complexType name="Model">

<xsd:complexContent>

<xsd:extension base="PackageReference"/>

</xsd:complexContent>

</xsd:complexType>

<xsd:element name="Model" type="Model"/>

<xsd:complexType name="MetaModel">

<xsd:complexContent>

<xsd:extension base="PackageReference"/>

</xsd:complexContent>

</xsd:complexType>

<xsd:element name="MetaModel" type="MetaModel"/>

XMI serializes Model and MetaModel objects the same way as objects defined
by your models.

You can use these elements to specify the physical location of a document
containing the model or metamodel. You do this by specifying the physical
location in the href attribute. The version attribute enables you to specify which
version of models or metamodels is being used in a document.

XMI Concepts 107

name : String
version : String

PackageReference
«datatype»

String

Model MetaModel

Figure 3.11 Class declarations for identifying models.

For example, the following Metamodel object indicates that the metamodel
for the data in a file is UML version 1.3, which can be found in the file
uml13.xmi:

<xmi:MetaModel name="UML" version="1.3" href="uml13.xmi"/>

Describing a Document
Figure 3.12 illustrates the Documentation class in the XMI model. Since each of
the attributes of the class has a multiplicity of 0..*, the declarations for the class
in the schema are as follows:

<xsd:complexType name="Documentation">

<xsd:choice minOccurs="0" maxOccurs="unbounded">

<xsd:element name="contact" type="xsd:string"/>

<xsd:element name="exporter" type="xsd:string"/>

<xsd:element name="exporterVersion" type="xsd:string"/>

<xsd:element name="longDescription" type="xsd:string"/>

<xsd:element name="shortDescription" type="xsd:string"/>

<xsd:element name="notice" type="xsd:string"/>

<xsd:element name="owner" type="xsd:string"/>

<xsd:element ref="Extension"/>

</xsd:choice>

<xsd:attribute ref="xmi:id"/>

<xsd:attributeGroup ref="ObjectAttribs"/>

</xsd:complexType>

<xsd:element name="Documentation" type="Documentation"/>

Table 3.5 summarizes the type of information you can include as part of the
documentation for an XMI document.

Differences
XMI enables you to express differences in XMI documents. Figure 3.13 con-
tains the class diagram for this part of the XMI model. We include an associa-
tion that represents composition in this diagram because it comes from the
XMI specification. You can represent additions, replacements, and deletions of
objects in an XMI document. Here is the declaration for these elements:

108 Chapter 3

IMPORT XML ELEMENT IN XMI SPECIFICATION

The current version of the XMI specification includes a description for an
Import XML element. We believe that this element will be removed from the
final version of the specification, so we do not describe it in this book.

<xsd:complexType name="Difference">

<xsd:choice minOccurs="0" maxOccurs="unbounded">

<xsd:element name="target">

<xsd:complexType>

<xsd:choice minOccurs="0" maxOccurs="unbounded">

<xsd:any processContents="skip"/>

</xsd:choice>

<xsd:anyAttribute processContents="skip"/>

</xsd:complexType>

</xsd:element>

<xsd:element name="difference" type="Difference"/>

<xsd:element name="container" type="Difference"/>

<xsd:element ref="Extension"/>

</xsd:choice>

<xsd:attribute ref="id"/>

<xsd:attributeGroup ref="ObjectAttribs"/>

<xsd:attribute name="target" type="xsd:IDREFS" use="optional"/>

<xsd:attribute name="container" type="xsd:IDREFS" use="optional"/>

</xsd:complexType>

XMI Concepts 109

contact : String
exporter : String
exporterVersion : String
longDescription : String
shortDescription : String
notice : String
owner : String

Documentation

«datatype»
String

Figure 3.12 The Documentation class.

Table 3.5 Documentation Information

NAME DESCRIPTION

contact The person to contact with questions about the XMI document

exporter The name of the tool that produced the XMI document

exporterVersion The version of the tool that produced the XMI document

longDescription A long, detailed description of the XMI document

shortDescription A brief description of the data in the XMI document

notice Legal disclaimers about the XMI document or copyrights

owner The owner of the data in the XMI document

<xsd:element name="Difference" type="Difference"/>

<xsd:complexType name="Add">

<xsd:complexContent>

<xsd:extension base="Difference">

<xsd:attribute name="position" type="xsd:string" use="optional"/>

<xsd:attribute name="addition" type="xsd:IDREFS" use="optional"/>

</xsd:extension>

</xsd:complexContent>

</xsd:complexType>

<xsd:element name="Add" type="Add"/>

<xsd:complexType name="Replace">

<xsd:complexContent>

<xsd:extension base="Difference">

<xsd:attribute name="position" type="xsd:string" use="optional"/>

<xsd:attribute name="replacement" type="xsd:IDREFS"

use="optional"/>

</xsd:extension>

</xsd:complexContent>

</xsd:complexType>

110 Chapter 3

Object

Difference

Add Delete Replace

target0..*

container

1

difference

0..*

replacement

0..*addition

0..*

Figure 3.13 Difference classes.

XMI Concepts 111

part[0..*] : Part

Car

name : String

Part
«datatype»

String

part[0..*] : Part

Engine Cylinder

Figure 3.14 The Car, Part, Engine, and Cylinder model.

<xsd:element name="Replace" type="Replace"/>

<xsd:complexType name="Delete">

<xsd:complexContent>

<xsd:extension base="Difference"/>

</xsd:complexContent>

</xsd:complexType>

<xsd:element name="Delete" type="Delete"/>

XMI serializes Add, Replace, and Delete objects in a document the same way
as any other objects.

Consider the model in Figure 3.14, in which a Car has parts, and there are two
kinds of parts, an Engine part and a Cylinder part. An Engine also has parts. The
Part class has a name attribute with a type that is a String datatype. The String
datatype is mapped to the string schema datatype because, although not shown
in the diagram, its schemaType tag is http://www.w3.org/2001/XMLSchema#string.

Here is an XMI document in the file base.xmi that contains a Car object, an
Engine object, a Cylinder object, and a Part object:

<xmi:XMI xmi:version="2.0" xmlns:xmi="http://www.omg.org/XMI">

<Car xmi:id="_1">

<part xmi:id="_2" xmi:type="Engine">

<part xmi:id="_3" xmi:type="Cylinder"/>

</part>

<part xmi:id="_4"/>

</Car>

</xmi:XMI>

The Car object contains the Engine object and the Part object. The Engine
object contains the Cylinder object. Here is an XMI document that contains a
Delete object specifying the deletion of the engine:

<xmi:XMI xmi:version="2.0" xmlns:xmi="http://www.omg.org/XMI">

<xmi:Delete>

<target href="base.xmi#_2"/>

</xmi:Delete>

</xmi:XMI>

Notice that the target of the Delete object identifies the XML element in the
base document to delete.

Applying the deletion to base.xmi results in the following XMI document:

<xmi:XMI xmi:version="2.0" xmlns:xmi="http://www.omg.org/XMI">

<Car xmi:id="_1">

<part xmi:id="_4"/>

</Car>

</xmi:XMI>

Notice that the Cylinder object inside the Engine object is deleted when the
Engine object is deleted, since it is an object value.

You can specify additions to a document as well as deletions. You use an Add
object to represent an addition to a base document. For each Add object, the tar-
get specifies the XML element that is the container for the XML element to add.
The addition XML attribute identifies the XML element for the object to add.
The position XML attribute indicates where in the container XML element the
new XML element will be added. If no position is specified, the element is
added at the end of the existing content of the XML element that is the target.
If a position is specified, the new XML element is added so that it occupies that
position inside the content of the target XML element. The first position is indi-
cated with a 1.

Consider the following base document base2.xmi:

<xmi:XMI xmi:version="2.0" xmlns:xmi="http://www.omg.org/XMI">

<Car xmi:id="_1">

<part xmi:id="P1" name="Part1"/>

<part xmi:id="P2" name="Part2"/>

<part xmi:id="P3" name="Part3"/>

</Car>

</xmi:XMI>

The Car object has three parts. Now consider how to add new parts to the
Car object. The part named NewPart1 is to be added before the existing
parts, the part named NewPart3 is to be added after Part1 yet before Part2,
and the part named NewLastPart is to be added after Part3. Here is the XMI

112 Chapter 3

document containing the three Add objects representing each addition to the
base document:

<xmi:XMI xmi:version="2.0" xmlns:xmi="http://www.omg.org/XMI">

<xmi:Add addition="NP1" position="1">

<target href="base2.xmi#_1"/>

</xmi:Add>

<Part xmi:id="NP1" name="NewPart1"/>

<xmi:Add addition="NP3" position="2">

<target href="base2.xmi#_1"/>

</xmi:Add>

<Part xmi:id="NP3" name="NewPart3"/>

<xmi:Add addition="NLP">

<target href="base2.xmi#_1"/>

</xmi:Add>

<Part xmi:id="NLP" name="NewLastPart"/>

</xmi:XMI>

The position for the first Add object is 1 because NewPart1 is to be added at
the beginning of the existing parts for the car. The position for the second Add
object is 2, because the positions are based on the original document. The posi-
tion for NewLastPart is not specified, so that it will be added to the end of the
existing parts for the car.

Applying these additions to base2.xmi results in the following XMI
document:

<xmi:XMI xmi:version="2.0" xmlns:xmi="http://www.omg.org/XMI">

<Car xmi:id="_1">

<part xmi:id="NP1" name="NewPart1"/>

<part xmi:id="P1" name="Part1"/>

<part xmi:id="NP3" name="NewPart3"/>

<part xmi:id="P2" name="Part2"/>

<part xmi:id="P3" name="Part3"/>

<part xmi:id="NLP" name="NewLastPart"/>

</Car>

</xmi:XMI>

You can specify the replacement of an object in a base document using a
Replace object. The target of the Replace object is the XML element for the object
to replace. The replacement of the Replace object is the XML element for the new
object that will replace the existing object in the base document. The position of
the Replace element indicates where to add the content of the new object in the
content of the existing object. The first position is indicated by a 1. If no posi-
tion is specified, the content of the new object will be added to the end of the
existing content of the object to be replaced in the base document.

Consider how to replace the Car object in base2.xmi with another Car object,
making the three parts for the original Car object the parts for the new Car

XMI Concepts 113

object. Here is an XMI document with a Replace object that indicates that the
Car object in the base document is to be replaced by the Car object with a xmi:id
of _2.1:

<xmi:XMI xmi:version="2.0" xmlns:xmi="http://www.omg.org/XMI">

<xmi:Replace replacement="_2.1">

<target href="base2.xmi#_1"/>

</xmi:Replace>

<Car xmi:id="_2.1"/>

</xmi:XMI>

The result of applying the replacement to the original base2.xmi is as follows:

<xmi:XMI xmi:version="2.0" xmlns:xmi="http://www.omg.org/XMI">

<Car xmi:id="_2.1">

<part xmi:id="P1" name="Part1"/>

<part xmi:id="P2" name="Part2"/>

<part xmi:id="P3" name="Part3"/>

</Car>

</xmi:XMI>

The only difference is that the Car object has a xmi:id of _2.1. The new Car
object has the same three parts as the original Car object.

Now consider replacing the Car object in base2.xmi with another Car object
that has a part. The new part is to be added to the beginning of the existing
parts of the Car object to be replaced. The following XMI document contains
the Replace object that specifies this difference:

<xmi:XMI xmi:version="2.0" xmlns:xmi="http://www.omg.org/XMI">

<xmi:Replace replacement="_3.1" position="1">

<target href="base2.xmi#_1"/>

</xmi:Replace>

<Car xmi:id="_3.1">

<part xmi:id="NP1" name="NewPart1"/>

</Car>

</xmi:XMI>

Applying this difference to the original base2.xmi document results in the
following document:

<xmi:XMI xmi:version="2.0" xmlns:xmi="http://www.omg.org/XMI">

<Car xmi:id="_3.1">

<part xmi:id="NP1" name="NewPart1"/>

<part xmi:id="P1" name="Part1"/>

<part xmi:id="P2" name="Part2"/>

<part xmi:id="P3" name="Part3"/>

</Car>

</xmi:XMI>

114 Chapter 3

XMI XML Element
Figure 3.15 contains a UML diagram for the XMI class. The contentType is any,
and the processContents tag is strict. All the attributes can have multiple values
except for the version attribute. The version attribute has its attribute tag set to
true, its form tag set to qualified, its fixedValue tag set to 2.0, and its enforceMini-
mumMultiplicity tag set to true (since this tag is set to true, the ordered tag is true;
however, the contentType tag is any, so ordering is not relevant in this case). The
declarations for the XMI class appear as follows:

<xsd:complexType name="XMI">

<xsd:choice minOccurs="0" maxOccurs="unbounded">

<xsd:any processContents="strict"/>

</xsd:choice>

<xsd:attribute ref="xmi:id"/>

<xsd:attributeGroup ref="IdentityAttribs"/>

<xsd:attributeGroup ref="LinkAttribs"/>

<xsd:attribute name="type" type="xsd:QName" use="optional"

form="qualified"/>

<xsd:attribute name="version" type="xsd:string" use="required"

fixed="2.0" form="qualified"/>

</xsd:complexType>

<xsd:element name="XMI" type="XMI"/>

The XMI complex type declaration does not use the ObjectAttribs attribute
group because it defines its own version attribute that is required to be present,
whereas the version attribute in the ObjectAttribs group is not required. All the
attributes in the ObjectAttribs attribute group, except for the version attribute,
are in the complex type declaration.

The IdentityAttribs and LinkAttribs attribute groups are used in the declara-
tion of the ObjectAttribs attribute group, as described in the XML Attribute Dec-
larations section in this chapter.

XMI Concepts 115

version : String
model : Model
metaModel : MetaModel
import : Import
documentation : Documentation
difference : Difference
extension : Extension

XMI

«datatype»
String

Figure 3.15 The XMI class.

XMI serializes Model, MetaModel, Extension, Difference, and Documentation
objects in XMI XML elements or in XML documents using the same rules as
other objects.

Summary

XMI specifies how to write objects to documents and how to generate schemas
from models, and it defines a number of XML elements and attributes. You do
not need to know much about XML to use XMI; however, if you do know
XML, you can tailor the default XMI representation of objects and the
generation of schemas. This flexibility enables you to create XML documents
that match your needs.

After reading this chapter, you should have a good idea of how objects are
represented in an XMI document and how classes are represented in an XMI
schema. You should also be aware of some of the variations that XMI supports
in XMI documents and schemas. As you move on into the next part of this
book, How To Use XMI, we will focus on helping you learn how to use XMI in
your applications. At times, you may want to refer back to the information pre-
sented in this chapter, either by reviewing the tables that summarize the major
concepts or by looking at the sections that describe those concepts in detail.

116 Chapter 3

How to Use XMI

Two

PA R T

119

There are many ways you can use XML Metadata Interchange (XMI) in your
applications. In this chapter, we describe a generic process for using XMI that
you can tailor for your own purposes. We chose this process because it is rep-
resentative of all the processes for using XMI. By examining the process we
describe in this chapter, you can devise a process for using XMI that best suits
your needs.

As we describe each step in the process, we explain the issues that you
should consider when you use XMI. Issues to consider at each stage will be
covered in the abstract but will be supported by plenty of pointers to other
parts of the book that deal with the issues concretely. We also offer advice
about which features of XMI to use in different situations based on our experi-
ence using XMI.

After we describe the process, we provide a concrete example of the use of
the process. The example demonstrates the use of the entire process. Once you
have seen the entire process in action, you can understand how the steps of the
process relate to each other so you can decide which steps are appropriate for
your situation. Then you can learn details about each step of the process and
fit them into your view of the whole process.

Since this chapter describes many aspects of using XMI, it serves as a road
map for the rest of the book. The rest of the book provides more details about
the issues discussed here as well as concrete examples of XMI. Chapter 5 dis-
cusses issues related to modeling your data and reverse engineering models

Creating Your
XMI Process

C H A P T E R

4

from Extensible Markup Language (XML) documents, Document Type Defini-
tion (DTD), and schemas. Chapter 6 discusses how to use XMI with the Simple
API for XML (SAX) and the Document Object Model (DOM), two standard
XML application programming interfaces (APIs). Chapters 7, 8, and 9 discuss
the XMI Framework, an example of software that supports XMI and is included
on the accompanying CD-ROM. Chapter 9 also discusses schema validation in
more detail to help you decide whether to use validation in your applications.
Chapter 10 discusses how XMI fits into a more general strategy for using mod-
els in your software development efforts and how XMI works well with meta
data. Chapter 11 discusses some of the uses of XMI in the Websphere Studio
Application Developer software included on the accompanying CD-ROM.
Finally, Appendix A contains documentation about the XMI Framework.

Overview of the XMI Process

The XMI process that we describe here is model-based. This ties in to the
Object Management Group’s (OMG) Model-Driven Architecture approach,
briefly described in Chapter 1 and discussed in more detail in Chapter 10.
There are many benefits to modeling your data, but we do not describe all of
them here. Please refer to one of the numerous books on Unified Modeling
Language (UML) for a full description of the benefits of modeling.

We recommend that you perform the following steps when using XMI:

1. Define your objects using UML.

2. Create an XMI schema (optional).

3. Design your files.

4. Generate code from the model (optional).

5. Implement the application.

This process is illustrated in Figure 4.1. Two of the steps of the process are
optional. Creating an XMI schema is optional because XMI does not require
you to use XML validation in your applications. Generating code from the
model is optional because you can implement your applications any way you
wish. Although generating code can be considered part of implementing the
application, we place it in its own step because we feel that you should evalu-
ate whether generating code can be useful to you.

The following sections summarize each step and reference chapters in this
book that cover related topics in greater detail.

120 Chapter 4

Creating Your XMI Process 121

Implement the application

Design your files

Define your objects using
UML

Create an XMI schema

Generate code

Figure 4.1 The XMI process.

Define Your Objects
Use UML to create a model that defines your objects. You can create a model
by analyzing your problem domain, or you can reverse engineer a model from
existing software. You do not need to be a UML expert to use XMI. Chapter 2
describes the parts of UML that you need to know to complete this step.

Are we recommending that you model your data in every case? No, we are
not. Although we believe that modeling is very useful in most cases, modeling
can be too much effort. If you are implementing a very simple system with
only a few types of data that are completely defined and understood, you do
not anticipate that other people will use your XML files, and the system is
unlikely to change or evolve, then you probably do not need to model. You
may still use the XMI object serialization rules to create XMI files, even if
you do not have a model for your data. However, we strongly recommend that
you create a model for your data if:

■■ Your data has not been precisely defined.

■■ You expect other people to use the data or to use it in new ways.

■■ Your system will evolve and grow.

Another reason to create a model is to ensure that XMI documents are cor-
rectly interpreted. If a model exists for objects, XMI software can use the model
to correctly interpret an XMI document. Chapter 7 provides an example of this
situation. XMI software can also perform semantic checking of XMI docu-
ments that is not possible without a model.

Once you have created a UML model for your objects, there are several
things you need to check to make sure that you can use the model with XMI.
Some XMI software may alert you to potential problems with your model and
may change your model to be XMI-compliant automatically. Whether you are
using software that handles these issues or not, you should be aware of them.
Chapter 5 describes in more detail what these issues are, but we briefly explain
some of them here.

For example, the names that you use in the model need to be legal XMI
names, which generally means that they should be legal XML tag names and
XML attribute names. If you have a class called My Class, for example, XMI
software may attempt to serialize instances of that class using a tag called My
Class, which is not a legal XML tag name. You can either change the name to
MyClass or My_Class to make it a legal XMI name. The names of classes, attrib-
utes, and association ends need to be legal XMI names.

Some modeling tools enable you to have unnamed constructs in your
model. For example, they may enable you to create an association between
two classes without specifying a name for both association ends. XMI requires
that you specify a name for your association ends, and the name must be a
legal XMI name.

122 Chapter 4

Another issue is the declaration of the types of attributes. Modeling tools
may enable you to use a string to identify the type of an attribute without
requiring that the datatype that is named in the string be declared in the
model. You should include the datatype declarations in your model, so you
can document your datatypes. If you include the declarations, you can docu-
ment the mapping between your UML datatype declarations and the concrete
datatypes in programming languages or XML when you implement the
model.

Chapter 5 describes in more detail the issues that you need to consider when
creating a UML model for use with XMI. It also describes how to reverse engi-
neer a UML model from existing software.

Create an XMI Schema
XMI does not require you to use XML validation, but you can do so if you wish.
XMI software exists to help you create schemas so you do not need to create
them manually. Chapter 3 describes default XMI schemas and how you can tai-
lor the schemas XMI software creates. Chapter 9 describes how you can use the
XMI Framework to produce schemas from your models and the verification
performed by XML validation with XMI schemas. Whether you create an XMI
schema depends primarily on whether you decide to use XML validation.

Software is available that creates XMI schemas from UML models. Using
software to create your XMI schemas rather than creating XMI schemas man-
ually has many advantages. By using software to create the XMI schemas, you
can save time, reduce the number of errors in the schemas, and ensure that the
schema matches the UML model. The bigger your models, the more advanta-
geous it is to use software to create your XMI schemas.

There are several issues you need to consider when deciding on whether to
use XML validation:

■■ The source of the XMI files

■■ Performance

■■ How tolerant your software is of errors in input data

If other companies create XMI files, if you do not know the source of the
XMI files, or if you do not trust the source of the XMI files, XML validation can
help you determine if the XMI files are what you expect them to be. If your
software will be using XMI files that your own software creates, you probably
don’t need to use XML validation, although performing XML validation can
help you debug your software during the development phase.

If an XML parser performs XML validation when processing an XML file,
it takes longer to process the file than if validation is not performed. In fact,
it typically takes much longer to validate a document than to parse it. Is

Creating Your XMI Process 123

performance critical for your application? If it is, XML validation may take too
long. Another performance issue to consider is how much data will be in the
XMI files your software uses. If there is a lot of data, validation may also take
too long. However, if not much data is put in the XMI files, performance may
be acceptable even if XML validation is used. If performance is critical, we rec-
ommend that you analyze the impact of XML validation on your software’s
performance before deciding to use XML validation.

Another issue to consider when deciding whether to use XML validation is
how much error checking you plan to implement yourself. XML parsers per-
form XML validation, so if you decide to use validation, you may not need to
implement as much checking yourself. However, if your software already does
a lot of checking and works well even with unexpected input data, XML vali-
dation may not be useful to you. You can also do validation during the devel-
opment of your application to catch as many errors as possible, and then turn
validation off once you are satisfied that your application works correctly.

We recommend that you use XML validation if one or more of the following
statements applies to your application:

■■ The XMI files your software uses come from unknown or unreliable
sources.

■■ Performance is not critical.

■■ You do not plan to implement error checking.

We recommend that you do not use XML validation if any of the following
statements applies to your application:

■■ The XMI files your software uses come from trusted sources.

■■ Performance is critical.

■■ You plan to implement error checking.

Even if you choose not to validate your XMI documents, an XMI schema
describes the expected contents of XMI documents, so it can help others pro-
duce XMI documents that your software can handle.

Once you make the decision to create an XMI schema, you need to decide
whether to tailor the schema or use the default schema specified by XMI. As
you saw in Chapter 3, XMI specifies a valid schema without requiring you to
tailor the schema. Software that implements the XMI specification allows you
to create valid schemas without requiring you to be an expert on XML
schemas. However, XMI enables you to use your schema expertise if you wish
to tailor the schemas to suit your purposes. By tailoring the schemas, you can
affect the content of XMI documents and the checking performed by XML val-
idation. If you are unfamiliar with schemas, it is best to start with the default
schemas XMI specifies. As you learn more about schemas, you can tailor the
default schemas if necessary.

124 Chapter 4

Here are some of the issues to consider when deciding how to tailor an XMI
schema. You can decide whether to represent certain data in XML attributes or
elements. Using XML attributes may result in shorter documents and allow
more data to be accessed when a start tag is processed by a parser. However, in
some situations, an XML parser will normalize XML attribute values, and that
normalization may be significant to your applications. For example, an XML
parser may convert end-of-line or tab characters to space characters when
reading an XML document. If those characters are meaningful to your appli-
cation, they may be lost unless you put them in the content of an XML element
rather than in an XML attribute.

We strongly recommend that you use XML namespaces in your applications
and that you specify an XML namespace for each of the packages in your
model. Doing so prevents name collisions if data defined by different models
is written in the same document. It also prevents name collisions between two
classes with the same name in different packages. You can choose not to use
XML namespaces if you wish, however.

Default XMI schemas do not use schema extension. You can choose to use
schema extension in your schemas if you wish. Doing so allows schema vali-
dation to detect more errors than otherwise, but it also imposes a restriction on
the order of the content of XML elements. This happens because inherited
information needs to be serialized before locally declared information when
schema extension is used.

Each of these issues, choosing attributes or elements, namespaces, and
schema extension, affects document producers. If you choose not to use XML
attributes, document producers must be capable of putting the data in ele-
ments rather than attributes and vice versa. If you decide to use schema
extension, document producers need to be able to serialize data in the correct
order for schema validation to be successful. When you decide how to tailor
XMI schemas, be aware of the impact that your choices have on document
producers.

Design Your Files
After creating a model and possibly generating a schema from it, you should
consider the XMI documents your system will read and write. XMI has many
optional features that you may find useful that enable you to do the following
things:

■■ Specifying information that describes your documents

■■ Creating cross-file references

■■ Storing additional information by utilizing extensions

■■ Embedding XMI within XML documents

Creating Your XMI Process 125

We explain the issues to consider when deciding whether to use each of
these features, and then we provide recommendations for when to use them.
Although each of these features is explained in detail in Chapter 3, Chapter 3
does not provide guidance for when to use them. Some XMI software provides
support for these features, while some does not. Therefore, you should con-
sider which features you are going to use when you are selecting which XMI
software to use. If the software you select does not provide the features you
plan to use, you will need to implement support for them yourself. You need
to examine the documentation for the XMI software you plan to use to ensure
it has the capabilities you need.

To help you decide which features of XMI to use, you should consider how
your XMI documents are likely to be used. Do you expect to use XMI docu-
ments created only by your software, or will your software use XMI docu-
ments produced by other software? How many times will your XMI
documents be exchanged? Will your software exchange documents with other
software and then receive them again? The answers to these questions can
help you determine the features of XMI that you need to use.

Some decisions about the contents of the documents were decided when
generating an XMI schema. Refer to the previous section, Create an XMI
Schema, for more details about how schemas affect document content.

Describing Your Documents

XMI defines some XML elements that enable you to specify information about
the objects in an XMI document. The elements include the Documentation,
Model, and MetaModel elements. Chapter 3 contains all the details about the
information you can specify in these XML elements, so we do not repeat them
all here. You can use the Model element to unambiguously identify the model
that defines your objects, for example. You should consider using this feature
if you exchange your XMI documents with other software; the other software
might be able to verify that the model you identified is the model that it
expects. Another example of information that could be useful if you are work-
ing with XMI documents created by different software is the name and version
number of the software that produced the XMI document. This information
might help you determine the cause of bugs. You should review Chapter 3 for
the types of data that XMI enables you to specify in order to decide whether to
use these XML elements in your XMI documents.

Cross-File References

Once you know what kind of information you want to put in your XMI docu-
ments, you should consider whether to write your objects in a single XMI doc-
ument or write them in several XMI documents. XMI enables you to group

126 Chapter 4

your objects into documents in any fashion you wish, and it provides a way for
objects to reference objects in other documents. If the objects are written in sev-
eral documents, the documents will probably contain references to objects in
other documents. Using multiple XMI documents requires more software sup-
port than using XMI documents that do not refer to other XMI documents, but
if your documents are very large, splitting them into smaller ones might result
in significant performance improvements.

The decision to write your objects into multiple documents depends on the
size of the XMI documents. It also depends on whether there are logical group-
ings of objects, whether the documents will be shared, whether it is feasible to
update one of the documents without updating others, and whether meaning-
ful work can be done without loading all of the documents. In general, if there
is a logical way to group the objects, each group should be written in its own
XMI document. If the documents will be shared, having multiple documents
can reduce conflicts when more than one application accesses them. If one of
the documents can be updated without updating all of them, this can also help
to promote sharing. If meaningful work can be done with a subset of the
objects, then writing the objects in multiple documents can be very useful.
However, if all of the objects need to be available before they can be processed,
it may be useful to put them all in a single document, since all of the docu-
ments containing the objects would need to be loaded in this case.

This discussion of cross-file references is rather abstract, but Chapter 8 con-
tains a section that describes how cross-file references are handled by a partic-
ular implementation of XMI software, and it provides concrete examples.
Reading that section can help clarify the issues you need to deal with when
working with XMI documents that refer to other XMI documents.

Extensions

Whether or not you use cross-file references, you should consider if you need
to store data in your XMI documents that is specific to your software and not
meant to be shared with other software. This data can be put in XMI extensions
so it does not interfere with data to be shared. An example is user interface
information that is only useful for one application. You also need to consider
what to do with XMI extensions from other software. Although the XMI spec-
ification does not require you to preserve extensions from other tools, doing so
makes it easier to exchange documents, especially if you import an XMI docu-
ment from another tool, modify the information in it, and then send it back to
the tool that put the extensions in it. If you do put data into extensions, you
need to consider the possibility that other tools will not preserve them.

It is possible to write objects that are defined by different models into one
XMI document; doing so does not require you to use extensions. Extensions
should be used for data that is not to be shared with other tools. If you put a

Creating Your XMI Process 127

considerable amount of data in extensions, consider whether you should be
defining the data in your extensions in models so other tools can use it. You
can also put data in extensions if the data is not defined by a UML model.
Extensions are also a place where you can put XML elements that do not cor-
respond to the XMI specification. See Chapter 8 for concrete examples of using
XMI extensions and how XMI software supports using them.

Embedding XMI

The issues we have considered so far affect how you use XMI in XMI docu-
ments, but there is a more basic issue to consider, however. Should you embed
XMI in an XML document? The XMI specification enables you to do so. For
example, you can use XMI to serialize your objects in the body of a Simple
Object Access Protocol (SOAP) document. (SOAP is an XML standard for mes-
saging; it may be replaced by the XML Protocol standard.) This is an example
of using XMI with another XML standard. You may use XMI in your own XML
documents wherever it makes sense to do so. XMI software may provide lim-
ited support for this feature, though, so if you do not want to implement XMI
support yourself, you should determine whether XMI software is available to
help you.

Recommendations

We recommend you put information into your XMI documents using the Doc-
umentation, Model, and MetaModel elements if any of the following statements
applies to your application:

■■ You want to unambiguously identify the model that defines your
objects, especially if there are multiple versions of the model.

■■ The information you can specify will be used by the application.

We recommend you use cross-file references if any of the following state-
ments applies to your application:

■■ You can logically place your objects into several groups.

■■ You are writing many objects to XMI documents.

■■ You can process a subset of the objects.

■■ You want to share XMI documents, either across programs or among
teams.

■■ You want to version your objects.

We recommend you use XMI extensions if any of the following statements
applies to your application:

128 Chapter 4

■■ You want to save data that is not to be shared with other tools.

■■ Some of the data you want to put in XMI documents is not defined by a
model.

■■ You are exchanging XMI documents with software that preserves your
extensions.

Generate the Code
After defining your model, possibly generating a schema, and considering
some basic issues about the content of your XMI documents, you can begin to
implement software that handles the XMI documents. You can implement the
software any way you choose, of course. However, you should consider
whether it is possible to generate some of the code you need from your model
rather than implementing it yourself. One advantage of doing so is that your
code will match your model; another advantage is that the code for a specific
model may be more efficient than code that handles multiple models. This is
because code that handles multiple models might need to be more general and
therefore have extra overhead not required by code generated for a specific
model. The generated code may also provide support for bidirectional linking,
loading objects from XMI documents when they are needed, and enforcing
restrictions on references between objects (for example, whether the objects
can be referenced and whether the number of references matches the multi-
plicity of an association end in your model).

You may need to supply additional information in your model to allow code
generation to occur. For example, you might need to explicitly map datatypes
in your model to datatypes in the language you will use to implement the sys-
tem. Some XMI software generates code that helps you serialize your objects
using XMI. We provide a complete example of this for you in Chapter 8.

Since XMI documents are XML documents, you may be able to make use of
software that generates code for specific types of XML documents. For exam-
ple, if you are working with an XMI schema, you may be able to use software
that produces code from an XML schema and that enables you to work with
XML documents that validate against that schema.

Implement the System
Although you may be able to generate code from your model, you will proba-
bly need to implement at least part of your software yourself. For example, the
generated code might provide interfaces that you need to implement yourself,
or it might create empty method bodies that you need to write yourself. You
need to decide what to implement yourself and what software to use that sup-
ports XMI or XML.

Creating Your XMI Process 129

You should investigate whether to use software that supports XMI. You may
not need to generate code to use this software. If you have followed the
process we describe, the decisions you reached when designing your XMI doc-
uments can help you decide what XMI software, if any, is right for you. For
example, you may have identified a need for XMI extension support or cross-
file reference support. One advantage of using XMI software is that you do not
need to become an XMI expert to use it. Another advantage is that you may
not need to know much about XML itself to use the XMI software, since XMI
software can present an API that is more powerful than XML elements and
attributes. Of course, the more you know about XMI and XML, the better your
chances of using XMI software effectively. Chapters 7 and 8 contain programs
that use XMI software to read and write XMI documents, so you should read
those chapters if you are interested in learning what XMI software can do for
you.

There are many XML tools available, and many of them are free. There is no
need to write your own XML parser unless you cannot find one for the lan-
guage you are using, or you cannot find one with acceptable performance. You
can use standard XML interfaces to read and write XMI documents. If you do
so, though, you are responsible for knowing enough about XMI to produce
legal XMI documents. Even if you cannot find software with XMI support that
suits your needs, you may be able to use XML tools to help you work with XMI
documents. When you design your application, you should investigate the
available software for XMI and XML to avoid implementing functionality that
is already available.

XMI Process Example

Now that you know the steps to follow when using XMI in your applications,
you are ready to see the XMI process in action. This section contains an exam-

130 Chapter 4

CODE GENERATION STANDARD

One advantage of using XMI is that there is a standard way to generate Java
code from Meta Object Facility (MOF) models. The Java Metadata Interface
Specification (JMI) describes the generation of interfaces that enable the
creation of instances of particular MOF models as well as interfaces for saving
those instances in XMI documents and loading them. By the time this book is
published, this standard may be finalized. You should evaluate whether using
JMI can help you implement your applications efficiently. You can also use the
MOF to Interface Description Language (IDL) mapping if you are interested in
cross-language APIs.

ple that describes how two programmers use the XMI process to implement
XMI for a practical application. The problem domain will be familiar to most
readers. The application that is designed is not intended to represent the state
of the art in electronic commerce or business process design. We present it to
enhance your understanding of the XMI process so you can effectively use
XMI in your applications.

The Situation
A car dealer has just made a deal with a car broker, who makes arrangements
to purchase cars from the car dealer on behalf of his clients. In this deal, the car
broker submits bids to purchase cars from the car dealer. The sales manager at
the car dealer examines the bid and either accepts it or proposes a higher price.
The car broker submits another bid if necessary, until the broker and sales
manager agree on a price. In addition, the car broker wants to know which cars
the car dealer has on the lot, so he does not submit a bid for a car that the dealer
needs to order from the factory. The broker and dealer agree to exchange data
using computers, rather than telephones or fax machines, in the hope that this
approach will increase their efficiency.

The car dealer hires a programmer named Dave to implement the dealer’s
part of the system. The car broker hires a programmer named Bob to build the
broker’s part of the system. To avoid confusion about who the programmers
work for, D is the first letter of Dave and dealer, and B is the first letter of Bob
and broker. After consulting with the dealer and the broker about their needs,
the two programmers meet and agree that the inventory and bid information
will be exchanged using XML, and that the two types of information will be
combined in the XML files that are exchanged.

Next, Dave and Bob begin to decide the details about the information to be
exchanged. For brevity, let’s assume they decide that the relevant information
for each car includes the make, model, year, vehicle identification number
(VIN), and options. The options might include air conditioning, power win-
dows, power locks, a CD player, and so on. Finally, Dave and Bob agree to
include the bid price from the broker, the offer price from the dealer, and the
status of the car (available, sold, or negotiating).

Using this system, the car broker will be able to get an XML file containing
the data for all the cars on the dealer’s lot. The status of these cars is available if
they have not yet been sold. When the broker submits a bid, the dealer will get
an XML file containing the data for the car being bid on and the bid price. If the
sales manager at the car dealer accepts the bid, the manager will send the car
broker an XML file with the car’s status changed to sold. If the sales manager
rejects the bid, the manager will send the car broker an XML file with the car’s
status changed to negotiating and a counteroffer for the offer price. This process
will continue until the sales manager and the car broker agree on a price or

Creating Your XMI Process 131

decide to stop negotiating (by changing the car’s status from negotiating to
available).

Dave and Bob decide to use XMI to help them with the XML part of their
application. The rest of this section describes their actions when they under-
take each of the five steps of the XMI process.

Defining the Objects
The first step in using XMI is to create a model that defines the data to be used
in an application. Both Dave and Bob create models based on their under-
standing of the information to be exchanged. Figure 4.2 shows Dave’s model,
and Figure 4.3 shows Bob’s model.

Bob and Dave compare their models and notice several important differ-
ences, even though they are not working with much data. Bob put the make,
model, and year into a Style class, so that information does not need to be dupli-
cated for each car with that style. Also, Bob does not have an attribute on the
Option class to identify the option, whereas Dave has a name attribute for the
Option class. Bob also included a date, time, and dealer for each car, whereas
Dave did not.

There are several differences in the datatypes of the attributes. Bob made the
year attribute an int, whereas Dave made it a String. The type of the bidPrice
and offerPrice attributes in Dave’s model is int, but Bob specified that the type

132 Chapter 4

make : String
model : String
year : String
VIN : String
bidPrice : int
offerPrice : int
status : Status

Car

name : String

Option

car1

option*

available
sold
negotiating

«enumeration»
Status

Figure 4.2 Dave’s model.

is float. Dave defined a Status enumeration that has the literals available, sold,
and negotiating. The type of the status attribute in Bob’s model is String.

After comparing the models, Dave and Bob reconcile their models to make
them the same. They agree to use Bob’s Style class and Dave’s Status enumer-
ation. They also agree that the type for the year attribute should be int, and the
type for the bidPrice and offerPrice attributes should be float. They decide to
include a Date and a Time datatype in their model, and they specify the types
of the date and time attributes accordingly. Taking our advice about modeling
datatypes, they include each of the datatypes in the final model. They also
include Dave’s Option class, which includes a name attribute to identify each
option. Figure 4.4 shows the model they agree to use.

Notice that Dave and Bob are not yet thinking about the XML representation
of their data. They are clarifying their understanding of the data to be
exchanged. Even for this simple example, you can see that there were some
important differences in their understanding of the problem domain. Model-
ing has helped them resolve these differences before considering implementa-
tion details. By resolving differences now, they can avoid rework that might
occur if they implemented their application without noticing these differences.

As a result of their modeling efforts, they now have clear documentation
about the data to exchange that they can both use when they implement their
part of the application. Other people can also use this documentation to under-
stand the data to be exchanged.

Creating Your XMI Process 133

VIN : String
bidPrice : float
offerPrice : float
status : String
date : String
time : String
dealer : String

Car

Option

car1

option*

make : String
model : String
year : int

Style
car

*

style

1

Figure 4.3 Bob’s model.

If Dave and Bob did not use XMI, they might each have created an XML
schema and then reconciled their schemas. There are several drawbacks to this
approach. Since schemas contain the XML representation of the data, it would
have been necessary to analyze all the differences between the two schemas.
For each difference, they would need to determine if the difference is a result
of a misunderstanding about the data to be exchanged or a difference in the
XML representation of the data. Also, they might have begun to consider var-
ious other implementation issues, such as whether the schemas might make
creating documents more difficult in exchange for doing more validation.
Attempting to resolve these issues at the same time as they are resolving dif-

134 Chapter 4

VIN : String
bidPrice : float
offerPrice : float
status : Status
date : Date
time : Time
dealer : String

Car

name : String

Option

car1

option*

available
sold
negotiating

«enumeration»
Status

make : String
model : String
year : int

Style

style

1

car

*

«datatype»
String

«datatype»
int

«datatype»
float

«datatype»
Date

«datatype»
Time

Figure 4.4 The final model.

ferences in their understanding of the data is much more difficult than doing
those tasks separately.

Creating an XMI Schema
Now that Dave and Bob have created a UML model for their data, they can use
XMI to help them represent the data in XML. Dave and Bob believe that it will
be useful to create a schema for their application. Even if they decide not to use
XML validation, the schema can still serve as documentation for the expected
contents of the XML documents to be exchanged.

Neither Dave nor Bob is an expert on using XML schemas, so they decide to
use the default schemas XMI creates. Another reason for using the default
schemas is because they do not have strong opinions about whether to use
XML elements rather than XML attributes to represent the data. The default
schemas give document producers options for using either XML elements or
XML attributes in some cases, and Dave and Bob want to keep their options
open at this stage in the development of their application.

Dave and Bob both agree that it makes sense to use an XML namespace in
their XML documents. Although they do not anticipate mixing their data with
other data, by using an XML namespace, they ensure that if it becomes neces-
sary to mix data in the future they will not encounter problems with names
that conflict with names they use. They decide to use the XML namespace URI
http://carDealerAndBroker, and they decide to use the namespace prefix cdb for
this namespace in their schema. They specify the org.omg.xmi.nsURI and
org.omg.xmi.nsPrefix tags in their model to document their decisions. Since the
classes and datatypes are not in a package, they specify these tags for each
class and datatype in their model. It would be very useful for a modeling tool
that supports XMI to enable them to provide this information once and apply
it to each class and datatype, rather than requiring Dave and Bob to manually
set the tags for each class and datatype in the model.

Next, Dave and Bob consider the datatypes in their model and the available
datatypes that schemas provide. They decide to map their datatypes to schema
datatypes, as shown in Table 4.1.

Creating Your XMI Process 135

Table 4.1 Datatype Mapping

MODEL DATATYPE SCHEMA DATATYPE

String string

Date date

Time time

int int

float float

Dave and Bob specify the schema datatype in their model using the org.omg
.xmi.schemaType tag. Since they have included each of the datatypes they use in
their model, they can set the value of the org.omg.xmi.schemaType tag for each
datatype.

We describe how the XMI Framework creates schemas in Chapter 9. Dave
and Bob use either the XMI Framework or other XMI software to create the fol-
lowing schema:

<?xml version="1.0" encoding="UTF-8"?>

<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"

xmlns:xmi="http://www.omg.org/XMI"

targetNamespace="http://carDealerAndBroker"

xmlns:cdb="http://carDealerAndBroker">

<xsd:import namespace="http://www.omg.org/XMI"

schemaLocation="xmi20.xsd"/>

<xsd:simpleType name="Status">

<xsd:restriction base="xsd:string">

<xsd:enumeration value="available"/>

<xsd:enumeration value="sold"/>

<xsd:enumeration value="negotiating"/>

</xsd:restriction>

</xsd:simpleType>

<xsd:annotation>

<xsd:documentation>CLASS: Car</xsd:documentation>

</xsd:annotation>

<xsd:complexType name="Car">

<xsd:choice minOccurs="0" maxOccurs="unbounded">

<xsd:element name="VIN" type="xsd:string"/>

<xsd:element name="bidPrice" type="xsd:float"/>

<xsd:element name="offerPrice" type="xsd:float"/>

<xsd:element name="status" type="cdb:Status"/>

<xsd:element name="date" type="xsd:date"/>

<xsd:element name="time" type="xsd:time"/>

<xsd:element name="dealer" type="xsd:string"/>

<xsd:element name="style" type="xmi:Any"/>

<xsd:element name="option" type="xmi:Any"/>

<xsd:element ref="xmi:Extension"/>

</xsd:choice>

<xsd:attribute ref="xmi:id"/>

<xsd:attributeGroup ref="xmi:ObjectAttribs"/>

<xsd:attribute name="VIN" type="xsd:string" use="optional"/>

<xsd:attribute name="bidPrice" type="xsd:float" use="optional"/>

<xsd:attribute name="offerPrice" type="xsd:float"

use="optional"/>

<xsd:attribute name="status" type="cdb:Status" use="optional"/>

136 Chapter 4

<xsd:attribute name="date" type="xsd:date" use="optional"/>

<xsd:attribute name="time" type="xsd:time" use="optional"/>

<xsd:attribute name="dealer" type="xsd:string" use="optional"/>

<xsd:attribute name="style" type="xsd:IDREFS" use="optional"/>

</xsd:complexType>

<xsd:element name="Car" type="cdb:Car"/>

<xsd:annotation>

<xsd:documentation>CLASS: Option</xsd:documentation>

</xsd:annotation>

<xsd:complexType name="Option">

<xsd:choice minOccurs="0" maxOccurs="unbounded">

<xsd:element name="name" type="xsd:string"/>

<xsd:element name="car" type="xmi:Any"/>

<xsd:element ref="xmi:Extension"/>

</xsd:choice>

<xsd:attribute ref="xmi:id"/>

<xsd:attributeGroup ref="xmi:ObjectAttribs"/>

<xsd:attribute name="name" type="xsd:string" use="optional"/>

<xsd:attribute name="car" type="xsd:IDREFS" use="optional"/>

</xsd:complexType>

<xsd:element name="Option" type="cdb:Option"/>

<xsd:annotation>

<xsd:documentation>CLASS: Style</xsd:documentation>

</xsd:annotation>

<xsd:complexType name="Style">

<xsd:choice minOccurs="0" maxOccurs="unbounded">

<xsd:element name="make" type="xsd:string"/>

<xsd:element name="model" type="xsd:string"/>

<xsd:element name="year" type="xsd:int"/>

<xsd:element ref="xmi:Extension"/>

</xsd:choice>

<xsd:attribute ref="xmi:id"/>

<xsd:attributeGroup ref="xmi:ObjectAttribs"/>

<xsd:attribute name="make" type="xsd:string" use="optional"/>

<xsd:attribute name="model" type="xsd:string" use="optional"/>

<xsd:attribute name="year" type="xsd:int" use="optional"/>

</xsd:complexType>

<xsd:element name="Style" type="cdb:Style"/>

</xsd:schema>

If any of the details of this schema are unfamiliar to you, you can find a
detailed explanation of XMI schemas in Chapter 3.

Creating Your XMI Process 137

The decision to use XMI helped Dave and Bob in generating a schema to
represent the data for their system. By agreeing on a model, they avoided the
step of reconciling the separate schemas they would have created for the two
models they came up with originally. Also, because they utilized XMI software
to generate a schema for their combined model, they avoided the effort, and
potential errors, of creating a schema manually. They also did not need to
become schema experts to create their schema. All that Dave and Bob needed
to know was how to specify an XML namespace and how to map their model’s
datatypes to schema datatypes. The XML namespace and schema datatypes
that Dave and Bob chose are included in their model as values of XMI tags,
making the results of those decisions available to XMI software and other
developers that want to make documents that work with the application that
Dave and Bob are developing.

Designing the Files
Now Dave and Bob consider whether they need to use advanced XMI capabil-
ities. After reviewing the kind of information that XMI enables them to put in
documents, both of them decide that they should use the exporter and exporter-
Version XML elements inside the XMI Documentation XML element to identify
their software. This information will make it easy to determine which software
created which XMI documents. They determine that the XMI files will not be
very large, so they do not plan to use cross-file references. Dave and Bob also
cannot think of any information about cars to put in their XML files that is not
specified by their UML model, so they do not plan to use extensions.

Dave and Bob both made the same decisions about their XMI files in this
case, but if they had not, the XMI files that their parts of the application create
would be exchangeable anyway, since they would follow the XMI standard.
Also, by using XMI, they gave themselves the opportunity to use advanced
XMI functionality in the future without regenerating their schema or imped-
ing the exchange of their files.

Generating the Code
Now that Dave and Bob know what their XMI files will look like, they can
begin to consider how to implement their parts of the car purchasing applica-
tion. Bob decides to implement his part on his own, while Dave decides to use
XMI software to implement his part. Since Dave has a UML model of the
objects in the XMI files, he decides to use a code generator to generate some of
the code for his system. He believes that by automatically creating code from
the model, he can ensure that the code will match the model, and he can imple-
ment his system quicker than if he implemented all of it by hand.

138 Chapter 4

Dave decides to use the XMI Framework, which provides basic capabilities
for reading and writing XMI files and can generate Java code from a UML
model. Chapters 7, 8, and 9 provide a description of the capabilities of the XMI
Framework and demonstrate its use.

The XMI Framework generates a Java interface and a Java class for each
class in the UML model; the generated class implements the generated inter-
face. For each attribute in the model, the Framework generates two accessor
methods to get and set the value of the attribute. For example, the following
method signatures are generated for the VIN attribute for the Car class in Dave
and Bob’s final UML model shown in Figure 4.4:

public String getVIN();

public void setVIN(String value);

The XMI Framework generates three methods for each association end that
is navigable. It ignores the multiplicity of the association end (this is a limita-
tion of the current version of the Framework). Here are the signatures of the
three methods corresponding to the option association end in the final model:

public Collection getOption();

public void addOption(Option object);

public void removeOption(Option object);

Now you are ready to look at the interfaces that the XMI Framework makes
from the final UML model:

// Car.java

package car;

import com.ibm.xmi.framework.*;

import java.util.*;

public interface Car extends XMIObject {

public String getVIN();

public void setVIN(String value);

public float getBidPrice();

public void setBidPrice(float value);

public float getOfferPrice();

public void setOfferPrice(float value);

public String getStatus();

public void setStatus(String value);

public String getDate();

public void setDate(String value);

Creating Your XMI Process 139

public String getTime();

public void setTime(String value);

public String getDealer();

public void setDealer(String value);

public Collection getOption();

public void addOption(Option object);

public void removeOption(Option object);

public Collection getStyle();

public void addStyle(Style object);

public void removeStyle(Style object);

} // Car

// Option.java

package car;

import com.ibm.xmi.framework.*;

import java.util.*;

public interface Option extends XMIObject {

public String getName();

public void setName(String value);

public Collection getCar();

public void addCar(Car object);

public void removeCar(Car object);

} // Option

// Style.java

package car;

import com.ibm.xmi.framework.*;

import java.util.*;

public interface Style extends XMIObject {

public String getMake();

public void setMake(String value);

public String getModel();

public void setModel(String value);

public int getYear();

public void setYear(int value);

} // Style

As you can see, these interfaces enable Dave to create the objects he will put
in XMI files. The XMI Framework maps the int and float UML datatypes to Java

140 Chapter 4

types int and float, respectively. It also maps the String UML datatype to the
Java class java.lang.String. It maps the UML enumeration Status to the Java
class java.lang.String as well as the UML datatypes Date and Time. A more
sophisticated code generator would respect the multiplicities in the model and
would enable users to map the UML Date datatype to the Java class
java.util.Date. Note that all the interfaces were generated in a car Java package
that was specified as an option to the XMI Framework code generator. From
this example, you should now have an idea of how the XMI Framework gen-
erates code. We provide a detailed description of the code generated by the
XMI Framework in Chapter 8.

Implementing the System
With the definition, design, and code generation steps complete, Dave and Bob
can now complete the implementation of their parts of the car purchasing
application. Since Dave is using XMI software, he does not need to implement
as much functionality as Bob does. Both of them need to implement code that
is unique to their parts of the application. For example, Dave may need to
implement code to work with the car dealer’s inventory system. However,
since the XMI files are clearly defined and conform to a standard specification,
neither Dave nor Bob needs to worry about misinterpreting the contents of the
XMI files. If either Dave or Bob needs to make his XMI files more complicated
to satisfy new requirements for his part of the application, he can do so with-
out interfering with the other parts of the application. If they want to expand
the system in the future by including more dealers or brokers, they can do so,
and the additional dealers and brokers can understand the XMI files by look-
ing at the UML model Dave and Bob produced.

Summary

The XMI specification does not require you to employ a particular process for
your XMI projects; however, by following the process outlined in this chapter,
you can take advantage of the benefits that XMI provides. The XMI process
described here consists of five steps: creating a UML model that defines your
objects, creating an XMI schema, designing your files by considering which
XMI features are beneficial for your application, generating code from the
model, and implementing the system. It is not necessary to generate a schema
or generate code from your model, but you can do so if you wish. Doing so can
help you implement your applications more quickly and ensure that your
applications are correctly aligned with your model. We saw how using the
XMI process can help Dave and Bob implement their system. Additionally, by

Creating Your XMI Process 141

basing their data representation on a standard like XMI, they also gain the
benefit of being able to more easily integrate their application with other sys-
tems that use XMI in the future.

Now that you understand the entire process, you can begin to focus on each
step of the process in more detail. The next chapter explains details about
creating UML models for use with XMI and reverse engineering UML models
from XML documents, DTDs, and schemas.

142 Chapter 4

143

As discussed in Chapter 4, the first step in using XML Metadata Interchange
(XMI) is to create a Unified Modeling Language (UML) model for your objects.
This chapter provides information that will help you create UML models to
use with XMI.

UML enables you to create models without considering how they will be
implemented. Since XMI creates Extensible Markup Language (XML) repre-
sentations for UML models though, you may need to modify your models so
XMI can create legal XML representations for them. You may need to provide
legal XML element names for the constructs in your model, for example.
Although modeling tools help you create models, some of them have features
that you need to use with care to achieve the results you expect. The first part
of this chapter helps you create models for use with XMI, and it contains
advice for effectively using modeling tools.

You can create new models for use with XMI. However, you may want to
create models based on existing XML. Doing so allows you to use the power of
UML and XMI while building on your existing XML work. The second part of
this chapter describes how you can reverse engineer models from XML docu-
ments, Document Type Definitions (DTDs), and schemas. You can revise these
models to suit your needs. It can be quicker and more accurate to reverse engi-
neer and modify models than to create UML models manually.

Creating Models
for XMI

C H A P T E R

5

UML Modeling Issues

UML models can be created without considering how they will be imple-
mented, so you may need to revise your UML models to make them suitable
for use with XMI. These revisions may include providing additional informa-
tion. Software that supports XMI may provide useful defaults for required
information that is not specified in UML models, but if the XMI software you
are using does not provide defaults, you may need to supplement your mod-
els with additional information.

The parts of UML that are used with XMI are classes, packages, datatypes,
attributes, association ends, and tagged values. XMI ignores other parts of
UML.

Several modeling tools exist that can help you create UML models. Some of
these tools have features that should be used with care. You should be aware
of two issues when you use modeling tools:

■■ Some modeling tools do not completely implement the UML specifica-
tion.

■■ Some modeling tools provide the capability for UML constructs to exist
without being displayed in UML diagrams. Software that supports XMI
uses the model constructs rather than the diagrams. If your tool has this
capability, you should be careful that when you delete a construct, the
construct is deleted from the model rather than deleted only from a
diagram.

The rest of this section discusses how to use UML modeling tools to create
UML models for use with XMI.

Names
XMI uses the names of UML classes as XML element names. XMI also uses the
names of UML attributes and UML association ends as either XML attribute
names or XML element names. This means that the names in the model need
to be legal XML element and attribute names. Fortunately, legal XML element
names are also legal XML attribute names.

A legal XML element name or attribute name consists of letters, digits, and
the period (.), hyphen (-), underscore (_), and colon (:) characters. The first
character must be a letter, a _, or a :. We recommend that you avoid using the :
character in your names because that character is used with XML namespaces.
In general, punctuation marks are not allowed in names, and space characters
are also not allowed. There are three ways to make illegal XML element names
legal. The first way is to convert illegal characters to legal ones; the second way
is to remove illegal characters from names. The third way is to provide a sub-

144 Chapter 5

stitute name. For example, the name My Class is not a legal XML element name
because of the space character. It can be transformed into a legal name by
replacing the space character with _ to get the legal name My_Class. It can also
be changed to a legal name by removing the space character to get the legal
name MyClass.

If the name of a UML construct is not specified in your model, or a name is
not a legal XML element name, you can provide a legal name by using a
tagged value. The name of the tag is org.omg.xmi.xmiName, and the value is a
legal XML element name. XMI software will use the value of the tag rather
than the name of the construct. By using a tagged value, you do not need to
modify the names of the constructs.

Another issue to consider with model names is that UML requires the
names in your model to be unique within a namespace or scope. For example,
the names of attributes and association ends that belong to a class must be
unique, and they must be unique for all inherited attributes and association
ends as well. The presence of duplicate names in a model may cause errors
when generating code from the model or when creating an XMI schema from
the model.

Multiplicities
UML specifies that multiplicities consist of a lower bound and an upper
bound, with the lower bound greater than or equal to 0 and the upper bound
greater than or equal to the lower bound. The upper bound may be
unbounded, which can be specified by -1 or *. A modeling tool may also store
the multiplicities in a form that is not defined by UML. You need to make sure
that the multiplicities in the model are legal for XMI, even if your modeling
tool enables you to specify illegal multiplicities. You also need to make sure
that the XMI software you are using can use the multiplicities from the model-
ing tool.

Attributes
As discussed, the names of attributes must be legal XML element names, and
the multiplicities of attributes need to be legal UML multiplicities. You may
also need to overcome the limitations of some modeling tools in specifying
multiplicities for attributes and be careful when setting the types of attributes.

Some modeling tools do not support multiplicities for attributes, although
the UML specification says that attributes have multiplicities. If your tool does
not support them, consider specifying the multiplicity of an attribute using a
UML stereotype. For example, if the multiplicity of an attribute a for class C is
*, you can set the stereotype of the attribute to *, which is shown as ��*�� in
Figure 5.1. Of course, this representation of attribute multiplicities is not

Creating Models for XMI 145

standard, so you may not be able to share your UML models with other tools
without modifying them. This technique may help you specify attribute mul-
tiplicities if you need to use a modeling tool that does not support them. You
can then transform the stereotypes representing attribute multiplicities to
attribute multiplicities in a form that other tools understand.

We recommend that you specify a type for each attribute in your models
and that the type be a class or datatype defined in the model. The advantages
of including datatypes are explained in the next section. Also, when specifying
attribute types, take care that you specify the correct type if there are classes or
datatypes with the same name in different packages in your model. A model-
ing tool should enable you to distinguish them, but it may make it difficult to
do so. If you believe an attribute type is referring to one class but it is referring
to another of the same name in a different package, your DTDs, schemas, and
generated code will not match your intentions. Therefore, you should be care-
ful when you set the types of the attributes in your models if there are multi-
ple classes or datatypes with the same name.

Datatypes
We recommend that you include datatypes in your models, even if your mod-
eling tool automatically interprets names as concrete datatypes such as Java
datatypes or XML datatypes. There are several reasons for this recommenda-
tion. Including the datatypes allows you to document any particular restric-
tions or requirements you need for the datatype. For example, you might need
an integer that can be represented using 32 or 64 bits, or you may require that
a string be composed of Unicode characters. Even if the modeling tool you are
using maps datatypes to particular programming language datatypes, if you
try to use the same model with another modeling tool, the other tool may not
handle the datatypes in your models in the same way. If you include the
datatypes in the model, you may be able to use tagged values to explicitly map
them to XML datatypes. To change the mapping of the datatypes in your UML
models to XML datatypes, you can modify the datatype mappings in your
models without changing the rest of your models.

146 Chapter 5

«*» a

C

Figure 5.1 Attribute multiplicity specified using a UML stereotype.

Association Ends
When working with association ends, you need to provide a legal XML ele-
ment name for each association end in your model that is navigable. You also
need to specify a legal multiplicity for each navigable association end and to
consider the setting of navigability and aggregation properties for them.

Most software will give default names to association ends based on the
name of the class they are attached to. If an association end is not navigable,
most software that generates code from your model probably ignores the end,
and XMI software will not include the association end in XMI DTDs or XMI
schemas created from the model.

It is possible to delete constructs like associations from a UML diagram
without removing the association from your model using some modeling
tools. This can be a useful feature if you use it carefully, because you can then
put the construct into another diagram without re-creating the construct.
However, if you are not careful, you may end up with more constructs than
you intend. This is especially true for associations; if you think you delete one
from a model, but instead only delete it from a diagram and then create
another association, there will be too many associations and association ends
in your UML model. If you are using XMI software and you discover that your
schemas have more declarations than they should, there might be constructs in
your model that are not displayed in UML diagrams.

You should also consider how the aggregation property is specified using
your modeling tool. Some modeling tools enable you to specify the aggrega-
tion property in more than one way. Depending on the way you specify the
aggregation property, the tool may or may not modify the way the association
is displayed in class diagrams, so you may not be able to determine how the
aggregation property is set for an association end by examining only the class
diagrams.

Reverse Engineering Models from XML

You can create new UML models at the beginning of your XMI projects. How-
ever, it may be more efficient to revise UML models that are created for you.
One source of UML models is to reverse engineer models from existing XML.
For example, you can reverse engineer UML models from XML documents,
DTDs, and schemas. You can create more useful UML models from XMI DTDs
and XMI schemas than you can create from XML DTDs and schemas that do
not conform to the XMI specification. This is because you can identify which
XML element declarations correspond to classes and which correspond to

Creating Models for XMI 147

parts of classes (attributes and association ends) in XMI DTDs and XMI
schemas. You cannot reliably make that determination for arbitrary XML
DTDs and schemas.

Many companies have invested considerable resources to create XML DTDs
and schemas that define the format for data interchange in their systems.
Often, they want to leverage this investment to provide more capabilities.
Moving from XML to UML is a simple way to begin to unlock the value in their
XML and start to use a model-driven architecture, as explained in Chapter 1.
The benefits of reverse engineering UML models from XML include:

■■ Documenting the implicit models in the XML

■■ Upgrading your development process to use a model-driven architec-
ture

■■ Starting from models that you can modify rather than creating whole
models yourself

You can write software that creates UML models from XML documents,
DTDs, and schemas; however, UML is a more expressive language than XML,
so the process of reverse engineering results in incomplete UML models. You
can refine the models by using additional information about the problem
domain that is outside the XML representation. You can supply this informa-
tion to software performing the reverse engineering, or you can use it to man-
ually refine the models after they have been created by software.

For example, it is not possible to determine the types of XML attributes by
examining XML documents only. If you create UML attributes from XML
attributes, you need to decide how to set the types of the UML attributes. You
can decide to not set the types, you can set the types to a default type, or you
can set the types based on knowledge of the problem domain. Although XML
DTDs and schemas specify some type information for each XML attribute,
they do not have all of the information that is needed to create complete UML
models.

Reverse engineering UML models from XML can be done using one of two
general approaches. You can create UML classes and UML attributes based on
XML elements and XML attributes in XML documents, or you can create them
based on element declarations and attribute declarations in XML DTDs and
schemas. The names of the UML classes that are created are based on the XML
elements’ tag names, while the names of the UML attributes are based on the
XML attributes’ names. If an XML element has an XML attribute, the UML
attribute corresponding to the XML attribute is added to the UML class corre-
sponding to the XML element. The nesting of XML elements within other XML
elements is represented either by UML attributes or by UML associations.
Finally, you can create UML attributes that enable you to store text in XML ele-
ments. Table 5.1 summarizes this mapping.

148 Chapter 5

We recommend that you use the simplest approach to reverse engineering
UML models from XML that meets your needs.1 We describe fairly simple
techniques, but we also suggest how to apply more complicated techniques to
create more useful UML models. We also recommend that you use software to
automate the reverse engineering as much as possible, and the algorithms and
techniques we describe in this section are meant to help you implement soft-
ware to perform the reverse engineering.

XML Documents to UML
To create a UML model from an XML document, examine each XML element
in the document and create the corresponding UML constructs if they have not
already been created. When examining each XML element, consider the XML
attributes for the element, the XML element that contains the XML element
being examined, and the text in the content of the XML element.

Perform the following steps for each XML element:

1. Create a class with a name that is based on the tag name of the XML
element. If the tag name begins with a lower-case letter, begin the name
of the class with the corresponding upper-case letter. For example, if the
tag name is blah, set the name of the class to Blah. If the XML attribute
xsi:type or xmi:type exists for the XML element, use the value of that
attribute as the name of the UML class instead.

2. Create a UML attribute for each XML attribute belonging to the XML
element. Add each UML attribute to the class corresponding to the
XML element. For each UML attribute that is created, set its name to a
name based on the XML attribute name. If the name of the XML
attribute begins with an upper-case letter, begin the UML attribute
name with the corresponding lower-case letter. Set the UML attribute’s
multiplicity to 0..1, and set its type to a default type, such as String. This
datatype represents string values. You can also use another default type
if you wish.

Creating Models for XMI 149

Table 5.1 XML to UML

XML CONSTRUCT OR DECLARATION UML CONSTRUCT

Element UML class

Attribute UML attribute

Nested element UML association or UML attribute

Text UML attribute

3. If there is text in the content of the XML element, create a UML
attribute, set its name to value, set its type to String, and set its multi-
plicity to 0..1. Add the UML attribute to the class corresponding to the
XML element.

4. If this XML element is contained in another XML element, you can cre-
ate a UML attribute to represent the containment or create a UML asso-
ciation, as described in step 5. Add the UML attribute to the class
corresponding to the XML element that contains this XML element. Set
the name of the UML attribute to a name based on this XML element’s
tag name, set the type of the UML attribute to the class corresponding
to this XML element, and set the multiplicity of the UML attribute to
0..*. If the tag name begins with an upper-case letter, begin the UML
attribute name with the corresponding lower-case letter.

5. If this XML element is contained in another XML element, you can cre-
ate a UML association to represent the containment if you do not create
a UML attribute to represent the containment.

Here are the steps for creating a UML association to represent containment
(these steps are an expansion of step 5 above):

A. Create a UML association and connect its association ends to the classes
corresponding to the XML elements.

B. Set the name of each association end to the name of the class it is
attached to, making the first letter lower case.

C. For the association end attached to the class corresponding to the con-
tainer XML element, set its multiplicity to 0..1, its navigability property
to false, and its aggregation property to composition.

D. For the association end attached to the class corresponding to the con-
tained XML element, set its multiplicity to * and its navigability prop-
erty to true.

Do not create duplicate UML constructs. For example, if there are two XML
elements in a document with the same tag name, reuse the UML class instead
of creating a new one. Also, do not create a UML attribute for a UML class if a
UML attribute with the same name already exists for the class.

Using this algorithm for creating a UML model from an XML document
results in a UML model that contains classes that do not inherit from each
other, UML attributes with types that are set to a default type, and association
ends with names that are based on the names of the classes they are attached
to. You can apply knowledge of the problem domain to determine inheritance
among the classes, to set the UML attributes to a more specific type than the
default type, and to assign the association ends names that describe their roles.
It is easy to extend the appropriate steps of the algorithm to take advantage of

150 Chapter 5

this information if it is available. For example, you can modify step 2 to set the
type of a created UML attribute to a user-specified type, rather than setting the
type to a default type. You can also add a step for creating inheritance links
between classes as specified by a user.

The following is an example of how to create a model from an XML element
nested within another XML element. Consider an XML element Beta in an
XML element Alpha:

<Alpha>

<Beta/>

</Alpha>

Using this reverse engineering process, the model corresponding to these
two elements contains classes Alpha and Beta. You can create a UML attribute
to represent the containment or a UML association. If you decide to create a
UML attribute, add the attribute to UML class Alpha. Set the name of the
attribute to beta, since the tag name of the contained XML element is Beta, but
a UML attribute name should begin with a lower-case letter. Then set the type
of the attribute to Beta and the multiplicity to 0..*. Figure 5.2 shows the UML
model for this case.

Rather than creating a UML attribute to represent the containment, you can
create an association. If you take this approach, connect the association ends of
the association to the classes Alpha and Beta. Set the name of the association
end attached to class Alpha to alpha, set its multiplicity to 1, set its navigability
property to false, and set its aggregation property to composition. Also set the
name of the association end connected to class Beta to beta, set its multiplicity
to *, and set its navigability property to true. The corresponding UML model is
illustrated in Figure 5.3.

Now let’s consider text in the content of an XML element. Here’s an
example:

<D>Some text</D>

The corresponding model contains class D. You can create a UML attribute
called value with String as its type to represent the text. Figure 5.4 contains the
model corresponding to XML element D. Note that we have also created a
class called String, and its stereotype has been set to indicate that it is func-
tioning as a datatype in this model.

Creating Models for XMI 151

beta[0..*] : Beta

Alpha Beta

Figure 5.2 A UML attribute corresponding to a nested XML element.

One refinement to the approach described here involves setting the multi-
plicities of UML attributes based on the number of occurrences of XML attrib-
utes in a document, rather than always setting the multiplicities to 0..1.
Consider the following XML elements:

<F attrib="value"/>

<F/>

When the first element F is encountered, you can set the multiplicity of the
UML attribute corresponding to XML attribute attrib to 1. Then, when the sec-
ond element F is encountered, you can set the multiplicity to 0..1, since the
XML attribute attrib does not appear in this element.

You can use a similar approach to set the multiplicities of association ends in
UML models based on the number of nested elements that occur in a docu-
ment.

XML DTDs to UML
You can reverse engineer UML models from XML DTDs as well as from XML
documents. XML DTDs contain XML element declarations and XML attribute
declarations that provide more information than can be obtained from exam-
ining XML elements and attributes in XML documents. For example, the types
of XML attributes are declared in DTDs, but the types of XML attributes can-

152 Chapter 5

Alpha

Beta

alpha1

beta*

Figure 5.3 A UML association corresponding to a nested XML element.

value : String

D «datatype»
String

Figure 5.4 A UML attribute corresponding to text in an XML document.

not be determined by examining XML documents. The multiplicities of attrib-
utes and of nested XML elements can only be inferred from XML documents,
but they are specified in DTDs.

Since DTDs contain more information than XML documents, the UML
models that you can reverse engineer from DTDs are more complete than the
models created from XML documents. However, the models may still be
incomplete, and knowledge of the problem domain may be required to com-
plete them. As was the case for reverse engineering models from documents,
you can provide this additional knowledge to software that performs the
reverse engineering, or you can apply the knowledge by manually revising the
models that are created. We recommend that you use the former approach, if
possible.

Perform the following steps to create a UML model from an XML DTD:

1. Create a class for each XML element declaration. Set the name of the
class to a name based on the XML element declaration name. If the
name begins with a lower-case letter, begin the name of the class with
the corresponding upper-case letter.

2. Create a UML attribute for each XML attribute declaration and add the
UML attribute to the class corresponding to the XML element declara-
tion. Then set the name of the UML attribute to a name based on the
XML attribute name. If the XML attribute name begins with an upper-
case letter, begin the name of the UML attribute with the corresponding
lower-case letter. Set the type of the UML attribute to a default type like
String, and set its multiplicity to 0..1. The UML datatype String repre-
sents string values. You can use another default datatype if you wish.

3. If #PCDATA appears in the declaration of the XML element content,
create a UML attribute called value and add it to the class corresponding
to the element declaration. Set its type to String and its multiplicity
to 0..1.

4. For each XML element that appears in the declaration of this XML ele-
ment’s content, you can create a UML attribute to represent the contain-
ment or a UML association, as described in step 5. Add the UML
attribute to the class corresponding to this element declaration. Set the
name of the attribute to a name based on the name of the element in the
content. If the name begins with an upper-case letter, begin the name of
the UML attribute with the corresponding lower-case letter. Set the type
of the attribute to the class corresponding to the element declaration for
the element in the content, and set the multiplicity of the attribute to 0..*.

5. If you do not create a UML attribute for each XML element that appears
in the content of an element declaration, follow these steps to create a
UML association for the containment.

Creating Models for XMI 153

A. Create a UML association and connect its association ends to the
classes corresponding to the element declaration and the element in
the content of the element declaration.

B. Set the name of each association end to the name of the class it is
attached to, making the first letter lower case.

C. For the association end attached to the class corresponding to the
element declaration, set its multiplicity to 0..1, set its navigability
property to false, and set its aggregation property to composition.

D. For the association end attached to the class corresponding to the
element in the content of the element declaration, set its multiplicity
to * and its navigability property to true.

Follow steps 4 and 5 described previously for each element in the content of
the element declaration. Ignore whether sequences of XML elements or
choices of XML elements are specified in the content of the XML element. For
example, treat the following declarations of XML element H the same when
performing this step:

<!ELEMENT H (I | J | K) >

<!ELEMENT H (I, J, K) >

<!ELEMENT H ((I | J), K) >

Since there can only be one XML element declaration for an XML element in
a DTD, you do not need to be concerned about creating duplicate UML classes.
Also, since there can only be one XML attribute declaration for the same
attribute within an XML element declaration, you do not need to worry about
creating duplicate UML attributes either.

The algorithm in the previous section creates models that can be refined
using knowledge of the problem domain; this algorithm does also. Using this
algorithm for reverse engineering results in UML models that contain classes
that do not inherit from each other, UML attributes with types that are set to
a default type, and association ends with names that are based on the names
of the classes they are attached to. You can apply knowledge of the problem
domain to determine inheritance among the classes, to set the UML attributes
to a more reasonable type than the default type, and to name the association
ends with names that describe their roles. It is easy to extend the appropriate
steps of the algorithm to take advantage of this information if it is available.
For example, you can modify step 2 to set the type of a created UML attribute
to a user-specified type, rather than setting the type to a default type. You can
also add a step for creating inheritance links between classes as specified by
a user.

You can also refine this algorithm by using other information in the DTD.
For example, you can refine step 2, the creation of UML attributes from XML

154 Chapter 5

attribute declarations, based on the information in the attribute declarations.
Rather than always setting the multiplicity of the UML attributes to 0..1, you
can set it based on some of the keywords in the XML attribute declaration. If
the #FIXED or #REQUIRED keywords appear in the XML attribute declara-
tion, set the multiplicity of the corresponding UML attribute to 1. If the
#IMPLIED keyword appears in an XML attribute declaration, set the multi-
plicity of the corresponding UML attribute to 0..1.

You can use the type in an XML attribute declaration to create a more com-
plete model also. If the type is CDATA or ID, create a UML attribute with String
as its type, as described in step 2. If the type of the XML attribute is an XML
enumeration, create a UML enumeration from the XML enumeration. If the
type is IDREF or IDREFS, you can use knowledge of the problem domain to
create a more complete model.

If the type of the XML attribute is an XML enumeration, create a UML
attribute as well as a UML enumeration if one does not already exist with the
same enumeration literals. Create the attribute according to step 2 of the algo-
rithm, except for the setting of the attribute type. Rather than setting the
attribute type to a default type, set the attribute type to a UML enumeration.
Perform the following steps to create the UML enumeration:

1. Create a UML class and add an ��enumeration�� stereotype to it. Set
the name of the class to the name of the XML attribute, with the first let-
ter of the name in upper case, followed by the letters Enum.

2. For each enumeration literal in the XML enumeration, create a corre-
sponding enumeration literal for the UML enumeration. To do this, cre-
ate a UML attribute that has the literal as its name, and add it to the
UML class.

Consider the following XML element and XML attribute declaration:

<!ELEMENT G EMPTY>

<!ATTLIST G a (v1 | v2 | v3) #IMPLIED>

Figure 5.5 contains the corresponding UML model. It consists of UML class
G that has attribute a, which has AEnum as its type. AEnum is a UML enumer-
ation and its literals are v1, v2, and v3.

Creating Models for XMI 155

a : AEnum

G
v1
v2
v3

«enumeration»
AEnum

Figure 5.5 A UML enumeration corresponding to an XML enumeration.

If an XML attribute has an XML enumeration with literals true and false, con-
sider creating a UML datatype called Boolean, rather than a UML enumeration
for the XML enumeration. For example, for the following declaration:

<!ELEMENT H EMPTY>

<!ATTLIST H b (true | false) #IMPLIED>

you can set the type of the UML attribute corresponding to the XML attribute
b to a UML datatype called Boolean, rather setting the type to a UML enumera-
tion called BEnum with literals true and false.

For each XML attribute with type ID, you should create a UML attribute
with type String. These attributes may be declared as a result of implementing
a model in XML, rather than being intrinsic to a particular problem domain.
The only way to determine whether this is the case is to apply domain knowl-
edge to the UML model to determine whether the UML attributes are neces-
sary. If they are not necessary for the problem domain, you can delete them.

XML does not restrict the XML elements that can be referred to in an XML
attribute with the type IDREF or IDREFS. XML enables you to put a reference
to any XML element in an XML document in such an attribute. For example,
consider the following element declarations:

<!ELEMENT Person EMPTY>

<!ATTLIST Person id ID #REQUIRED>

<!ELEMENT Car EMPTY>

<!ATTLIST Car owner IDREFS #IMPLIED>

The XML identifiers of Person XML elements can be put in the XML attribute
owner; however, the identifiers of any other XML elements in the XML docu-
ment can be put in the owner attribute as well.

Because of this feature of XML, you cannot determine which XML elements
are going to be referenced in XML attributes that have IDREF or IDREFS types
based on information in the DTD itself. If you use knowledge of the problem
domain, you can create UML associations between the UML classes corre-
sponding to the XML elements.

For example, in the Person and Car element declarations, it is likely that the
XML elements referenced in the XML attribute owner will be Person elements,
since persons own cars. Based on that assumption, you can create a UML asso-
ciation between the UML classes Person and Car in the UML model corre-
sponding to these element declarations. Set the name of the association end
attached to the Car class to owner and set its navigability property to true; then
set the navigability property of the other association end to false. Since the type
of XML attribute owner is IDREFS, set the multiplicity of the association end
owner to *. If the type had been IDREF instead, you would set the multiplicity
to 1. Figure 5.6 illustrates this model.

156 Chapter 5

In the last example, it was prudent to create a unidirectional association
from the UML class Car to the UML class Person, since there were no XML
attributes in Person that referred to Car XML elements. If you always create a
unidirectional association for each XML attribute with a type of IDREF or
IDREFS, you may create too many associations. Consider the following decla-
rations:

<!ELEMENT Person EMPTY>

<!ATTLIST Person id ID #IMPLIED

car IDREFS #IMPLIED>

<!ELEMENT Car EMPTY>

<!ATTLIST Car owner IDREFS #IMPLIED

id ID #IMPLIED>

The simple approach results in the model displayed in Figure 5.7, which
contains two unidirectional associations between the UML classes Person and
Car. However, both of these associations represent the fact that persons own
cars, so you can combine these two associations into one bidirectional associa-
tion using knowledge of the problem domain.

You can refine the treatment of contained elements as well as XML attrib-
utes. Since multiplicities are specified for XML elements that appear in the
content of XML element declarations, you can set the multiplicities of UML
attributes and UML association ends that represent containment based on the
actual multiplicities, rather than always setting them to *. If you decide to base
the multiplicities in your UML models on the multiplicities appearing in the
declaration of XML elements’ content, you can use the mapping in Table 5.2.

XMI DTDs to UML
XMI DTDs are XML DTDs, so you can use the techniques described in the pre-
vious section to reverse engineer UML models from them. However, because
they conform to the XMI 1.0, XMI 1.1, or XMI 1.2 specifications, you can create
more realistic UML models from them. Those specifications describe in detail
how to create XMI DTDs from UML models, so you should consult those spec-
ifications for more details about XMI DTDs if you are interested in creating the
most useful UML models possible from XMI DTDs. Reverse engineering UML

Creating Models for XMI 157

Person Carowner

*

Figure 5.6 A UML association corresponding to an XML attribute of type IDREFS.

models from XMI DTDs is not included in the XMI specification, but we
include it here to help you create UML models from XMI DTDs if you need to
do so.

Before you begin to reverse engineer a UML model using techniques that
apply to XMI DTDs rather than XML DTDs, you need to determine whether an
XML DTD is an XMI DTD. An XML DTD is an XMI DTD if it contains certain
element declarations that every XMI DTD is required to have. Each XMI DTD
declares an XML element called XMI that has an XML attribute declaration for
an attribute called xmi.version. The fixed value of the attribute is the version of
the XMI specification. For example, if the fixed value is 1.1, the XMI DTD con-
forms to the XMI 1.1 specification.

When reverse engineering UML models from XML DTDs, you create a UML
class for each element declaration. However, XMI DTDs contain element dec-
larations representing UML classes, UML packages, UML attributes, and UML
association ends. They also contain element declarations defined by the XMI
specification.

We include a set of rules for converting declarations in an XMI DTD to the
corresponding UML constructs. Following these rules, we work through some
examples showing their applications so you can see how to apply them to your
own XMI DTDs. Here are the rules:

■■ If an element is declared with a name that begins with the letters XMI,
it is an element declaration that is defined by the XMI specification
rather than representing a part of a UML model, so it does not go into
your model. However, you can use the XMI XML element declaration

158 Chapter 5

Table 5.2 XML Multiplicities to UML Multiplicities

XML MULTIPLICITY UML MULTIPLICITY

Exactly 1 1

0 or 1 (?) 0..1

0 or more (*) 0..* or *

1 or more (�) 1..*

Person Car
owner

*
cars

*
Figure 5.7 Two unidirectional associations between the Person and Car classes.

to determine the version of XMI that was used to create the DTD, as
explained previously.

■■ If an element is declared and its content contains the keyword
#PCDATA, create a UML attribute that has a UML datatype as its type.
You can determine the class that the UML attribute belongs to by exam-
ining the element name. The name of the element is the name of the
class followed by . and the name of the UML attribute. Set the type to a
default datatype like String or a datatype based on knowledge of the
problem domain.

■■ If an empty element is declared, create a UML attribute that has as its
type either a UML datatype representing Boolean values or a UML enu-
meration. Each empty element declaration contains the declaration of
an XML attribute called xmi.value. This XML attribute’s declaration con-
tains the XML enumeration that corresponds to the UML enumeration
you should use for the new UML attribute’s type. You can determine
the class the UML attribute belongs to by examining the element name.
The name of the element is the name of the class followed by . and the
name of the UML attribute. If the literals of the XML enumeration are
true and false, set the type of the UML attribute to a Boolean datatype;
otherwise, create a UML enumeration from the XML enumeration and
set the type to the UML enumeration (the XML DTDs to UML section
describes how to create UML enumerations).

■■ If the content of the element declaration contains XMI.extension, create
either a class or a package. To determine what to create, examine the
content of each element that appears in the content of the declaration. If
the content of any element contains XMI.extension, create a package;
otherwise, create a class.

■■ If none of the previous rules apply to the element declaration, the ele-
ment represents an association end. You can determine the name of the
class the association end belongs to by examining the element name.
The name of the element is the name of the class followed by . and the
name of the association end. You can determine if the aggregation
property of the association end should be set to composition by examin-
ing the element declaration for the class the association end belongs to.
If there is an XML attribute declared with the same name as the associa-
tion end in that element declaration, do not set the aggregation prop-
erty of the end to composition. Otherwise, you can do so. The content of
the element declaration for the association end lists XML elements that
represent classes; the classes are the class the association end is attached
to and its subclasses. The subclasses are not required to be listed in
XMI 1.1.

Creating Models for XMI 159

Here are some examples of element declarations in XMI DTDs. Consider the
following element declaration:

<!ELEMENT C.a EMPTY >

<!ATTLIST C.a

xmi.value (v1 | v2 | v3) #REQUIRED

>

Since the content is EMPTY, this declaration represents a UML attribute that
has a UML enumeration as its type. This corresponds to the situation
described previously in the third rule. Since the name of the element is C.a, the
name of the attribute is a, and the name of the class it belongs to is C. The type
of the UML attribute is a UML enumeration with the literals v1, v2, and v3.

The following element declarations represent either classes or packages,
since their content contains XMI.extension:

<!ELEMENT C1 (XMI.extension)* >

<!ATTLIST C1

%XMI.element.att;

%XMI.link.att;

>

<!ELEMENT P (C1 | XMI.extension)* >

<!ATTLIST P

%XMI.element.att;

%XMI.link.att;

>

The two entities XMI.element.att and XMI.link.att represent the required XMI
attribute declarations for classes and packages. Does element P represent a
class or a package? To answer this question, look at the declaration of C1,
which is in the content of P. Since C1 also contains XMI.extension, P represents
a package. However, since C1 only contains XMI.extension, we cannot deter-
mine whether C1 represents a class or a package. Following the fourth rule, we
create a class C1.

Now consider the element declaration C2.a1:

<!ELEMENT C2.a1 (C3 | C4 | C5)* >

<!ELEMENT C2 (XMI.extension | C2.a1)* >

<!ATTLIST C2

a1 IDREFS #IMPLIED

%XMI.element.att;

%XMI.link.att;

>

C2.a1 represents a UML association end. To determine whether the aggrega-
tion property should be set to composition, examine the attributes declared for

160 Chapter 5

element C2, the element declaration corresponding to the class the association
end belongs to. Since there is an attribute declaration for an attribute named a1
in element C2, do not set the aggregation property of the end to composition.
Since the content of C2.a1 contains C3, C4, and C5, the end is attached to one of
the classes C3, C4, or C5, and the other classes are subclasses of the class the
end is attached to.

The names of XML elements differ, depending on the version of XMI that is
used. The names of classes and packages are fully qualified in XMI 1.0 DTDs.
For example, if a class C6 is in a package called p1, which is in package p2, the
name of the XML element for this class in an XMI 1.0 DTD is p2.p1.C6. The
name of the element for this class in XMI 1.1 or XMI 1.2 is simply C6, or n:C6,
where n is an XML namespace prefix. The name of the XML element corre-
sponding to a UML attribute attrib for class C6 is p2.p1.C6.attrib in XMI 1.0
DTDs, and C6.attrib or n:C6.attrib in XMI 1.1 or XMI 1.2 DTDs.

When you reverse engineer models from XML DTDs, you cannot create
inheritance links between the classes you create unless you apply knowledge
of the problem domain. However, you can create inheritance links for classes
you create from an XMI DTD. To do so, examine the content of an element
declaration for a class. The content contains the XML elements representing
the UML attributes and UML association ends for the class, as well as its
inherited attributes and association ends. Since the names of the XML ele-
ments for UML attributes and UML association ends contain the name of the
class they belong to, it is possible to determine which classes are superclasses
for a given class. By examining each of the element declarations for those
classes, you can determine which superclasses are direct superclasses of a
given class and which superclasses inherit from other superclasses. For exam-
ple, consider the following part of an element declaration for a class M in an
XMI 1.1 DTD:

<!ELEMENT M (O.p1 | N.p2 | M.p3 | XMI.extension)* >

Its content contains XML elements O.p1, N.p2, and M.p3. These XML ele-
ments correspond to either attributes or association ends belonging to classes
O, N, and M Therefore, classes O and N are superclasses of class M. By exam-
ining the XML element declarations for classes O and N, we can determine
whether class M inherits from them directly or indirectly. Consider the ele-
ment declarations for O and N:

<!ELEMENT O (O.p1 | XMI.extension)* >

<!ELEMENT N (O.p1 | N.p2 | XMI.extension)* >

Class N must inherit from class O because it contains XML element O.p1.
Using this knowledge, class M must inherit from class N. Figure 5.8 shows the
class hierarchy for classes O, M, and N.

Creating Models for XMI 161

Of course, if a class has no attributes or association ends, you cannot deter-
mine which classes inherit from it by using this technique.

XML Schemas to UML
Like XML DTDs, XML schemas contain XML element declarations and XML
attribute declarations. This means that you can use the same algorithm for
reverse engineering UML models from XML schemas as you can use for
reverse engineering UML models from XML DTDs. For each element declara-
tion, you can create a class. For each attribute declaration, you can create a
UML attribute. Nested declarations can be handled the same as nested decla-
rations in DTDs. However, XML schemas are more powerful than XML DTDs,
so you can use more advanced techniques to reverse engineer models from
them, based on the features of schemas that are not in DTDs.

XML schemas enable you to declare types as well as XML elements, and you
can specify that types are extensions or restrictions of other types. You can cre-
ate classes from type declarations, and each class you create can inherit from
the class corresponding to the type that was the base type for the extension or
restriction. XML schemas also distinguish between simple types and complex
types, and you can map simple types in schemas to UML datatypes and com-
plex types in schemas to classes.

For example, consider the following type declaration in an XML schema:

<simpleType name="Little">

<restriction base="int">

<enumeration value="1"/>

162 Chapter 5

O

N

M

Figure 5.8 The class hierarchy for classes O, M, and N.

<enumeration value="2"/>

</restriction>

</simpleType>

This declaration defines a simple type called Little that restricts the built-in
datatype int to have two legal values, 1 and 2. Since this type is a simple type,
and it is derived by restriction from the built-in simple type int, you can create
a UML datatype called Little and make that datatype inherit from a UML
datatype called int.

Consider the following type declarations:

<complexType name="SuperType"/>

<complexType name="SubType">

<complexContent>

<extension base="SuperType">

<sequence>

<element name="something" type="string"/>

</sequence>

</extension>

</complexContent>

</complexType>

These declarations define two complex types, SuperType and SubType. Sub-
Type extends SuperType by including the element something in its content. You
can create two UML classes from these declarations, called SuperType and Sub-
Type, and make the UML class SubType inherit from the UML class SuperType.
(In this example, the SubType class would include a UML attribute called some-
thing of type String.)

Multiplicities in schemas map well to UML multiplicities because multiplici-
ties in schemas are expressed by the values of minOccurs and maxOccurs XML
attributes. The values of minOccurs and maxOccurs can be used to set the UML
multiplicity. The value of minOccurs can be used for the lower limit of the UML
multiplicity, and the value of maxOccurs can be used for the upper limit of the
UML multiplicity. If the value of maxOccurs is unbounded, set the upper limit of
the UML multiplicity to *. For example, if minOccurs has a value of 0 and max-
Occurs has a value of unbounded, the corresponding UML multiplicity is 0..*.

XMI Schemas to UML
The reverse engineering from XMI schemas to UML models can be done fol-
lowing the suggestions in the previous section. Chapter 3 describes the rules
for generating XMI schemas from UML models in detail. You may want to
review the rules to help you to reverse engineer UML models from XMI
schemas effectively.

Creating Models for XMI 163

Summary

You need to be aware of several issues when creating UML models for use
with XMI. You need to ensure that the names in the models are legal XML tag
and attribute names, that you provide names for each construct used by XMI,
and that you carefully consider the datatypes you are using in your models,
among other issues. You also need to be aware of certain features of some
modeling tools that may cause your UML models to differ from what you
want when you use the UML models with XMI software. You can create new
UML models when you use XMI, or you can reverse engineer UML models
from existing XML documents, DTDs, and schemas. You can use simple or
advanced techniques to reverse engineer UML models. We recommend you
use the simplest technique that suits your purposes, and use the guidelines we
have outlined in this chapter to automate as much of the reverse engineering
as possible.

164 Chapter 5

165

Since every XML Metadata Interchange (XMI) document is an Extensible
Markup Language (XML) document, you can use any standard XML Applica-
tion Programming Interface (API) to work with XMI documents. Two com-
mon APIs that we cover in this chapter are the Document Object Model (DOM)
and the Simple API for XML (SAX). The only drawback to using these APIs
with XMI documents is that you need to ensure that the documents you pro-
duce are valid XMI documents, and you need to know about the format of
XMI documents in order to get the data from them. In this chapter, we provide
examples of how to use DOM to create an XMI document and then read it,
printing data about the objects that were written in the XMI document. Then
we demonstrate how to use SAX to read an XMI document and use the data it
contains to create corresponding instances of Java classes and set their fields.

In the first section of this chapter, we introduce a problem domain and
model that we will use in this and the next three chapters. Therefore, you
should read the following Car Rental Agency Application section. If you are not
interested in learning about the DOM or SAX APIs, you do not need to read
the Using DOM and Using SAX sections of this chapter. Readers who do read
these sections, however, can compare using DOM and SAX to using software
that directly supports XMI that we introduce in the next chapter.

Creating and Reading
Simple XMI Documents

with Standard XML APIs

C H A P T E R

6

Car Rental Agency Application

The programming examples in this chapter and the next three chapters are
based on an application for a car rental agency. The purpose of the application
is to report information about each car that the agency owns. The information
includes the style of the car (make, model, and year), the options the car has,
the car’s vehicle identification number, and whether the car is available to be
rented or not. If a car has been rented, the application reports the name and
license number of each person that will drive the car. Although a real car rental
agency needs to track more information about its cars and the people that have
rented them, we are using a simplified car rental agency model so the exam-
ples in this book are easy to understand.

We can model the required information in the following four classes:

■■ Car

■■ Style

■■ Option

■■ Person

The Car class has the vehicle identification number (vin) of the car and a flag
to indicate whether the car is available to be rented. For our purposes, the flag
is false if the car has already been rented or it does not run because of mechan-
ical problems; the flag is true when the car is available for a customer to rent.
The Car class also has an option attribute, and its multiplicity is 0..*. The type of
the option attribute is the class Option. This attribute is used to hold the options
that a Car object can have. The Style class holds the make, model, and year of
one or more cars. The Option class contains the name of an option the car has.
As you would expect, each car can have multiple options, but only one style.
The Person class has the name of a person and that person’s driver’s license
number. Figure 6.1 illustrates the classes, their attributes, and their relation-
ships in Unified Modeling Language (UML) notation.

We will next show you how to write an instance of each class in the car
rental agency model to an XMI document. To begin with, we create an object
model having an instance of each class in the car rental agency model. In this
chapter and the next two chapters, we show how to write an instance of each
class in the car rental agency model to an XMI document. We use the same
objects in all three chapters. The UML object diagram for these four objects is
shown in Figure 6.2.

As you look at the figure, note that only the Option object has been given a
name. This name, option1, appears in the top pane of the object, followed by a
colon, and the class name Option. As you will see, we use this name to assign
this object to the option attribute value in the Car object. Since this is the only

166 Chapter 6

object value, this is the only object we need to name. We use this name only for
the figure; it is not used by XMI. For the other objects, the top pane has a colon
followed by the class name of the object.

In this example, the instance of the Car class has already been rented, so its
available attribute is set to false. The vin attribute has the value v1. Examining
the Style object, we see that it has a make of Jalopy, a model of Deluxe, and its year

Creating and Reading Simple XMI Documents with Standard XML APIs 167

make : String
model : String
year : Integer

Style

vin[1] : String
available[1] : Boolean
option[0..*] : Option

Car

name : String
licenseNumber : String

Person

name : String

Option

style

1

car

*

car

*

driver

*

«datatype»
String

«datatype»
Boolean

«datatype»
Integer

car1

Figure 6.1 Car rental agency model.

make = Jalopy
model = Deluxe
year = 2002

 : Style
vin = v1
available = false
option = option1

 : Car

name = Anita Karr
licenseNumber = ln1

 : Personcar driverstyle car

name = air conditioning

option1 : Option

car

Figure 6.2 Car rental agency objects.

is 2002. The Option object, which designates the single option in the Car
instance, has its name attribute set to air conditioning. Note that the name of the
object, option1, has been assigned to the option attribute in the Car object. This
indicates that the Car object is equipped with air conditioning. Recall that
object attributes have composition semantics. Therefore, option1 is contained
in the Car object. If another Car object had air conditioning, another Option
object would be required for that Car object. The Person object, which desig-
nates the person who has rented the car, has its name attribute set to Anita Karr
and its licenseNumber attribute set to ln1. Now that we have established the
model we will work with, let’s see how we can use a couple of standard XML
APIs to work with this model in XMI.

Using Standard XML APIs

You can use standard XML APIs to create and read XMI documents. Working
in our problem domain, we will now examine some sample programs that
show how to use DOM and SAX, two standard APIs supported by XML
parsers, to work with XMI. We will not explain all the details of either API, but
we will explain enough about them so you can understand the programs in
this chapter. You can find additional information on DOM and SAX in the ref-
erences we include with this book.

Using DOM
DOM represents XML files (and therefore XMI files) as trees of nodes. XML
parsers enable you to write a DOM tree to an XMI file and to get a DOM tree
from an XMI file. You need to understand XML to use DOM. If you want to use
DOM to create XMI files and read them, you also need to know about XMI.
Specifically, you need to know how to create a DOM tree that represents an
XMI file from your objects, and you need to know how to get your object data
from a DOM tree that represents an XMI file. You can write your own code
based on DOM to support XMI files, but this section uses DOM to explain the
issues you face when using a standard XML API to work with XMI. DOM has
been developed as a series of specification phases or levels for the World Wide
Web Consortium (W3C). The examples presented in this chapter are based on
DOM Level 2.

Before we explain how to create a DOM tree that represents an XMI file, we
need to present some basic information about DOM trees and nodes. Each
node in a DOM tree implements the Node interface in the Java package
org.w3c.dom. The Node interface contains methods to get the node’s:

168 Chapter 6

■■ Type

■■ Name

■■ Parent node

■■ Sibling nodes

■■ Child nodes

It also contains methods to add and remove child nodes.
The top node of a DOM tree is a Document node. A Document node has a Doc-

ument element, which is the root XML element for the document. The Docu-
ment node also serves as a factory for making the other node types and
enables you to get Element nodes based on their tag names or XML IDs. An Ele-
ment node represents an XML element in an XML document. Each Element
node has attributes corresponding to the XML element’s XML attributes. There
is an Attr node for each XML attribute. The child nodes of an Element node rep-
resent the element’s content. For our purposes, the child nodes of an Element
node are either Element nodes or Text nodes. A Text node represents character
data in the content of an XML element that are not in an XML CDATA section.
The Text nodes in a DOM tree may represent XML ignorable whitespace
unless you tell your XML parser to ignore it.

There are more types of DOM nodes, but we will not be using them in our
examples in this chapter. For more information, consult the DOM specification
or a book that explains DOM.

The DOM tree corresponding to the following simple XML document is
shown in Figure 6.3:

<?xml version="1.0"?>

<root a1="v1"><child>Child text</child>Root text</root>

The DOM tree for this document consists of a Document node with a Docu-
ment element that is an Element node named root. The root Element node has
one Attr node with a1 as its name and v1 as its value. The root Element node
has two child (Element and Text) nodes: an Element node named child and a
Text node with the value Root text. The Element node named child has a child
node of its own that is a Text node and its value is Child text.

Now that you know the basics of DOM, we can explain how to create a
DOM tree that represents an XMI 2.0 file. We first present a step-by-step
overview of this process and then include a more detailed algorithm that
expands the last step outlined in the overview. Both of these algorithms are
then mapped into a Java programming example that creates an XMI docu-
ment. The best way to understand these algorithms is to first read them
through and then examine the example Java program in Source Code 6.1 that

Creating and Reading Simple XMI Documents with Standard XML APIs 169

shows how the steps of the algorithms are implemented for our car rental
agency application. To make this easier, we’ve provided comments in the
example that link sections of the code back to the steps in the algorithms.

Overview Algorithm

Here is an overview algorithm for creating a DOM tree for an XMI 2.0 docu-
ment:

1. Create a Document node.

2. Create an Element node for the XMI XML element. Include an attribute
declaring the XMI namespace prefix. By convention, xmi is typically

170 Chapter 6

Document
Node

Node Types:

Element
Node

Attribute
Node

Text
Node

root

a1="v1" child "Root text"

Document

"Child text"

Figure 6.3 A simple DOM tree.

used for the prefix, and this is what we will use in this book. Set this
attribute equal to the XMI namespace URI (http://www.omg.org/XMI).
Name this element node xmi:XMI. Also include an attribute for the XMI
version (xmi:version) and set its value to 2.0. Include additional attrib-
utes that declare any other namespaces that are used in the XMI docu-
ment. Make this node a child of the Document node created in step 1.

3. If you want your document to include documentation information such
as the name and version of the tool that created the document, create an
Element node named xmi:Documentation and make it a child of the XMI
Element node created in step 2. Then create Element and Text nodes to
represent the XMI documentation information you want in the XMI
document. Make these Element nodes descendants of the Element node
created for documentation information.

4. For each object you want to put in the XMI document, create an Ele-
ment node that is named with the XMI name for the object’s class. Then
set the node’s attributes and create its descendant Element nodes based
on the object’s attribute values and references.

Many details are not described in the previous steps, and some optional
steps have been omitted entirely. For example, you may want to use extensions
or, if you are working with differences between XMI documents, you may
want to include xmi:Add, xmi:Delete, and xmi:Replace XML elements. However,
the previous four steps are sufficient for the DOM example we use in this
book.

Step 4, creating the part of the DOM tree that represents your objects, is
the most important step in the overview algorithm. You need to handle the
objects’ identities, their attribute values, and their references (object exten-
sions are covered in Chapter 8). For attribute values and references, you
need to know whether to represent them as XML attributes or XML ele-
ments. The following section is a detailed algorithm for step 4. It explains
how to create DOM nodes for your objects to be saved in an XMI 2.0 docu-
ment (for details about previous versions of XMI, please consult the appro-
priate specifications.)

As you may recall from our earlier discussion on terminology in Chapter 2,
we define a reference to be an instance of an association end. Because we use
attributes to represent composition rather than association ends, association
ends and references in this book do not have composition semantics. We
define a data value to be a value of an attribute with a datatype as its type (such
as 5, 3.141, or Hello). We define an object value to be a value of an attribute with
a class as its type (such as option1 in the car rental agency object model). A data
value corresponds to a data attribute, and an object value corresponds to an
object attribute.

Creating and Reading Simple XMI Documents with Standard XML APIs 171

Object Algorithm

The following steps provide a detailed algorithm for step 4 in the Overview
Algorithm section:

1. Create an Element node for the object, as explained in step 4 in the
Overview Algorithm section.

2. Set the xmi:id, xmi:uuid, and xmi:label attributes of the Element node as
appropriate for your application. Although all these attributes are
optional, we recommend setting the xmi:id attribute for each object to
clearly indicate the XML elements in the XMI document that are objects.
Another strong reason for recommending this practice is to enable other
XML elements in the same document or in other documents to refer to
this element.

3. For each data attribute that has a single data value, set an XML attribute
for the Element node. For the XML attribute’s name, use the name of
the data attribute and set its value to a String representing the data
value. (Note: When discussing Java programs in this book, we use
String to refer to the java.lang.String class. The Java APIs for DOM use a
java.lang.String to represent an XML attribute value.)

4. For all the references of an association end, set an XML attribute for the
Element node. The XML attribute’s name is the name of the association
end, and its value is a String containing the value of the xmi:id of each
referenced object. (Recall that the reference belonging to the object will
appear across from the object, not adjacent to it, in a UML object dia-
gram.) If there is more than one xmi:id value (because there are multiple
references), separate them by spaces.

5. For a data attribute that has multiple data values, do the following: For
every data value, make an Element node. Set the name of this node to
the name of the data attribute. Next, make a Text node and set its value
to the data value. Make this Text node a child of the Element node for
the data value. Finally, make the Element node for the data value a
child of the Element node for the object created in step 1.

6. For each object value for an attribute, do the following: Create an Ele-
ment node that is named with the object attribute’s name. Then follow
steps 2 through 6 of this algorithm for the object value. Finally, make
the Element node for the object value a child of the Element node for
the object created in step 1.

7. Make the Element node for the object created in step 1 of this algorithm
a child of the xmi:XMI Element node created in step 2 of the Overview
Algorithm section.

172 Chapter 6

Once you make the DOM tree, you can write the tree to an XML document.
IBM’s XML4J parser has a nice interface for doing that.

Source Code 6.1 is an example of creating an XMI file containing the
instances of the Car, Person, Style, and Option classes described in the Car Rental
Agency Application section. You may want to go back to that section to remind
yourself what the model is and what the objects to be saved are. To keep the
example simple, all the data to be saved is specified as Strings; we do not rec-
ommend that you adopt this approach in your programs (unless you are writ-
ing a book, too). Also, rather than handling exceptions that may occur during
the program, the program stops immediately after they are thrown. In an actual
application program, we probably need to handle the exceptions ourselves.

As you read this example, notice how the steps for creating an XMI docu-
ment and creating DOM nodes for each object are implemented using DOM
interfaces. We have included comments to help you link the following Java
implementation with the steps in the overview and object algorithms we have
presented in this chapter.

Creating and Reading Simple XMI Documents with Standard XML APIs 173

// DOMWrite.java

import org.apache.xerces.dom.*;

import org.apache.xml.serialize.*;

import org.w3c.dom.*;

import java.util.*;

import java.io.*;

// This program writes the Car, Option, Style, and Person objects

// described in the Car Rental Agency Application section to an XMI

// 2.0 document using the steps described in the Using DOM section

// in this chapter.

public class DOMWrite {

public static void main(String[] args) throws Exception {

// Overview step 1.

Document doc = new DocumentImpl();

// Overview step 2. Create the XMI Element node.

Element xmi = doc.createElement("xmi:XMI");

xmi.setAttribute("xmi:version", "2.0");

xmi.setAttribute("xmlns:xmi", "http://www.omg.org/XMI");

doc.appendChild(xmi);

// Overview step 3. Create the XMI Documentation element, specifying

Source Code 6.1 DOMWrite program—creating a DOM tree.

174 Chapter 6

// the program that produced the file (the exporter) and its version.

Element documentation = doc.createElement("xmi:Documentation");

Element exporter = doc.createElement("exporter");

Text exporterText = doc.createTextNode("XMI DOM Serialize Example");

exporter.appendChild(exporterText);

Element version = doc.createElement("exporterVersion");

Text versionText = doc.createTextNode("0.5");

version.appendChild(versionText);

documentation.appendChild(exporter);

documentation.appendChild(version);

xmi.appendChild(documentation);

// Overview step 4. Write the objects.

// Object step 1 for the Car object.

Element car = doc.createElement("Car");

// Object step 2.

car.setAttribute("xmi:id", "_1");

// Object step 3. Since available and vin are data attributes

// with one value, put the values in XML attributes.

car.setAttribute("available", "false");

car.setAttribute("vin", "v1");

// Object step 4. Because style and driver are references,

// put the xmi:id of the referenced object in an XML attribute.

car.setAttribute("style", "_2");

car.setAttribute("driver", "_3");

// Object step 6. Since option is an object attribute

// of the Car object indicating a contained Option object, make

// an Element node for the contained object as a descendant of the

// car Element node.

Element option = doc.createElement("option");

// Object step 2 for the Option object.

option.setAttribute("xmi:id", "_1.1");

// Object step 3.

option.setAttribute("name", "air conditioning");

// Object step 4.

Source Code 6.1 DOMWrite program—creating a DOM tree. (Continued)

Creating and Reading Simple XMI Documents with Standard XML APIs 175

option.setAttribute("car", "_1");

// Last part of Object step 6.

car.appendChild(option);

// Object step 7 for the Car object.

xmi.appendChild(car);

// Object step 1 for the Style object.

Element style = doc.createElement("Style");

// Object step 2.

style.setAttribute("xmi:id", "_2");

// Object step 3.

style.setAttribute("make", "Jalopy");

style.setAttribute("model", "Deluxe");

style.setAttribute("year", "2002");

// Object step 4.

style.setAttribute("car", "_1");

// Object step 7.

xmi.appendChild(style);

// Object steps 1-4 and 7 for the Person object.

Element person = doc.createElement("Person");

person.setAttribute("xmi:id", "_3");

person.setAttribute("name", "Anita Karr");

person.setAttribute("licenseNumber", "ln1");

person.setAttribute("car", "_1");

xmi.appendChild(person);

// Create the XMI document from the parse tree. See the XML4J

// parser documentation for more details.

OutputFormat format = new OutputFormat(doc, "UTF-8", true);

FileWriter file = new FileWriter("DOMWrite.xmi");

XMLSerializer serial = new XMLSerializer(file, format);

serial.asDOMSerializer();

serial.serialize(doc.getDocumentElement());

file.close();

}

}

Source Code 6.1 DOMWrite program—creating a DOM tree. (Continued)

The program produces the following XMI 2.0 file as output:

<?xml version="1.0" encoding="UTF-8"?>

<xmi:XMI xmi:version="2.0" xmlns:xmi="http://www.omg.org/XMI">

<xmi:Documentation>

<exporter>XMI DOM Serialize Example</exporter>

<exporterVersion>0.5</exporterVersion>

</xmi:Documentation>

<Car available="false" driver="_3" style="_2" vin="v1"

xmi:id="_1">

<option car="_1" name="air conditioning" xmi:id="_1.1"/>

</Car>

<Style car="_1" make="Jalopy" model="Deluxe" xmi:id="_2"

year="2002"/>

<Person car="_1" licenseNumber="ln1" name="Anita Karr"

xmi:id="_3"/>

</xmi:XMI>

As you can see from this example, it takes some work to use the DOM API
to create an XMI document. You need to know many details about XMI, and
you need to faithfully implement each step or you will not get an XML docu-
ment that conforms to the XMI specification. It is possible to make it easier to
use DOM to create XMI documents, of course. One approach is to create an
XMIDocument class that implements the DOM Document interface. The XMI-
Document class could contain methods that provide an interface for setting
documentation information easily. Clients of the XMIDocument class would
not need to know the details of which DOM nodes were created to put that
information into an XMI file. If you make a generic representation of objects,
their attribute values, and their references, or use Java reflection, the XMIDoc-
ument class could create the appropriate DOM nodes to represent a user’s
objects. We don’t provide an XMIDocument class for you, but in the next chap-
ter we explain code that you can use to make XMI documents without know-
ing too much about XMI. Additionally, you should consider the issues
discussed in Chapter 4 to help you decide which parts of XMI to use or sup-
port in your software.

Reading an XMI document using the DOM API also requires you to know
many of the details of XMI so that you know how to handle the nodes in a
DOM tree from an XMI document. However, depending on what you want to
do with the contents of the XMI document, you may not need to know all the
details, especially when using some of the advanced features of DOM. For
example, DOM now includes NodeIterators that will iterate through the nodes
of a DOM tree, filtering the nodes according to a NodeFilter that you can pro-
vide. This makes it easy to get all the Element nodes that represent objects from
the XMI document produced by DOMWrite. The program in Source Code 6.2
creates a DOM tree from the file written by the previous DOM application,

176 Chapter 6

DOMWrite.xmi. It uses a NodeFilter to print the name of each Element node rep-
resenting an object and the XML attributes for each of these Element nodes.

Creating and Reading Simple XMI Documents with Standard XML APIs 177

// DOMRead.java

import org.apache.xerces.parsers.*;

import org.w3c.dom.*;

import org.w3c.dom.traversal.*;

import org.xml.sax.*;

import java.util.*;

import java.io.*;

// This program creates a DOM tree for the file specified as a command

// line option and demonstrates the use of a NodeFilter to obtain the

// Element nodes corresponding to objects in an XMI document.

public class DOMRead {

// Return the nodes that represent objects; the "xmi:id" attribute

// is optional, and XMI extension elements may have "xmi:id"

// attributes too, so this filter will not work for every XMI

// file, but it is good enough for the DOM example in this chapter.

private static class ObjectFilter implements NodeFilter {

public short acceptNode(Node n) {

if (n.getNodeType() == Node.ELEMENT_NODE) {

Element e = (Element) n;

if (e.getAttributeNode("xmi:id") != null)

return NodeFilter.FILTER_ACCEPT;

}

return NodeFilter.FILTER_REJECT;

}

}

public static void main(String[] args) throws Exception {

if (args.length != 1) {

System.out.println("Enter the name of the file to parse.");

return;

}

DOMParser parser = new DOMParser();

parser.parse(args[0]);

Document d = parser.getDocument();

DocumentTraversal dt = (DocumentTraversal) d;

Source Code 6.2 DOMRead program—reading an XMI document using DOM.

The following is the output from running this program on the file produced
by DOMWrite. Note that since the option object attribute of the Car object is rep-
resented by an XML element, it is not included in the list of the XML attributes
for the Car object.

Car:

attributes:

available: 'false'

driver: '_3'

style: '_2'

vin: 'v1'

xmi:id: '_1'

option:

attributes:

car: '_1'

178 Chapter 6

//Create the NodeIterator with the filter created above. The

//NodeIterator will apply the filter before returning the next node.

NodeIterator it = dt.createNodeIterator(d.getDocumentElement(),

NodeFilter.SHOW_ALL,

new ObjectFilter(),

true);

Node n = it.nextNode();

while (n != null) {

writeObject(n);

n = it.nextNode();

}

}

// Write the name of the Element node and the XML attributes and

// their values.

public static void writeObject(Node object) {

System.out.println(object.getNodeName() + ":");

System.out.println(" attributes:");

NamedNodeMap attribs = object.getAttributes();

for (int j = 0; j < attribs.getLength(); ++j)

System.out.println(" " + attribs.item(j).getNodeName() +

": '" + attribs.item(j).getNodeValue() + "'");

}

}

Source Code 6.2 DOMRead program—reading an XMI document using DOM. (Continued)

name: 'air conditioning'

xmi:id: '_1.1'

Style:

attributes:

car: '_1'

make: 'Jalopy'

model: 'Deluxe'

xmi:id: '_2'

year: '2002'

Person:

attributes:

car: '_1'

licenseNumber: 'ln1'

name: 'Anita Karr'

xmi:id: '_3'

We realize that in a real application you will want to do much more than
simply print the XML attributes of the XML elements that represent objects in
an XMI document. You may want to do something based on the XMI docu-
mentation information, for example. Most likely, you will want to create
objects from the XML elements. The next section demonstrates how to do that
using SAX. The same techniques we explain in the next section can be used to
create objects from Element nodes in a DOM tree as well.

The DOMRead program assumes that every XML element in an XMI docu-
ment that has an attribute called xmi:id represents an object, and that you can
determine all the objects in an XMI document by looking for such elements.
This is not true in all cases for several reasons. Some of the predefined XML
elements in the XMI namespace, such as xmi:Extension, also have xmi:id attrib-
utes, so you need to be sure to exclude these elements if you only want ele-
ments that represent your objects to be processed. The xmi:id attribute is
optional, so an XML element representing an object does not need to have it.
Also, XMI enables you to rename the attribute holding an XML ID, so it may
be named something else in a particular document. Finally, you can choose a
namespace prefix other than xmi.

You can usually determine which elements correspond to your objects,
except in the unlikely event that objects have no attributes or references. You
know that an XML element represents one of your objects if any of the follow-
ing conditions are true:

■■ The XML element has an xmi:id, xmi:uuid, xmi:label, xmi:idref, or href
XML attribute and is not one of the elements defined by XMI.

■■ The XML element has an xmi:version XML attribute and it is not one of
the elements defined by XMI.

■■ The XML element is directly contained in the xmi:XMI XML element
and is not one of the elements defined by XMI.

Creating and Reading Simple XMI Documents with Standard XML APIs 179

■■ The XML element is directly contained in an XML element representing
an object and it has attributes not defined by XMI.

■■ The XML element is directly contained in an XML element representing
an object and it has XML elements inside it.

The fact that you can usually determine which XML elements represent
objects in an XMI document makes it easier to restore objects from XMI docu-
ments than from XML documents that do not conform to the XMI specifica-
tion.

Using SAX
As the previous section explains, once you parse an XML file with a DOM-
based parser, all the information in the XML file is in the DOM tree the parser
creates. Since all the information is in memory, a DOM tree can take up quite a
bit of memory for large XML files. The SAX interface does not have this limi-
tation. Because the interface lets you access information from an XML file
while it is being parsed, the information is not automatically put in a data
structure. Instead, you must do this yourself. If you use SAX, you decide
whether the data from the XML file will be put into a data structure in mem-
ory or not. Therefore, your applications that read XML files may use less mem-
ory if you use SAX than if you use DOM.

The main interfaces in SAX are called handlers, and they consist of callback
methods that an XML parser invokes when it is reading an XML file. We will
use SAX version 2.0 (SAX2) in this book, since version 2.0 is the most recent
version. The handler that we will explain the most is the ContentHandler. The
callback methods in the ContentHandler enable your code to be informed when
any of the following occurs:

■■ An XML file begins or ends.

■■ An XML element begins or ends.

■■ Character data in an XML file are parsed.

The ErrorHandler interface enables an application to determine whether an
error has occurred in the XML file and whether the error is a severe one or not.
For more information about SAX, please see the references we include with
this book.

Although you can use SAX to produce XMI documents by implementing
SAX handlers that create output, we will not focus on that in this section. The
issues you face when creating XMI documents using SAX are almost the same
ones you face when you create an XMI document using DOM; the only differ-
ences are a result of the different nature of the two interfaces. If you are inter-
ested in using SAX to produce XMI documents after we have introduced the

180 Chapter 6

SAX API, refer to the Using DOM section for information that will help you
when creating XMI documents using SAX.

To use SAX to read an XML document, you need to do the following:

1. Implement one or more handlers.

2. Register your handlers with an object that implements the XMLReader
interface.

3. Invoke the parse() method of the object implementing the XMLReader
interface.

To help you implement a handler, you can extend from the DefaultHandler
class in the org.xml.sax.helpers package. That class implements all the methods
in the ContentHandler and ErrorHandler interfaces; almost all the methods in
the DefaultHandler class do nothing. The only exception is the fatalError()
method, which throws an exception if a fatal error occurs. Most of the time that
is what you want to do with fatal errors, since you might not get meaningful
data from the parser if you continue parsing after getting a fatal error.

To help you learn the methods in the ContentHandler interface that we will
be using in this section, we present a simple SAX handler that will print mes-
sages as an XML file is being parsed. The handler implements the methods the
XML parser invokes when the parser encounters the beginning and end of
the XML file, the beginnings and ends of XML elements, and character data in
the content of XML elements. Our handler inherits from the DefaultHandler
class, so we do not need to implement all the methods in the ContentHandler
interface. The implementation of our handler is shown in Source Code 6.3:

Creating and Reading Simple XMI Documents with Standard XML APIs 181

// SAXPrintHandler.java

import org.xml.sax.helpers.DefaultHandler;

import org.xml.sax.Attributes;

// This SAX2 handler prints a message when the parser encounters the

// beginning and ending of the XML file, the beginnings and endings

// of XML elements, and character data in the content of

// XML elements.

public class SAXPrintHandler extends DefaultHandler {

// Print a message for the beginning of the XML file.

public void startDocument() {

System.out.println("XML file begins . . . ");

}

// Print a message for the ending of the XML file.

Source Code 6.3 SAXPrintHandler—a simple SAX handler.

By reading the code for the handler, you can learn how to get the names of
the XML elements and their XML attributes. The only slightly complicated
part of the handler is in dealing with character data that is whitespace; we can
ignore leading and trailing whitespace in the contents of XML elements for the
example in this section. It might be important for you to preserve that white-
space for your applications, though.

182 Chapter 6

public void endDocument() {

System.out.println("XML file ends . . . ");

}

// Print the name of the element and the element's attributes,

// if any.

public void startElement(String uri, String name, String qName,

Attributes atts) {

System.out.println("start element: " + name);

if (atts.getLength() > 0) {

System.out.println(" attributes:");

String attribs = " ";

for (int attrib = 0; attrib < atts.getLength(); ++attrib)

attribs += atts.getLocalName(attrib) + ": '" +

atts.getValue(attrib) + "' ";

System.out.println(attribs);

}

else

System.out.println(" no attributes");

}

// Print a message for the end of the XML element.

public void endElement(String uri, String name, String qName) {

System.out.println("end Element: " + name);

}

// Print character data. This method may be called more times than you

// expect, and the data may include whitespace. For the examples in

// the book, it is okay to remove leading and trailing whitespace, as

// we do here with the trim() method.

public void characters(char ch[], int start, int length) {

String chars = new String(ch, start, length);

System.out.println(" characters: '" + chars.trim() + "'");

}

}

Source Code 6.3 SAXPrintHandler—a simple SAX handler. (Continued)

Now we are ready to implement the program that creates an instance of our
handler, registers the handler with an XMLReader, and parses an XML file. The
program gets the name of the XML file to parse from the command line. The
program is shown in Source Code 6.4.

Recall from the DOM section of this chapter that we created an XMI file that
contained a car of a particular style (a 2002 Jalopy Deluxe), and that it was
equipped with one option (air conditioning) and had one driver (Anita Karr).
The XMI file was called DOMWrite.xmi. Here is the output from SAXPrint
when it is invoked by specifying DOMWrite.xmi as the file to parse:

XML file begins...

start element: XMI

attributes:

version: '2.0'

characters: ''

start element: Documentation

no attributes

Creating and Reading Simple XMI Documents with Standard XML APIs 183

// SAXPrint.java

import org.xml.sax.XMLReader;

import org.xml.sax.InputSource;

import org.apache.xerces.parsers.SAXParser;

import java.io.FileReader;

// Create a SAX parser, parse the file indicated on the command line,

// and print basic information as the file is being parsed.

public class SAXPrint {

public static void main(String[] args) throws Exception {

if (args.length != 1) {

System.out.println("Enter the name of the file to parse.");

return;

}

XMLReader xmlReader = new SAXParser();

SAXPrintHandler handler = new SAXPrintHandler();

xmlReader.setContentHandler(handler);

xmlReader.setErrorHandler(handler);

FileReader reader = new FileReader(args[0]);

xmlReader.parse(new InputSource(reader));

}

}

Source Code 6.4 SAXPrint program parsing an XML file using SAX.

characters: ''

start element: exporter

no attributes

characters: 'XMI DOM Serialize Example'

end Element: exporter

characters: ''

start element: exporterVersion

no attributes

characters: '0.5'

end Element: exporterVersion

characters: ''

end Element: Documentation

characters: ''

start element: Car

attributes:

available: 'false' driver: '_3' style: '_2' vin: 'v1' id: '_1'

characters: ''

start element: option

attributes:

car: '_1' name: 'air conditioning' id: '_1.1'

end Element: option

characters: ''

end Element: Car

characters: ''

start element: Style

attributes:

car: '_1' make: 'Jalopy' model: 'Deluxe' id: '_2' year: '2002'

end Element: Style

characters: ''

start element: Person

attributes:

car: '_1' licenseNumber: 'ln1' name: 'Anita Karr' id: '_3'

end Element: Person

characters: ''

end Element: XMI

XML file ends...

If you compare this output to the DOMWrite.xmi file in the DOM section,
you can see that all the XML element names and attributes are included, and
that all the character data in the content of the XML elements is included also.
This output also includes numerous empty strings, since the contained XML
elements in the file that was read were indented by four spaces, and each XML
element begins on a new line. SAXPrint removes this whitespace when it
prints character data.

Now that you know how to implement a simple SAX handler and register it
with an XMLReader, we can begin to implement more complicated handlers. In
the rest of this chapter, we present a series of four increasingly sophisticated

184 Chapter 6

handlers that create instances of some Java classes that implement the car
rental agency model described in the first section of this chapter.

Our implementation of the car rental agency model is straightforward. For
each of the four classes in the model, we create a corresponding Java class.
Each UML attribute in the model with a multiplicity of 1 is implemented as a
private field of a Java class that also has get and set accessor methods to get and
set the value. (For readability, boolean attributes have is and set accessor meth-
ods.) Each association end in the UML model is implemented as a private field
also. For association ends with multiplicities greater than 1, we have used a
field name that ends in s. For example, we use cars instead of car. If the multi-
plicity of the association end is 1, the type of the field is the Java class corre-
sponding to the UML class attached to the association end. As with the other
fields, the Java class the field belongs to has the appropriate accessor methods.
If the multiplicity of an association end or attribute is more than 1, the corre-
sponding field has a type of ArrayList. In this case, the Java class that has the
field has three accessor methods: one returns a collection of the associated
objects, one adds an object to the list, and one removes an object from the list.
This pattern should become clearer as we explain each Java class. Each Java
class also implements the toString() method, enabling us to print instances of
the class to determine what the values of the fields are.

The first Java class we present is the Style class. According to the car rental
agency UML model, there are three attributes: make and model of type String,
and year of type Integer. Correspondingly, the Java Style class has make and
model fields of type String, and a year field of type int. It also contains accessor
methods to get and set each field. The Style class in the model has one associa-
tion end called cars attached to the Car class; the cars association end has a mul-
tiplicity of *. The Java Style class has a cars field that has an ArrayList as its type;
the three accessor methods for the association end have the following signa-
tures:

public Collection getCars();

public void add(Car car);

public void remove(Car car);

In other applications it might be important to be able to order the cars, but
these three methods are sufficient for our needs.

Source Code 6.5 is the code for the Java Style class. Note that the class is in
the cars Java package.

We can implement the other classes in the car rental agency model following
a similar process. The source code for the other three Java classes is shown in
Source Code 6.6, Source Code 6.7, and Source Code 6.8.

Creating and Reading Simple XMI Documents with Standard XML APIs 185

186 Chapter 6

// Style.java

package cars;

import java.util.*;

// The Style class holds the make, model, and year, and

// it contains a list of the cars it is related to.

public class Style {

private String make, model;

private int year;

private ArrayList cars;

public Style() { cars = new ArrayList(); }

public String getMake() { return make; }

public void setMake(String m) { make = m; }

public String getModel() { return model; }

public void setModel(String m) { model = m; }

public int getYear() { return year; }

public void setYear(int y) { year = y; }

public Collection getCars() { return cars; }

public void add(Car car) { cars.add(car); }

public void remove(Car car) { cars.remove(car); }

public String toString() {

String s = "Style make: " + make + " model: " + model +

" year: " + year;

if (cars.size() > 0) {

s += " cars:";

Iterator c = cars.iterator();

while (c.hasNext())

s += " " + ((Car) c.next()).getVIN();

}

return s;

}

}

Source Code 6.5 The Style class.

Creating and Reading Simple XMI Documents with Standard XML APIs 187

// Person.java

package cars;

import java.util.*;

// The Person class holds the name and licenseNumber of a person,

// as well as a list of the cars the person drives.

public class Person {

private String name, licenseNumber;

private ArrayList cars;

public Person() { cars = new ArrayList(); }

public String getName() { return name; }

public void setName(String n) { name = n; }

public String getLicenseNumber() { return licenseNumber; }

public void setLicenseNumber(String l) { licenseNumber = l; }

public Collection getCars() { return cars; }

public void add(Car car) { cars.add(car); }

public void remove(Car car) { cars.remove(car); }

public String toString() {

String s = "Person name: " + name + " licenseNumber: " +

licenseNumber;

if (cars.size() > 0) {

s += " cars:";

Iterator c = cars.iterator();

while (c.hasNext())

s += " " + ((Car) c.next()).getVIN();

}

return s;

}

}

Source Code 6.6 The Person class.

188 Chapter 6

// Car.java

package cars;

import java.util.*;

// The Car class holds the vehicle identification number, the

// style, and the available flag; it contains a list of the

// options the car has and the drivers of the car.

public class Car {

private String vin;

private boolean available;

private ArrayList options, drivers;

private Style style;

public Car() {

options = new ArrayList();

drivers = new ArrayList();

}

public String getVIN() { return vin; }

public void setVIN(String v) { vin = v; }

public boolean isAvailable() { return available; }

public void setAvailable (boolean v) { available = v; }

public Collection getOptions() { return options; }

public void add(Option o) { options.add(o); }

public void remove(Option o) { options.remove(o); }

public Collection getDrivers() { return drivers; }

public void add(Person p) { drivers.add(p); }

public void remove(Person p) { drivers.remove(p); }

public Style getStyle() { return style; }

public void setStyle(Style s) { style = s; }

public String toString() {

String s = "Car vin: " + vin + " available: " + available;

if (style != null)

s += " make: " + style.getMake() + " model: " +

style.getModel() + " year: " + style.getYear();

if (options.size() > 0) {

s += "\n Options: ";

Iterator o = options.iterator();

while (o.hasNext())

s += "\n " + ((Option) o.next()).getName();

Source Code 6.7 The Car class.

Creating and Reading Simple XMI Documents with Standard XML APIs 189

}

if (drivers.size() > 0) {

s += "\n Drivers: ";

Iterator d = drivers.iterator();

while (d.hasNext())

s += "\n " + ((Person) d.next()).getName();

}

return s;

}

}

Source Code 6.7 The Car class. (Continued)

// Option.java

package cars;

import java.util.*;

// The Option class contains the name of the option and the car

// the option belongs to.

public class Option {

private String name;

private Car car;

public String getName() { return name; }

public void setName(String n) { name = n; }

public Car getCar() { return car; }

public void setCar(Car c) { car = c; }

public String toString() {

String s = "Option: " + name;

if (car != null)

s += " car: " + car.getVIN();

return s;

}

}

Source Code 6.8 The Option class.

Some of the handlers we implement make instances of the Java classes in the
cars package. We need to be able to get the objects the handlers make. We
accomplish this by creating an interface for our handlers to implement. Since
our handlers deal with the car rental agency model, we call the interface they
will implement CRAHandler (for Car Rental Agency Handler). The CRAHandler
interface extends the standard SAX handler interfaces and contains a method to
let us get the objects our handlers make. The interface is as follows:

// CRAHandler.java

import org.xml.sax.*;

import java.util.Collection;

// Each of our SAX2 handlers implements this interface. The

// getObjects() method lets us get the objects the handlers make.

// The interfaces this interface extends are the four standard SAX2

// handler interfaces.

public interface CRAHandler extends EntityResolver, DTDHandler,

ContentHandler, ErrorHandler {

// Returns the objects created by the handler.

public Collection getObjects();

}

Now that we know the interface that each of our handlers will implement,
we can write a program to enable us to parse the DOMWrite.xmi file with any
of the handlers we develop. Let’s call this program SAXRead. This program
uses two command-line arguments: the name of the file to parse and the name
of the handler class. Since our handlers will contain a no argument constructor,
we can invoke the newInstance() method of java.lang.Class to make instances of
them. We can get the correct java.lang.Class object by invoking the static method
forName() in java.lang.Class. Once SAXRead creates an instance of one of our
handlers, it registers the handler instance with an XMLReader, parses the XMI
document, calls the getObjects() method of the CRAHandler, and finally prints
each object. The SAXRead program is shown in Source Code 6.9.

CRAHandler1: Accessing and
Printing Data in the XMI File

Now that we have implemented the car rental agency model in Java, created
an interface for our handlers, and written a program that will parse a docu-
ment with the handlers we write, it is time to implement our first handler. The
first handler is a simple one that prints the exporter and exporterVersion from
the xmi:Documentation element of an XMI document. It demonstrates how to
accumulate character data that is in the content of an XML element using a
StringBuffer. When an XML element begins, a new StringBuffer is created so the

190 Chapter 6

buffer does not contain characters from the content of a previous XML ele-
ment. Then, when the parser invokes the characters() method of the handler,
the character data is appended to the StringBuffer. Finally, when an XML ele-
ment ends, if the name of the element is exporter or exporterVersion, the String-
Buffer is printed. This technique can be used to get the values of attributes if the
values are in the content of an XML element. It can also be used to get other

Creating and Reading Simple XMI Documents with Standard XML APIs 191

// SAXRead.java

import org.xml.sax.XMLReader;

import org.xml.sax.InputSource;

import org.apache.xerces.parsers.SAXParser;

import java.util.Collection;

import java.util.Iterator;

import java.io.FileReader;

// Parse the file that has the name of the first command-line

// argument using the car rental agency handler that has the class

// name of the second command-line argument. After the file is parsed,

// print the objects made by the handler.

public class SAXRead {

public static void main(String[] args) throws Exception {

if (args.length != 2) {

System.out.println("Enter file name and handler class name.");

return;

}

XMLReader xr = new SAXParser();

java.lang.Class cls = java.lang.Class.forName(args[1]);

CRAHandler handler = (CRAHandler) cls.newInstance();

if (handler != null) {

xr.setContentHandler(handler);

xr.setErrorHandler(handler);

FileReader reader = new FileReader(args[0]);

xr.parse(new InputSource(reader));

Collection objects = handler.getObjects();

Iterator o = objects.iterator();

while (o.hasNext())

System.out.println(o.next());

}

}

}

Source Code 6.9 SAXRead program.

information in the xmi:Documentation element. This handler implements the
CRAHandler interface and extends the DefaultHandler class, so we don’t need to
implement all the methods in the SAX2 handler interfaces ourselves. Our first
car rental agency handler is shown in Source Code 6.10.

When we run the SAXRead program with DOMWrite.xmi and CRAHandler1
as the command-line arguments, it creates the following output:

exporter: XMI DOM Serialize Example

exporter version: 0.5

CRAHandler2: Making Java Instances
of the XMI Document Objects

Now let’s try something more interesting. The next handler makes instances of
the Car, Person, Style, and Option classes in the cars package using the same Java
technique we used to make an instance of a CRAHandler in the SAXRead pro-
gram. In the DOMWrite.xmi file, the elements that represent the objects have
tag names of Car, Person, Style, and Option, while the classes to instantiate are
cars.Car, cars.Person, cars.Style, and cars.Option.1 We need to implement a
method that takes a tag name, uses that name to determine the class name, and
then makes an instance of the class. We will put the method in a class called
CRAFactory to make the handler easier to understand. The CRAFactory class
contains a HashMap that maps from tag names to class names. It has a newIn-
stance() method that takes a tag name as a parameter and returns an instance of
the appropriate class. The CRAFactory program is shown in Source Code 6.11.

The handler that uses the CRAFactory to make instances stores each new
instance in a list so they can be obtained using the getObjects() method. This
handler inherits from the previous handler, so it invokes CRAHandler1’s
startElement() method and constructor. The next two handlers will need access
to the most recent instance made by this handler, so the newObject field is pro-
tected to let subclasses access it, and it is set to each new instance. Our second
handler is shown in Source Code 6.12.

Does this work? When we use this handler with SAXRead on the same file as
before, this is the output:

exporter: XMI DOM Serialize Example

exporter version: 0.5

Car vin: null available: false

Option: null

Style make: null model: null year: 0

Person name: null licenseNumber: null

As expected, the objects were created, but none of their fields were restored.
Also, this handler prints the exporter and exporterVersion, just like the first han-
dler.

192 Chapter 6

Creating and Reading Simple XMI Documents with Standard XML APIs 193

// CRAHandler1.java

import org.xml.sax.helpers.DefaultHandler;

import org.xml.sax.Attributes;

import java.util.Collection;

import java.util.Collections;

// This handler prints the exporter and exporter version in the

// XMI Documentation element.

public class CRAHandler1 extends DefaultHandler implements CRAHandler {

private StringBuffer buffer;

// This flag is true if processing the xmi:Documentation element.

private boolean inXMIDocumentation=false;

// Create a new buffer, since we don't want the buffer to contain

// characters from previous XML elements.

public void startElement(String uri, String name, String qName,

Attributes atts) {

buffer = new StringBuffer();

if (qName.equals("xmi:Documentation"))

inXMIDocumentation=true;

}

// Print the exporter and exporter version.

public void endElement(String uri, String name, String qName) {

if (inXMIDocumentation) // Ensure these are exporter and

// exporterVersion in the XMI model.

if (name.equals("exporter"))

System.out.println("exporter: " + buffer);

else if (name.equals("exporterVersion"))

System.out.println("exporter version: " + buffer);

if (qName.equals("xmi:Documentation"))

inXMIDocumentation=false;

}

// Append characters to the buffer as the parser encounters them.

public void characters(char ch[], int start, int length) {

buffer.append(ch, start, length);

}

// Since no objects are created, return an empty list.

public Collection getObjects() {

return Collections.EMPTY_LIST;

}

}

Source Code 6.10 CRAHandler1.

194 Chapter 6

// CRAFactory.java

import java.util.HashMap;

import cars.*;

// This class makes instances of the classes in the cars package

// given tag names of XML elements in an XMI file.

public class CRAFactory {

private HashMap tagNamesToClassNames;

// Initialize tagNamesToClassNames for the car rental agency.

public CRAFactory() {

tagNamesToClassNames = new HashMap();

// In the HashMap, we map the tag name of the element

// for an object to the Java class name. Note that there are two

// entries that map to cars.Option. Since the object attribute for

// the Car object's options is called "option", this is the tag name

// for the element for the Option object in the XMI file we wrote.

// Since there could also be an Option object with an XML element tag

// name of "Option" in another file, we include both "option" and

// "Option" in the Hashmap for completeness.

tagNamesToClassNames.put("Style", "cars.Style");

tagNamesToClassNames.put("Car", "cars.Car");

tagNamesToClassNames.put("Option", "cars.Option");

tagNamesToClassNames.put("option", "cars.Option");

tagNamesToClassNames.put("Person", "cars.Person");

}

// Make an instance of the correct class given the tag name of an XML

// element from an XMI file. Throw an exception if unsuccessful.

public Object newInstance(String tagName) throws Exception {

String clsName = (String) tagNamesToClassNames.get(tagName);

java.lang.Class cls = java.lang.Class.forName(clsName);

return cls.newInstance();

}

}

Source Code 6.11 CRAFactory.

Creating and Reading Simple XMI Documents with Standard XML APIs 195

// CRAHandler2.java

import org.xml.sax.Attributes;

import java.util.ArrayList;

import java.util.Collection;

// This handler makes instances of the classes in the cars package

// using the CRAFactory. Each instance is added to the objects list.

// The newObject is set to each instance when it is created, so

// handlers that subclass this class can access the new object.

public class CRAHandler2 extends CRAHandler1 {

private ArrayList objects;

protected static final String XMI_ID = "xmi:id";

protected CRAFactory factory;

protected Object newObject;

// Initialize the objects list and the factory.

public CRAHandler2() {

super();

factory = new CRAFactory();

objects = new ArrayList();

}

// Make a new instance if the XML element represents an object. In

// this application, every XML element that represents an object has

// an xmi:id attribute, which is not true for every XMI file.

public void startElement(String uri, String name, String qName,

Attributes atts) {

super.startElement(uri, name, qName, atts);

if (atts.getValue(XMI_ID) != null)

try {

newObject = factory.newInstance(name);

objects.add(newObject);

}

catch (Exception e) {

e.printStackTrace();

}

}

// Return the objects that were created.

public Collection getObjects() {

return objects;

}

}

Source Code 6.12 CRAHandler2.

CRAHandler3: Setting the Fields
of the Java Instances

Now it’s time to begin restoring the objects’ fields. The next handler sets the
fields of the object that correspond to UML data attributes from the car rental
agency model.2 Each of these attributes is represented by an XML attribute. To
make the handler easier to understand, we add some methods to the CRAFac-
tory class. The first method returns the names of the XML attributes that corre-
spond to UML data attributes in the CRA model. The second method sets the
value of an object’s field given the object, the name of the field, and the field’s
value. Since the attribute values will be read in as Java Strings, note that we
have included code to handle the cases where we are setting a field with a
value that is a Java int or boolean. The methods that we add to the CRAFactory
are shown in Source Code 6.13.

196 Chapter 6

// New methods for CRAFactory.java

// Return the names of the XML attributes that correspond to UML

// attributes.

public String[] getAttributeNames(Object object) {

if (object instanceof Car)

return new String[] { "vin", "available" };

else if (object instanceof Option)

return new String[] { "name" };

else if (object instanceof Person)

return new String [] { "name", "licenseNumber" };

else if (object instanceof Style)

return new String [] { "make", "model", "year" };

else

return new String[0];

}

// Call the appropriate method based on the type of the object.

public void setAttribute(Object object, String attribName,

String value) {

if (object instanceof Car)

setAttribute((Car) object, attribName, value);

else if (object instanceof Option)

setAttribute((Option) object, attribName, value);

else if (object instanceof Style)

setAttribute((Style) object, attribName, value);

else if (object instanceof Person)

setAttribute((Person) object, attribName, value);

}

Source Code 6.13 New methods for the CRAFactory.

Creating and Reading Simple XMI Documents with Standard XML APIs 197

// Set the vin or available field of the Car object.

private void setAttribute(Car c, String attribName, String value) {

if (attribName.equals("vin"))

c.setVIN(value);

else if (attribName.equals("available") && value != null) {

if (value.equals("true"))

c.setAvailable(true);

else if (value.equals("false"))

c.setAvailable(false);

}

}

// Set the name of the Option object.

private void setAttribute(Option o, String attribName, String value) {

if (attribName.equals("name"))

o.setName(value);

}

// Set the name and license number of the Person object.

private void setAttribute(Person p, String attribName, String value) {

if (attribName.equals("name"))

p.setName(value);

else if (attribName.equals("licenseNumber"))

p.setLicenseNumber(value);

}

// Set the make, model, and year of the Style object.

private void setAttribute(Style s, String attribName, String value) {

if (attribName.equals("make"))

s.setMake(value);

else if (attribName.equals("model"))

s.setModel(value);

else if (attribName.equals("year")) {

int year = -1;

try {

if (value != null)

year = Integer.parseInt(value);

}

catch (Exception e) {

e.printStackTrace();

}

if (year != -1)

s.setYear(year);

}

}

Source Code 6.13 New methods for the CRAFactory. (Continued)

With this capability implemented in CRAFactory, for each XML element that
represents an object we need to get the XML attribute names from the CRAFac-
tory, get the values of the attributes, and then call the setAttribute() method in
the CRAFactory for each XML attribute that does not have null as its value. We
can get the new instance by using the newObject field in CRAHandler2. Our
third handler is shown in Source Code 6.14.

The output from SAXRead using this handler and the file produced by
DOMWrite looks like this:

198 Chapter 6

// CRAHandler3.java

import org.xml.sax.Attributes;

// This handler sets the fields of the objects in the cars package that

// correspond to UML data attributes in the car rental agency model.

// It uses the CRAFactory to set the fields.

public class CRAHandler3 extends CRAHandler2 {

// If the XML element has an xmi:id XML attribute, then newObject is

// the instance made by CRAHandler2. Call the setAttribute() method

// of the CRAFactory from CRAHandler3 to restore the fields of the

// Java classes that correspond to UML data attributes.

public void startElement(String uri, String name, String qName,

Attributes atts) {

super.startElement(uri, name, qName, atts);

if (atts.getValue(XMI_ID) != null)

setAttributes(newObject, atts);

}

// Set the fields of the objects that correspond to UML data

// attributes.

private void setAttributes(Object object, Attributes atts) {

String [] attribNames = factory.getAttributeNames(object);

for (int name = 0; name < attribNames.length; ++name) {

String value = atts.getValue(attribNames[name]);

if (value != null)

factory.setAttribute(object, attribNames[name], value);

}

}

}

Source Code 6.14 CRAHandler3.

exporter: XMI DOM Serialize Example

exporter version: 0.5

Car vin: v1 available: false

Option: air conditioning

Style make: Jalopy model: Deluxe year: 2002

Person name: Anita Karr licenseNumber: ln1

This handler works for the DOMWrite.xmi document, but it will not handle
attributes in all XMI documents, since it does not handle attributes with mul-
tiple values or attributes that have a class as their type instead of a datatype
(object attributes). Those kinds of attributes are represented by XML elements
rather than XML attributes. The handler also does not handle references.

CRAHandler4: Dealing with References

Now we need to set the fields of the objects that represent references and object
values in the UML model. If you look at DOMWrite.xmi, references are repre-
sented by XML attributes with values that are XML IDs. For example, the Car
object’s style is represented as an XML attribute with a value of _2, which is the
XML ID for the Style XML element. (The value of the Style element’s XML ID is
stored in its xmi:id attribute.) Also, notice that when you are processing an
object having references, the referenced objects may not have been loaded yet.
In our first example, the Style XML element comes after the Car XML element
in the file, so it is not available when the Car element is parsed. This means that
we need to store forward references when parsing the file and set them when
the file has been completely parsed. The option object attribute is handled dif-
ferently from how we handle references. Since option is an object value in the
Car object, the XML element corresponding to the object value is written inside
the XML element corresponding to the Car object.

Once again, to make the handler easier to understand, we add several meth-
ods to the CRAFactory class that will call the appropriate methods on the Java
classes in the cars package to set the references and the object attribute as we
parse the file. The next handler also needs to know the names of the references
that are represented by XML attributes. The new methods for the CRAFactory
are shown in Source Code 6.15.

Now that those methods are implemented, we can implement the last han-
dler. For each XML element in the document that represents an object, the han-
dler asks the CRAFactory for the names of the references represented by XML
attributes. Then the handler gets the XML ID of the object that is the value of
the reference. If the object was already created, it can be looked up and the ref-
erence can be set; otherwise, a ForwardLink object is created so the reference can
be set when the end of the file is reached. In DOMWrite.xmi, the XML attributes
that represent references have only one XML ID for their values, but there can
be more than one XML ID in general. That is why we parse the value of the

Creating and Reading Simple XMI Documents with Standard XML APIs 199

200 Chapter 6

//New methods for CRAFactory.java

// Returns the names of the references represented by XML attributes

// for the given type of object.

public String[] getXMLAttributeReferences(Object object) {

if (object instanceof Car)

return new String[] { "driver", "style" };

else if (object instanceof Person ||

object instanceof Style ||

object instanceof Option)

return new String[] { "car" };

else

return new String[0];

}

// Calls the appropriate method to set the reference based on the type

// of the object.

public void setReference(Object object, String referenceName,

Object value){

if (object instanceof Car)

setReference((Car) object, referenceName, value);

else if (object instanceof Option)

setReference((Option) object, referenceName, value);

else if (object instanceof Style)

setReference((Style) object, referenceName, value);

else if (object instanceof Person)

setReference((Person) object, referenceName, value);

}

// Set the driver or style references on a Car object.

private void setReference(Car c, String referenceName, Object value) {

if (referenceName.equals("driver") && (value instanceof Person))

c.add((Person) value);

else if (referenceName.equals("style") && (value instanceof Style))

c.setStyle((Style) value);

}

// Set the car reference from an Option object to a Car object.

private void setReference(Option o, String referenceName,

Object value) {

if (referenceName.equals("car") && (value instanceof Car))

o.setCar((Car) value);

}

// Set the car reference from a Style object to a Car object.

private void setReference(Style s, String referenceName,

Object value) {

if (referenceName.equals("car") && (value instanceof Car))

Source Code 6.15 New methods for the CRAFactory.

XML attributes with a StringTokenizer, although it is not necessary to do so for
this example. Finally, we set the option object attribute of the Car object when
the Option object is created, since that object attribute is not represented by an
XML attribute. CRAHandler4 is shown in Source Code 6.16.

The output from the SAXRead program when this handler is used with the
XMI document created by DOMWrite is as follows:

exporter: XMI DOM Serialize Example

exporter version: 0.5

Car vin: v1 available: false make: Jalopy model: Deluxe year: 2002

Options:

air conditioning

Drivers:

Anita Karr

Option: air conditioning car: v1

Style make: Jalopy model: Deluxe year: 2002 cars: v1

Person name: Anita Karr licenseNumber: ln1 cars: v1

As you can see, the objects are now fully restored.
If you want to implement SAX handlers that will work for any XMI docu-

ment, you need to address many issues beyond those we covered in the previ-
ous handlers. These include:

■■ Data attributes with multiple values need to be handled.

■■ Objects may be nested in other objects to any depth. To correctly restore
attributes with object values, you may need to implement a stack of
objects that have been created and then pop the stack after finishing an
object. The handlers we presented used a newObject field rather than a
stack of new objects.

■■ If the XMI documents will be in different problem domains, you need
to implement a generic mechanism for restoring the objects’ attribute
values and references. You may also need to implement a scheme for

Creating and Reading Simple XMI Documents with Standard XML APIs 201

s.add((Car) value);

}

// Set the car reference from a Person object to a Car object.

private void setReference(Person p, String referenceName,

Object value) {

if (referenceName.equals("car") && (value instanceof Car))

p.add((Car) value);

}

Source Code 6.15 New methods for the CRAFactory. (Continued)

202 Chapter 6

// CRAHandler4.java

import org.xml.sax.*;

import java.util.*;

import cars.Option;

import cars.Car;

// This handler sets the fields that correspond to references

// in the car rental agency model. It handles references to objects

// that have not been parsed yet using the ForwardLink class.

public class CRAHandler4 extends CRAHandler3 {

private HashMap IDsToObjects;

private ArrayList forwardLinks;

private Object lastObject;

// This class stores the object, the name of the reference, and the

// XML ID so the reference can be set when the entire file has been

// parsed.

private static class ForwardLink {

private Object object;

private String name, ID;

ForwardLink(Object object, String name, String ID) {

this.object = object;

this.name = name;

this.ID = ID;

}

Object getObject() { return object; }

String getName() { return name; }

Object getID() { return ID; }

}

// Initialize IDsToObjects and forwardLinks.

public CRAHandler4() {

super();

IDsToObjects = new HashMap();

forwardLinks = new ArrayList();

}

// If the XML element has an xmi:id XML attribute, then newObject is

// the instance made by CRAHandler2. Call the setReferences method to

// set the references represented by XML attributes. Set the option

// object attribute of the Car explicitly, since that object attribute

// has its own XML element.

public void startElement(String uri, String name, String qName,

Attributes atts) {

lastObject = newObject;

Source Code 6.16 CRAHandler4.

Creating and Reading Simple XMI Documents with Standard XML APIs 203

super.startElement(uri, name, qName, atts);

String ID = atts.getValue(XMI_ID);

if (ID != null) {

IDsToObjects.put(ID, newObject);

setReferences(newObject, atts);

// Handle the option object attribute for the car.

if ((newObject instanceof Option) && (lastObject instanceof Car))

((Car)(lastObject)).add((Option)newObject);

}

}

// Get the names of the references represented by XML attributes for

// the given object. Next, for each reference, get the XML ID that is

// the value of the XML attribute representing the reference.

// Then try to get the object with the ID. If the object was

// already created, set the reference; otherwise, create a

// ForwardLink so the reference can be set at the end of the file.

private void setReferences(Object obj, Attributes atts) {

String [] referenceNames = factory.getXMLAttributeReferences(obj);

for (int reference = 0; reference < referenceNames.length;

++reference) {

String IDs = atts.getValue("", referenceNames[reference]);

if (IDs != null) {

StringTokenizer t = new StringTokenizer(IDs);

while (t.hasMoreTokens()) {

String ID = t.nextToken();

java.lang.Object value = IDsToObjects.get(ID);

if (value == null)

forwardLinks.add(new ForwardLink(obj,

referenceNames[reference], ID));

else

factory.setReference(obj, referenceNames[reference],

value);

} // while (t.hasMoreTokens())

} // if (IDs != null)

} // for (int reference = 0 . . .

}

// Resolve the forward links; the IDsToObjects HashMap should have

// all of the objects in it because the end of the document has been

// reached.

Source Code 6.16 CRAHandler4. (Continued)

determining whether an XML attribute in an XMI document represents
an attribute or a reference for an object, as well as implementing a fac-
tory that makes objects.

■■ Other XMI features that the simple handlers here do not cover need to
be handled. One example is XMI extensions, which we explain in Chap-
ter 8.

Summary

Since XMI is built on top of XML, you can use standard XML APIs such as
DOM and SAX both to create and read XMI documents. Also, if there are
generic advances in XML—such as new techniques for creating XML docu-
ments and reading them—you can take advantage of those techniques with
XMI documents. Although these APIs provide the flexibility to deal with
generic XML documents, using them with XMI documents requires that you
understand how XMI documents are structured. It is much easier to use APIs
that have been designed specifically to support XMI, however, as we will see
in the next chapter.

204 Chapter 6

public void endDocument() {

for (int i = 0; i < forwardLinks.size(); ++i) {

ForwardLink link = (ForwardLink) forwardLinks.get(i);

Object value = IDsToObjects.get(link.getID());

factory.setReference(link.getObject(), link.getName(), value);

}

}

}

Source Code 6.16 CRAHandler4. (Continued)

205

In the last chapter, we looked at how the standard Extensible Markup Lan-
guage (XML) Application Programming Interfaces (APIs) Document Object
Model (DOM) and Simple API for XML (SAX) could be used to work with
XML Metadata Interchange (XMI) documents. Although those APIs are not
designed particularly for XMI documents, in this chapter we look at APIs that
are designed specifically for XMI. One example of such an API is the Java
Object Bridge (JOB), which enables you to store any Java objects in an XMI
document and restore them from an XMI document. In the beginning of this
chapter, we will look at how to use JOB to do this.

Another API that supports XMI is the XMI Framework. The Framework
provides a generic representation of objects and their states in a simple object
model. It enables you to create XMI documents from generic objects and to
make generic objects when reading XMI documents. You can also use your
own Java objects rather than generic versions of them by writing code that
connects your Java classes with the Framework. We explain how to use the
Framework with generic objects and with instances of Java classes that are not
part of the Framework. We also examine how the Framework may interpret
the data in XMI documents differently depending on whether or not it knows
the model that defines the data in the documents.

You should read this chapter before reading Chapters 8 and 9, since both
chapters contain code examples that are based on the examples in this chapter.
This chapter covers basic issues you need to deal with when you write

Creating and Reading
Simple XMI Documents

with the XMI Framework

C H A P T E R

7

programs that work with XMI documents. Chapter 8 covers more advanced
issues such as XML namespaces, identifying your models, XMI extensions,
ZIP files, and cross-file references. Chapter 9 explains how to use the Frame-
work to generate schemas. This chapter contains the information you need to
know to fully understand the issues presented in Chapters 8 and 9.

The examples we use throughout this chapter are based on the car rental
agency model that we introduced in Chapter 6. Although you do not need to
have read all of Chapter 6 to understand this chapter, you will need to be
familiar with the car rental agency model presented in the beginning of Chap-
ter 6 to understand the examples presented in this chapter.

Using the Java Object Bridge (JOB)

After reading the previous chapter, you might think that creating and reading
XMI documents is very complicated. The reason the previous examples were
complicated is because they used interfaces that were designed to handle any
XML document. Neither DOM nor SAX was designed to support the power of
XMI. Starting with this section, we present interfaces that are explicitly
designed to support XMI. These interfaces make it much easier to work with
XMI documents than DOM and SAX.

Creating an XMI Document
The minimum amount of work necessary to create an XMI document is to
make your objects and then invoke a method with a collection of those objects
and the name of the XMI document to create. JOB provides this minimal inter-
face. It uses Java reflection to get the data for each object and the XMI Frame-
work (discussed in the next section) to read and write XMI documents.

JOB’s purpose is to serialize and deserialize Java objects using XMI. JOB
does not work with UML models; it works with Java objects and classes. For
this reason, there are differences between the XMI files that JOB creates based
on a Java implementation of a model and XMI files that are created based on
knowledge of the model. We explain these differences later in this section.

206 Chapter 7

JOB ENHANCEMENTS

An enhanced version of JOB that uses code generation would run more
efficiently. The reflection would be done once at code generation time to
decide which class-specific calls to make. Also, if JOB knew about the model, it
would be able to write Java objects in a way that matches the model. The
internals of the XMI utilities in Websphere Studio Application Developer
(included in the accompanying CD-ROM) have these capabilities.

Before we use JOB to create an XMI document, let’s write code to create the
objects we will put in an XMI document. In the first section of Chapter 6, we
described the car rental agency model and four objects that are instances of
classes in the model. We implemented the car rental agency model using four
classes in the cars package: Car, Option, Style, and Person. Those four classes are
displayed for your convenience in Source Code 7.1, Source Code 7.2, Source
Code 7.3, and Source Code 7.4, respectively.

Creating and Reading Simple XMI Documents with the XMI Framework 207

// Car.java

package cars;

import java.util.*;

// The Car class holds the vehicle identification number, the

// style, and the available flag; it contains a list of the

// options the car has and the drivers of the car.

public class Car {

private String vin;

private boolean available;

private ArrayList options, drivers;

private Style style;

public Car() {

options = new ArrayList();

drivers = new ArrayList();

}

public String getVIN() { return vin; }

public void setVIN(String v) { vin = v; }

public boolean isAvailable() { return available; }

public void setAvailable (boolean v) { available = v; }

public Collection getOptions() { return options; }

public void add(Option o) { options.add(o); }

public void remove(Option o) { options.remove(o); }

public Collection getDrivers() { return drivers; }

public void add(Person p) { drivers.add(p); }

public void remove(Person p) { drivers.remove(p); }

public Style getStyle() { return style; }

public void setStyle(Style s) { style = s; }

public String toString() {

String s = "Car vin: " + vin + " available: " + available;

if (style != null)

Source Code 7.1 The Car class.

Now we can use these classes to make the objects to put in an XMI docu-
ment. We add a new method to the CRAFactory class that we developed in the
last chapter. This method, makeExample(), makes the objects we’ll put into an
XMI document using the classes in the cars package. The objects returned by
the makeExample() method correspond to the objects we described in Chapter
6. Source Code 7.5 contains the makeExample() method. The rest of the CRAFac-
tory class is not shown here since we only use the makeExample() method.

A program that uses JOB to produce an XMI document with the example
objects is very simple and is displayed in Source Code 7.6. Although the make-
Example() method returns three objects, you could pass any one of them to JOB,
because they reference each other directly or indirectly. JOB writes all objects
that are referenced from the objects you give it. It ensures that it does not write
objects multiple times. For more information about the options for using JOB,
please see the documentation for JOB on the CD-ROM.

The file created by JOBWrite, job.xmi, is as follows (some of the longer lines
have been split to accommodate the page width of the book and your results
may vary due to differences among Java virtual machines in the order that
data is returned using Java reflection):1

208 Chapter 7

s += " make: " + style.getMake() + " model: " +

style.getModel() + " year: " + style.getYear();

if (options.size() > 0) {

s += "\n Options: ";

Iterator o = options.iterator();

while (o.hasNext())

s += "\n " + ((Option) o.next()).getName();

}

if (drivers.size() > 0) {

s += "\n Drivers: ";

Iterator d = drivers.iterator();

while (d.hasNext())

s += "\n " + ((Person) d.next()).getName();

}

return s;

}

}

Source Code 7.1 The Car class. (Continued)

Creating and Reading Simple XMI Documents with the XMI Framework 209

// Option.java

package cars;

import java.util.*;

// The Option class contains the name of the option and the car

// the option belongs to.

public class Option {

private String name;

private Car car;

public String getName() { return name; }

public void setName(String n) { name = n; }

public Car getCar() { return car; }

public void setCar(Car c) { car = c; }

public String toString() {

String s = "Option: " + name;

if (car != null)

s += " car: " + car.getVIN();

return s;

}

}

Source Code 7.2 The Option class.

<?xml version="1.0" encoding="UTF-8"?>

<xmi:XMI xmi:version="2.0" xmlns:xmi="http://www.omg.org/XMI"

xmlns:job="http://www.ibm.com/xmi/job"

xmlns:p1="Java:cars"

xmlns:p2="Java:java.util">

<xmi:Documentation>

<exporter>Java Object Bridge (JOB)</exporter>

<exporterVersion>0.95</exporterVersion>

</xmi:Documentation>

<p1:Car xmi:id="_1" available="false" vin="v1" job:top="true"

style="_2" drivers="_1.2" options="_1.3"/>

<p1:Style xmi:id="_2" year="2002" model="Deluxe" make="Jalopy"

job:top="true" cars="_2.1"/>

<p1:Person xmi:id="_3" licenseNumber="ln1" job:top="true"

cars="_3.1">

<name>Anita Karr</name>

</p1:Person>

<p2:ArrayList xmi:id="_1.2" items="_3"/>

210 Chapter 7

// Style.java

package cars;

import java.util.*;

// The Style class holds the make, model, and year, and

// it contains a list of the cars it is related to.

public class Style {

private String make, model;

private int year;

private ArrayList cars;

public Style() { cars = new ArrayList(); }

public String getMake() { return make; }

public void setMake(String m) { make = m; }

public String getModel() { return model; }

public void setModel(String m) { model = m; }

public int getYear() { return year; }

public void setYear(int y) { year = y; }

public Collection getCars() { return cars; }

public void add(Car car) { cars.add(car); }

public void remove(Car car) { cars.remove(car); }

public String toString() {

String s = "Style make: " + make + " model: " + model +

" year: " + year;

if (cars.size() > 0) {

s += " cars:";

Iterator c = cars.iterator();

while (c.hasNext())

s += " " + ((Car) c.next()).getVIN();

}

return s;

}

}

Source Code 7.3 The Style class.

Creating and Reading Simple XMI Documents with the XMI Framework 211

// Person.java

package cars;

import java.util.*;

// The Person class holds the name and licenseNumber of a person,

// as well as a list of the cars the person drives.

public class Person {

private String name, licenseNumber;

private ArrayList cars;

public Person() { cars = new ArrayList(); }

public String getName() { return name; }

public void setName(String n) { name = n; }

public String getLicenseNumber() { return licenseNumber; }

public void setLicenseNumber(String l) { licenseNumber = l; }

public Collection getCars() { return cars; }

public void add(Car car) { cars.add(car); }

public void remove(Car car) { cars.remove(car); }

public String toString() {

String s = "Person name: " + name + " licenseNumber: " +

licenseNumber;

if (cars.size() > 0) {

s += " cars:";

Iterator c = cars.iterator();

while (c.hasNext())

s += " " + ((Car) c.next()).getVIN();

}

return s;

}

}

Source Code 7.4 The Person class.

212 Chapter 7

// The makeExample() method in the CRAFactory class.

// Make the example objects using the classes in the cars package.

public ArrayList makeExample() {

Car c = new Car();

Option o = new Option();

Style s = new Style();

Person p = new Person();

c.setAvailable(false);

c.setVIN("v1");

c.add(p);

c.add(o);

c.setStyle(s);

o.setName("air conditioning");

o.setCar(c);

s.setMake("Jalopy");

s.setModel("Deluxe");

s.setYear(2002);

s.add(c);

p.setLicenseNumber("ln1");

p.setName("Anita Karr");

p.add(c);

// The Option object does not need to be added to the ArrayList

// of returned objects, since it is already contained in the Car

// object.

ArrayList l = new ArrayList();

l.add(c);

l.add(s);

l.add(p);

return l;

}

Source Code 7.5 The makeExample() method in the CRAFactory class.

<p2:ArrayList xmi:id="_1.3" items="_1.3.1"/>

<p1:Option xmi:id="_1.3.1" car="_1">

<name>air conditioning</name>

</p1:Option>

<p2:ArrayList xmi:id="_2.1" items="_1"/>

<p2:ArrayList xmi:id="_3.1" items="_1"/>

</xmi:XMI>

As you can see, you do not need to be an XMI expert to use JOB to create an
XMI document.

If you examine the previous output, you will notice that it is different than
the XMI document we saw in the last chapter. The document from the last
chapter, DOMWrite.xmi, is as follows:

<?xml version="1.0" encoding="UTF-8"?>

<xmi:XMI xmi:version="2.0" xmlns:xmi="http://www.omg.org/XMI">

<xmi:Documentation>

<exporter>XMI DOM Serialize Example</exporter>

<exporterVersion>0.5</exporterVersion>

</xmi:Documentation>

<Car available="false" driver="_3" style="_2" vin="v1"

xmi:id="_1">

<option car="_1" name="air conditioning" xmi:id="_1.1"/>

</Car>

<Style car="_1" make="Jalopy" model="Deluxe" xmi:id="_2"

year="2002"/>

<Person car="_1" licenseNumber="ln1" name="Anita Karr"

xmi:id="_3"/>

</xmi:XMI>

Creating and Reading Simple XMI Documents with the XMI Framework 213

// JOBWrite.java

import com.ibm.xmi.job.Job;

import java.util.ArrayList;

// Use the CRAFactory to make the example objects to save, then

// write them to an XMI document called job.xmi.

public class JOBWrite {

public static void main(String[] args) throws Exception {

CRAFactory factory = new CRAFactory();

ArrayList objects = factory.makeExample();

Job.writeObjects(objects, "job.xmi");

}

}

Source Code 7.6 The JOBWrite program.

Notice that the exporter and exporterVersion are different, reflecting the pro-
grams that created each file. There are differences in the representation of the
objects as well.

The reason for the differences in the two files is that the document from the
last chapter was created by following the XMI serialization rules based on
knowledge of the car rental agency model. JOB does not know about the car
rental agency model. It obtains the information it needs to serialize objects
using Java reflection. The file created by JOB is based on the Java classes that
implement the car rental agency model, not the car rental agency model itself.

Using the Java classes rather than the model results in different tag names
and attribute names in the XMI documents. For example, the XML element for
the Car object has a tag name of Car in DOMWrite.xmi, since the name of the
corresponding class in the model is Car. In job.xmi, the XML element has a tag
name of p1:Car, because JOB creates an XML namespace for each Java package
and uses the namespace prefix when it serializes instances of classes in the
package. In job.xmi, an XML attribute called cars is used in the elements for the
Style object and the Person object. In DOMWrite.xmi, those XML attributes are
called car. There is an association end named car in the model, so
DOMWrite.xmi uses that name in the corresponding XML attributes. JOB uses
the names of the Java fields in Style.java and Person.java that implement the
association ends; those fields are called cars.

The file job.xmi represents the Option object using an XML element called
p1:Option. The p1:Car XML element refers to this element through an XML ele-
ment representing a Java ArrayList. The value of the options attribute in the
p1:Car element, _1.3, matches the xmi:id of the second p2:ArrayList element in
the file. In turn, the value of the items attribute of that p2:ArrayList element,
_1.3.1, matches the xmi:id of the p1:Option element. If this is not clear, you may
want to take a minute to study the job.xmi file and trace this example through
to see how it is done.

Unlike the job.xmi file, the file DOMWrite.xmi represents the Option object as
an XML element called option that is inside the Car XML element. The reason
for this difference is that an object attribute in Unified Modeling Language
(UML), an attribute with a class as its type, has composition semantics, so the
program that wrote DOMWrite.xmi considered the Option object to be an object
value of the Car object. This means that the Option object has a composition
relationship with the Car object. However, Java fields do not have composition
semantics. As a result, JOB treats the values of Java fields that are objects as ref-
erences (references are instances of association ends that do not have composi-
tion semantics). Finally, notice that job.xmi includes all the ArrayList objects
that are values of the Java fields of type ArrayList in the Java classes. Since
these objects are part of the implementation of the model rather than the
model itself, the DOMWrite.xmi file does not include these objects.

214 Chapter 7

If you run JOBWrite at the command prompt, you will notice that in addi-
tion to writing the file job.xmi, the following output appears in the command
prompt window:

--> 8 objects saved into job.xmi

This indicates that eight objects (the four from the car rental agency model
plus the four ArrayList objects) were saved into job.xmi.

Reading an XMI Document
How difficult is it to use JOB to read an XMI document and get the objects from
it? Source Code 7.7 shows that this is also very simple.

The output of JOBRead indicates that the objects were correctly restored.
Here is the output:

Car vin: v1 available: false make: Jalopy model: Deluxe year: 2002

Options:

air conditioning

Drivers:

Anita Karr

Style make: Jalopy model: Deluxe year: 2002 cars: v1

Person name: Anita Karr licenseNumber: ln1 cars: v1

Creating and Reading Simple XMI Documents with the XMI Framework 215

// JOBRead.java

import com.ibm.xmi.job.Job;

import java.util.Collection;

import java.util.Iterator;

// This class reads the job.xmi document and prints the objects so we

// can tell if they were restored correctly.

public class JOBRead {

public static void main(String[] args) throws Exception {

Collection objects = Job.readObjects("job.xmi");

Iterator objs = objects.iterator();

while (objs.hasNext()) {

System.out.println(objs.next());

}

}

}

Source Code 7.7 The JOBRead program.

If you run JOBRead at the command prompt, you will notice that in addition
to the output shown previously, the following output appears in the command
prompt window:

--> 8 objects loaded from job.xmi

JOB reports that eight objects were loaded from the job.xmi file. This
includes the three top-level objects that were written by JOBWrite, the Option
object, and the four ArrayList objects discussed previously that implement the
object values and references in the objects (the style reference in the Car object
was not implemented as an ArrayList since its multiplicity is 1).

We do not think it is possible for an interface to be simpler than the JOB
interface for creating and reading XMI documents. Another advantage of
using JOB is that it works for any Java object, as long as the Java SecurityMan-
ager enables Java reflection to get the private and protected fields of that Java
object. JOB also demonstrates that it is feasible to use XMI for Java object seri-
alization. Finally, JOB works by using the XMI Framework, the subject of the
next section. The source code for JOB is included on the accompanying
CD-ROM, so you will be able to examine it to learn how JOB works with the
XMI Framework to serialize and deserialize Java objects. You should read the
next section before looking at the code, since it explains Framework concepts
you need to know to understand how JOB works.

Using the XMI Framework

Just like JOB, the XMI Framework provides interfaces that enable you to work
with XMI documents. The Framework is more complicated than JOB though,
because it provides more sophisticated capabilities. The Framework enables
you to tailor the XMI documents you create by providing a class, XMIFile, that
enables you to easily set information that goes in xmi:Documentation,
xmi:Model, and xmi:MetaModel elements. When you use the Framework to read
an XMI document, you can easily get information from those elements. The
Framework also lets you work with XMI extensions and make XMI schemas,
as we explain in Chapters 8 and 9, respectively.

The purpose of the XMI Framework is to help you learn about XMI and
begin to use XMI without being an XMI expert. As you learn more about XMI,
you can use the more sophisticated capabilities of the Framework. In this sec-
tion, we introduce what you need to know to use the Framework as we take
you through some sample programs. We first present two programs that use
the Framework to create an XMI document for the car rental agency applica-
tion. After that, we’ll look at three programs that use the Framework to read
the document.

216 Chapter 7

We do not provide a comprehensive description of the Framework’s capa-
bilities in this chapter or the next several chapters. We explain the parts of the
Framework we use, rather than describing all the parts of the Framework. You
may want to consult the Framework documentation for more details about the
Framework itself, or Appendix A, which contains detailed information on the
Framework’s capabilities.

Creating an XMI Document
There are two ways to use the Framework to create an XMI document. The
first, and easier, way is to use the Framework’s object model to represent your
data and then create the document using the XMIFile class. The second way
involves implementing a writer adapter so that the Framework can write
instances of your own Java classes to an XMI document. To use this approach,
you need to register the writer adapter you implement with the Framework
and then give the XMIFile class the instances of your classes to write. The first
two programs we will look at demonstrate both of these ways of creating an
XMI document using the Framework.

Using the Framework Object Model

The Framework object model provides a generic representation of objects,
their attribute values, and their references.2 The model is simpler than the
Meta Object Facility (MOF), the OMG data representation standard on which
XMI is based. However, it can also hold information about objects from an
XMI document. For example, each object in the object model has an id, uuid,
and label, the three pieces of information that enable you to specify an object’s
identity using XMI. We will first explain the parts of the Framework object
model that you need to know to represent the car rental agency objects; other
parts of the object model will be introduced as we go along.

A UML object is represented in the Framework object model by the XMIOb-
ject interface. Every XMIObject has an XMI name, which is the tag name for the
XML element that represents the object in an XMI document. As mentioned
before, each Framework object also has an id, uuid, and label, which identify the
object in XMI documents.

The Value interface is used for an object’s values. These values are either
attribute values or references. The AttributeValue interface in the Framework
lets you work with attribute values. Each AttributeValue object consists of the
XMI name for the attribute, one or more values, and the type (the kind of
Framework value). Each AttributeValue object represents either the single
value of an attribute in an object, or it represents multiple values for an
attribute in an object.3

Creating and Reading Simple XMI Documents with the XMI Framework 217

The Reference interface in the Framework lets you work with references. A
Reference object has an XMI name, one or more values, and a type (the kind of
Framework value). Each value is an XMIObject that has a relationship with the
XMIObject that has the Reference. The relationship is not a composition rela-
tionship. Each Reference object represents all the instances of a given associa-
tion end in an object.

The XMIObject, AttributeValue, and Reference interfaces all inherit from the
Data interface. The Data interface represents everything that each part of the
object model has in common. For example, each part of the object model has an
XMI name, so the methods to get and set it are provided by the Data interface.
Figure 7.1 illustrates how the Data, XMIObject, Value, AttributeValue, and Refer-
ence interfaces are related.

The concepts from the Framework object model map to the UML object
model. A Framework object corresponds to a UML object, an AttributeValue of a
Framework object corresponds to one or more UML attribute values, and a Ref-
erence of a Framework object corresponds to one or more instances of a UML
association end. Note that if a UML object has several values for the same
attribute, a single Framework AttributeValue represents all those attribute val-
ues. Similarly, a single Framework Reference corresponds to all instances of a
particular association end in an object. The Framework was designed to include
the concepts in UML and MOF that are required for XMI so that you can easily
create XMI documents without being an expert in either UML or MOF.

As we mentioned earlier, the AttributeValue interface is used for an object’s
attribute values. There are three kinds of AttributeValues in the Framework, but
we only use two of them in this book. The DataValue interface represents one
or more data values in an object. A data value is the value of a data attribute, a
UML attribute with a type that is a UML datatype. The DataValue interface
uses a Java String to hold the value of a primitive type like a Java int or a float.
The ObjectValue interface represents one or more object values in an object. An
object value is the value of an object attribute, a UML attribute with a class as
its type. Each object value is an XMIObject. Also, each object value has a com-
position relationship with the object that has the value. Figure 7.2 shows the
relationship between the AttributeValue, DataValue, and ObjectValue interfaces.

Table 7.1 summarizes the representation of attribute values and references
in the Framework as well as the terminology that we will use to refer to them.

The Framework provides default implementations of the interfaces in the
Framework object model. The name of an interface’s corresponding imple-
mentation class is the name of the interface with the suffix Impl. For example,
the default implementation of the XMIObject interface is XMIObjectImpl. We
make instances of the implementation classes to represent objects, their
attribute values, and their references using the Framework object model.

There are more parts to the Framework object model, but we know enough
already to represent the car rental agency objects using the object model. Each

218 Chapter 7

of the objects is represented in the Framework by an XMIObject. The Frame-
work objects have attribute values and references.

Looking first at just the attribute values of the objects we want to create, we
see that there is one object value and the rest of the attribute values are data
values. The Option object is an object value for the option attribute in the Car
object. All the other values are data values, because the types of the other UML
attributes in the car rental agency model are the UML datatypes String,
Boolean, and Integer.

Creating and Reading Simple XMI Documents with the XMI Framework 219

«interface»
Data

«interface»
XMIObject

«interface»
Value

«interface»
LinkEnd

«interface»
AttributeValue

1
*

«interface»
Reference

Figure 7.1 The XMIObject and related interfaces.

Now looking at the references, we see that each object has at least one refer-
ence. The Style, Person, and Option objects each have a car reference. The Car
object has two references, style and driver.

We add a method to the CRAFactory class, makeFOMExample(), to create the
Framework object model representation of our car rental agency objects. Then
we can reuse that method in later examples. As you read through make-
FOMExample(), notice that the method to add an attribute value to an object,
addXMIValue(), lets you specify:

■■ The XMI name of the attribute value or reference

■■ The value of the attribute value or reference

■■ The kind of Value it is in the Framework (such as Value.DATA or
Value.REFERENCE)

Each attribute value or reference is then added to the Framework object that
the addXMIValue() method is invoked on. For example, to represent the
attribute value for the name attribute of the Person object, a data value is cre-
ated; its XMI name is name and its value is Anita Karr. We indicate that this

220 Chapter 7

«interface»
AttributeValue

«interface»
DataValue

«interface»
ObjectValue

Figure 7.2 Kinds of AttributeValues.

Table 7.1 Framework Values

INTERFACE VALUE’S TYPE EXAMPLES OF VALUES ALSO CALLED

DataValue A datatype 5, 3.141, Hello A data value

ObjectValue A class An Option instance An object value

Reference A class The style reference in A reference
a Car object

attribute value is a data value by specifying Value.DATA as the third parame-
ter to the addXMIValue() method. The method invocation to do this appears as
follows:

person.addXMIValue("name","Anita Karr",Value.DATA);

This adds a data value to the XMIObject representing an instance of the Per-
son class. Table 7.2 summarizes how the behavior of the addXMIValue() method
varies with the different values that can be used for the third parameter.

Since the makeFOMExample() method uses classes in the Framework, we add
the following import statement to the top of the CRAFactory.java file:

import com.ibm.xmi.framework.*;

The makeFOMExample() method is displayed in Source Code 7.8.
Now we can use the XMIFile class in the Framework to write the objects to

an XMI document. By default, an XMIFile is for an XMI 2.0 document. We will
use the write() method of the XMIFile class to create the XMI document. This
method takes an iterator for the collection of objects to write to the XMI docu-
ment and a writing option. For our purposes, we can use XMIFile.DEFAULT as
the option. See the Framework documentation for a description of the other
options if you are interested. The program is displayed in Source Code 7.9.

This program produces the following XMI file. It is basically the same as the
DOMWrite.xmi file we saw in Chapter 6 except for a few minor differences.
First, the exporter and exporterVersion elements reflect that the Framework cre-
ated the document. Second, the order of the XML attributes differs, but in XML
the attribute order does not matter, so this difference does not change the
meaning of the file. Finally, in this output the option element includes an
xmi:type attribute. The reason that this is included is because the Framework
does not know the car rental agency model, so it serializes object values with
an xmi:type attribute to indicate the actual type of the object. We will see how
to relate an XMIObject and its values to parts of models that define them later
in this chapter. As before, we have split lines that are too long for the page
width into two lines.

Creating and Reading Simple XMI Documents with the XMI Framework 221

Table 7.2 addXMIValue() Behavior

THIRD PARAMETER CORRESPONDING FRAMEWORK INTERFACE

Value.DATA DataValue

Value.OBJECT ObjectValue

Value.REFERENCE Reference

222 Chapter 7

// The makeFOMExample() method in the CRAFactory class.

// Make the Framework object model representation of the car rental

// agency objects to write to an XMI document.

public ArrayList makeFOMExample() {

XMIObject car = new XMIObjectImpl("Car");

XMIObject option = new XMIObjectImpl("Option");

XMIObject style = new XMIObjectImpl("Style");

XMIObject person = new XMIObjectImpl("Person");

// Set the values for the Car object.

car.addXMIValue("available", "false", Value.DATA);

car.addXMIValue("vin", "v1", Value.DATA);

car.addXMIValue("driver", person, Value.REFERENCE);

car.addXMIValue("style", style, Value.REFERENCE);

car.addXMIValue("option", option, Value.OBJECT);

// Set the values for the Option object.

option.addXMIValue("name", "air conditioning", Value.DATA);

option.addXMIValue("car", car, Value.REFERENCE);

// Set the values for the Style object.

style.addXMIValue("make", "Jalopy", Value.DATA);

style.addXMIValue("model", "Deluxe", Value.DATA);

style.addXMIValue("year", "2002", Value.DATA);

style.addXMIValue("car", car, Value.REFERENCE);

// Set the values for the Person object.

person.addXMIValue("licenseNumber", "ln1", Value.DATA);

person.addXMIValue("name", "Anita Karr", Value.DATA);

person.addXMIValue("car", car, Value.REFERENCE);

ArrayList xmiObjects = new ArrayList();

xmiObjects.add(car);

xmiObjects.add(style);

xmiObjects.add(person);

return xmiObjects;

}

Source Code 7.8 The makeFOMExample() method in the CRAFactory class.

<?xml version="1.0" encoding="UTF-8"?>

<xmi:XMI xmi:version="2.0" xmlns:xmi="http://www.omg.org/XMI">

<xmi:Documentation>

<exporter>XMI Framework</exporter>

<exporterVersion>1.2</exporterVersion>

</xmi:Documentation>

<Car xmi:id="_1" available="false" vin="v1" driver="_3"

style="_2">

<option xmi:id="_1.1" xmi:type="Option" name="air conditioning"

car="_1"/>

</Car>

<Style xmi:id="_2" make="Jalopy" model="Deluxe" year="2002"

car="_1"/>

<Person xmi:id="_3" licenseNumber="ln1" name="Anita Karr"

car="_1"/>

</xmi:XMI>

Using Your Own Java Classes

To use the Framework object model, you need to copy all your data to
instances of Framework classes. If you have a lot of data, the memory require-
ments may be too much for your application. Alternatively, you can use the
Framework to write instances of your Java classes to an XMI document by
implementing an object writer adapter. Then you can pass an iterator for a col-
lection of your objects to the write() method of the XMIFile class, rather than
passing an iterator for a collection of Framework XMIObjects. Figure 7.3 shows
the relationship among the writer adapter, the Framework, and your objects.

NOTE IBM’s WebSphere Studio Application Developer, included on the CD-
ROM, uses an advanced XMI reader and writer based on the principles
described in this chapter.

Creating and Reading Simple XMI Documents with the XMI Framework 223

// FrameWrite.java

import com.ibm.xmi.framework.XMIFile;

import java.util.ArrayList;

// Use the CRAFactory class to make the Framework object model

// representation of the car rental agency objects, then write them

// to an XMI document using the XMIFile class in the XMI Framework.

public class FrameWrite {

public static void main(String[] args) throws Exception {

CRAFactory factory = new CRAFactory();

ArrayList xmiObjects = factory.makeFOMExample();

XMIFile file = new XMIFile("frame1.xmi");

file.write(xmiObjects.iterator(), XMIFile.DEFAULT);

}

}

Source Code 7.9 The FrameWrite program writing XMIObjects in an XMI document.

The Framework invokes methods in the ObjectWriterAdapter interface to get
the data it needs for each object as it writes an XMI document. There are many
methods in that interface, but each method is relatively simple. To help focus on
the methods we need to implement for this application, we provide a Default-
ObjectWriterAdapter class in the Framework that implements many of the
methods of the ObjectWriterAdapter interface. Each method of the DefaultObject-
WriterAdapter for which there is an implementation returns either null or an
empty collection, as appropriate, or has no return value. The methods for which
you need to provide an implementation in your object writer adapter have been
declared abstract. Since the adapter that we implement to handle the car rental
agency application inherits from the DefaultObjectWriterAdapter, we can ignore
the methods that we don’t need to implement. The DefaultObjectWriterAdapter
is similar in principle to the DefaultHandler in SAX, which we used in the SAX
section of Chapter 6 to simplify the SAX handlers we implemented.

What information does the Framework need for the car rental agency
objects to write them to an XMI document? For each object, it needs to deter-
mine the tag name of the XML element that will represent the object in the XMI
file it writes. It uses the getXMIName() method with the object as a parameter
to get the tag name to use for that object. It also needs the XMI id (to use as the
value of the xmi:id XML attribute) for the object. It invokes the getId() method
with the object as a parameter of the method. If that method returns null, the
Framework creates an id for the object and calls the setId() method to inform
the adapter of the new id. The Framework expects the id it creates to be
returned in subsequent calls of the getId() method.

Once the Framework knows the tag name for the object and its XMI id, it
needs to know the attribute values and references for the object. It invokes the
getValues() method to obtain this data. The object being queried is a parameter
for this method. The method returns a collection of objects, and each object in
the collection represents either an attribute value or a reference. The Frame-
work then uses those objects as parameters to the getXMIName(), getType(), get-

224 Chapter 7

Object Writer
Adapter

XMI Framework

Java Objects

Figure 7.3 Using an object writer adapter with the Framework.

Value(), and getOwner() methods to get the information about each attribute
value or reference so it can write it to the XMI document. The getType() method
returns one of the Framework constants for the kind of the attribute value or
reference. For the car rental agency objects, the method returns Value.DATA,
Value.OBJECT, or Value.REFERENCE. The getValue() method returns the value
for the attribute or reference.

The DefaultObjectWriterAdapter already provides implementations for the
getId() and setId() methods that utilize a HashMap. It puts the ids and objects in
the HashMap in the setId() method. The getId() method gets the id from the
HashMap. The first time the Framework invokes that method for an object, it
will return null, so the Framework makes an XMI id for the object and calls the
setId() method. Later, when the Framework calls getId() again, the object and id
are in the HashMap.

There are six abstract methods in the DefaultObjectWriterAdapter that we will
need to implement in our adapter. Although the getNamespace() method
requires an implementation, because we are not using namespaces, we can
simply return null in the method body. The remaining methods in the Default-
ObjectWriterAdapter that we need to provide implementations for are the fol-
lowing:

■■ getOwner()

■■ getType()

■■ getXMIName()

■■ getValue()

■■ getValues()

To implement these, it is useful to create a class that holds the relevant infor-
mation about each value of a Framework object in our application. As
described previously, this information is the name, type, value, and owner. We
name this class ValueWriteData, since it contains the information the Frame-
work needs to write a value of an object. In the getValues() method of the writer
adapter, we create instances of this class and return them. When the Frame-
work invokes a method with a ValueWriteData object as a parameter, we will
easily be able to get the information the Framework needs for the correspond-
ing attribute value or reference. Source Code 7.10 contains the ValueWriteData
class.

Source Code 7.11 contains the code for the car rental agency object writer
adapter, which shows how we utilize instances of the ValueWriteData class.

How do we get the Framework to use our writer adapter rather than the one
it would normally use? We implement a Framework adapter factory that returns
an instance of our writer adapter, and then we register one of our adapter

Creating and Reading Simple XMI Documents with the XMI Framework 225

factories with the Framework before writing an XMIFile. The adapter factory
that makes our writer adapter is displayed in Source Code 7.12.

Now we can implement the program that will use the Framework to write
instances of the classes in the cars package to an XMI document. We use the
makeExample() method of the CRAFactory to make the instances to write. The
program is displayed in Source Code 7.13.

FrameWrite2 creates the following XMI document, which is identical to the
previous XMI document we created with the Framework, except for the order

226 Chapter 7

// ValueWriteData.java

// This class holds the information the Framework needs to write

// an object's value to an XMI file. We use one of the following

// Framework constants to identify the kind of Value for the car

// rental agency example (the constant is used in the getType()

// and setType() methods):

//

// Value.DATA

// Value.OBJECT

// Value.REFERENCE

//

public class ValueWriteData {

private String xmiName;

private Object value;

private int type;

private Object owner;

ValueWriteData(String name, Object value, int type, Object owner) {

xmiName = name;

this.value = value;

this.type = type;

this.owner = owner;

}

String getName() { return xmiName; }

Object getValue() { return value; }

Object getOwner() { return owner; }

int getType() { return type; }

void setName (String name) { xmiName = name; }

void setValue(Object value) { this.value = value; }

void setOwner(Object owner) { this.owner = owner; }

void setType (int type) { this.type = type; }

}

Source Code 7.10 The ValueWriteData class.

Creating and Reading Simple XMI Documents with the XMI Framework 227

// CRAObjectWriterAdapter.java

import com.ibm.xmi.framework.*;

import java.util.*;

import cars.*;

public class CRAObjectWriterAdapter extends DefaultObjectWriterAdapter

{

public Namespace getNamespace(Object data) {

return null;

}

public Object getOwner(Object data) {

// getOwner() is declared abstract in the DefaultObjectWriterAdapter,

// so you must provide an implementation when you subclass it.

// However, for XMI 2.0, you could simply have this method return null.

// Since the Framework is compatible with XMI 1.0 and XMI 1.1, we

// include a complete implementation here.

if (data instanceof ValueWriteData)

return ((ValueWriteData) data).getOwner();

else

return null;

}

public int getType(Object data) {

if (data instanceof ValueWriteData)

return ((ValueWriteData) data).getType();

else

return -1;

}

public String getXMIName(Object data) {

if (data instanceof ValueWriteData)

return ((ValueWriteData) data).getName();

else if (data instanceof Car)

return "Car";

else if (data instanceof Style)

return "Style";

else if (data instanceof Person)

return "Person";

else if (data instanceof Option)

return "Option";

else

return null;

}

public Object getValue(Object value) {

return ((ValueWriteData) value).getValue();

Source Code 7.11 The CRAObjectWriterAdapter class.

228 Chapter 7

}

public Collection getValues(Object object) {

ArrayList values = new ArrayList();

if (object instanceof Car) {

values.add(new ValueWriteData("vin",

((Car) object).getVIN(),

Value.DATA, object));

values.add(new ValueWriteData("available",

"" + ((Car) object).isAvailable(),

Value.DATA, object));

values.add(new ValueWriteData("driver",

((Car) object).getDrivers(),

Value.REFERENCE, object));

values.add(new ValueWriteData("style",

((Car) object).getStyle(),

Value.REFERENCE, object));

values.add(new ValueWriteData("option",

((Car) object).getOptions(),

Value.OBJECT, object));

}

if (object instanceof Style) {

values.add(new ValueWriteData("make",

((Style) object).getMake(),

Value.DATA, object));

values.add(new ValueWriteData("model",

((Style) object).getModel(),

Value.DATA, object));

values.add(new ValueWriteData("year", "" +

((Style) object).getYear(),

Value.DATA, object));

values.add(new ValueWriteData("car",

((Style) object).getCars(),

Value.REFERENCE, object));

}

if (object instanceof Option) {

values.add(new ValueWriteData("name",

((Option) object).getName(),

Value.DATA, object));

values.add(new ValueWriteData("car",

((Option) object).getCar(),

Value.REFERENCE, object));

}

if (object instanceof Person) {

Source Code 7.11 The CRAObjectWriterAdapter class. (Continued)

Creating and Reading Simple XMI Documents with the XMI Framework 229

values.add(new ValueWriteData("name",

((Person) object).getName(),

Value.DATA, object));

values.add(new ValueWriteData("licenseNumber",

((Person) object).getLicenseNumber(),

Value.DATA, object));

values.add(new ValueWriteData("car",

((Person) object).getCars(),

Value.REFERENCE, object));

}

return values;

}

}

Source Code 7.11 The CRAObjectWriterAdapter class. (Continued)

// CRAAdapterFactory.java

import com.ibm.xmi.framework.*;

// This class is the adapter factory for the car rental

// agency problem domain.

public class CRAAdapterFactory extends AdapterFactory {

// Return the CRAObjectWriterAdapter. This method is called

// automatically by the Framework.

public ObjectWriterAdapter createObjectWriterAdapter() {

return new CRAObjectWriterAdapter();

}

}

Source Code 7.12 The CRAAdapterFactory class.

of the XML attributes. As before, we have split lines that are too wide for the
width of this page:

<?xml version="1.0" encoding="UTF-8"?>

<xmi:XMI xmi:version="2.0" xmlns:xmi="http://www.omg.org/XMI">

<xmi:Documentation>

<exporter>XMI Framework</exporter>

<exporterVersion>1.2</exporterVersion>

</xmi:Documentation>

<Car xmi:id="_1" vin="v1" available="false" driver="_3"

style="_2">

<option xmi:id="_1.1" xmi:type="Option" name="air conditioning"

car="_1"/>

</Car>

<Style xmi:id="_2" make="Jalopy" model="Deluxe" year="2002"

car="_1"/>

<Person xmi:id="_3" name="Anita Karr" licenseNumber="ln1"

car="_1"/>

</xmi:XMI>

Reading an XMI Document
Now that you know two ways of saving the car rental agency objects in an
XMI file using the Framework, you are probably wondering how to read the
XMI documents we created with the Framework. There are several ways to do
this. We start with the easiest way. There is a load() method in the XMIFile class
we can use that takes the following three parameters:

■■ The name of an XMI document

■■ A load option (which is always XMIFile.DEFAULT for our purposes)

■■ A boolean flag that indicates whether to use XML validation when pars-
ing the XMI document

In this chapter and the next one, we do not validate the documents, so we
will set the validation flag to false. (We discuss validation in Chapter 9.) The
load() method returns an XMIFile. You can get the objects that the Framework

230 Chapter 7

// FrameWrite2.java

import com.ibm.xmi.framework.*;

import java.util.ArrayList;

import java.util.Iterator;

// Use the CRAFactory to make the instances of the cars package to

// write, register the CRAAdapterFactory with the Framework, and then

// write the objects using an XMIFile.

public class FrameWrite2 {

public static void main(String[] args) throws Exception {

CRAFactory factory = new CRAFactory();

ArrayList objects = factory.makeExample();

AdapterFactoryRegister.registerAdapterFactory(

new CRAAdapterFactory());

XMIFile file = new XMIFile("frame2.xmi");

file.write(objects.iterator(), XMIFile.DEFAULT);

}

}

Source Code 7.13 The FrameWrite2 program.

made as it read the XMI document from the XMIFile. Unless you implement a
reader adapter, as explained later in this chapter, the Framework makes XMIOb-
jects with AttributeValues from the Framework object model when it loads an
XMI document.

The Framework enables you to put XMIObjects in an XMIContainer. The
XMIContainer class implements the toString() method so that all the objects
directly in the XMIContainer and contained in those objects can be printed. We
can use that method to print the XMIObjects that the Framework makes when
parsing an XMI document. Source Code 7.14 displays a program that uses the
Framework to parse an XMI document, puts the XMIObjects made by the
Framework in an XMIContainer, and finally prints them.

If you run this program and specify the name of either of the XMI docu-
ments created by the FrameWrite or FrameWrite2 programs, the output shows
each XMIObject that the Framework creates when parsing the XMI document.
The output from this program is formatted somewhat differently than what
we have seen before. Information about each XMIObject, along with its Values,
appears between dashed lines. The first line of each entry starts with Object:,
followed by the XMI name of the object, then by id:, and finally the value of the
xmi:id for the object. Under Values: are listed the Framework values that belong
to the object. The name of each Value is followed by a keyword enclosed
between the � and � symbols that specifies its type, such as �DATA�. The
value (or values) for each Value object appears last. Table 7.3 summarizes the
meanings of the type specifiers you will see in the output included in this
book.

Creating and Reading Simple XMI Documents with the XMI Framework 231

// FrameRead.java

import com.ibm.xmi.framework.XMIFile;

import com.ibm.xmi.framework.XMIContainer;

// This class parses an XMI document, and then puts the XMIObjects the

// Framework made into an XMIContainer so they can be printed.

public class FrameRead {

public static void main(String[] args) throws Exception {

if (args.length != 1) {

System.out.println("Enter the name of an XMI document.");

return;

}

XMIFile file = XMIFile.load(args[0], XMIFile.DEFAULT, false);

XMIContainer c = new XMIContainer(file.getObjects().iterator());

System.out.println(c);

}

}

Source Code 7.14 The FrameRead program.

Here is the output of running FrameRead on the frame1.xmi file with the irrel-
evant parts of the output omitted:

Object: Car id: _1

Values:

available <DATA> 'false'

vin <DATA> 'v1'

driver <DATA> '_3'

style <DATA> '_2'

option <OBJ> [XMIObject Option _1.1]

End object: Car

Object: Option id: _1.1

Values:

name <DATA> 'air conditioning'

car <DATA> '_1'

End object: Option

Object: Style id: _2

Values:

make <DATA> 'Jalopy'

model <DATA> 'Deluxe'

year <DATA> '2002'

car <DATA> '_1'

End object: Style

Object: Person id: _3

Values:

licenseNumber <DATA> 'ln1'

name <DATA> 'Anita Karr'

car <DATA> '_1'

End object: Person

If you compare the XMIObjects that the Framework created with the XMIOb-
jects that were saved in the FrameWrite program, you may notice that they are
not the same. For example, the original Car XMIObject had a reference called
driver, but the restored Car XMIObject has a data value (indicated by �DATA�

232 Chapter 7

Table 7.3 FrameRead Output Key

TYPE SPECIFIER MEANING

<DATA> Data value

<OBJ> Object value

<REF> Reference

next to the value’s name) called driver. What is going on? It turns out that in
XMI 2.0 data values and references are written as XML attributes. It is not pos-
sible to distinguish them with the syntax of an XMI 2.0 document without
being aware of the model that the data corresponds to. Therefore, in this case
the Framework assumes that XML attributes represent data values. As we shall
see, by providing the Framework with information about the model for the
data in an XMI file, the Framework has the capability to correctly distinguish
different types of data, even when they have a similar format in an XMI file.

Notice that no information was lost when reading the XMI document; it was
just not interpreted in terms of the car rental agency model. For example, the
original driver reference that had the Person object as its value was not lost; it
was restored as a data value set to _3, the XMI id of the Person object. In fact, if
you create another XMI document by writing the restored XMIObjects that
have only data values and object values, that document would be equivalent
to the original document.

To correctly restore the references, the Framework needs to know the car
rental agency model since that model defines the objects in the XMI docu-
ment. Not surprisingly, there is a Model class in the Framework that repre-
sents models. A model consists of packages and classes. A package is
represented in the Framework by the Package interface, and a class is repre-
sented by the XMIClass interface. The XMIClass interface inherits from the
Classifier interface, as does the Datatype interface. A package contains either
packages or classes, and a class has features, which include attributes and
association ends. As you might expect, a feature is represented in the Frame-
work with the Feature interface, an attribute is represented with the Attribute
interface, and an association end is represented with the AssociationEnd inter-
face. Figure 7.4 shows the relationships among these interfaces as well as the
ones we saw before when we looked at the XMIObject interface. For com-
pleteness, the entire Framework object model is included, although we do not
use all of it in this book.

The difference between an XMIClass and an XMIObject is that the attributes
and association ends of an XMIClass define the legal Framework Values for an
XMIObject that is an instance of that XMIClass. Thus, the relationship between
an XMIClass and an XMIObject is similar to that between a class and an object
in Java.

To represent the car rental agency model in the Framework, we need to
make an XMIClass for each UML class in the model and then add features to
each XMIClass. After we have created an XMIClass for each class in our
model, we add the XMIClass objects to a Model instance. Source Code 7.15 dis-
plays the CRAModel program that creates the car rental agency model.
Although we use the Feature interface throughout, we could have used the
Attribute and AssociationEnd interfaces as well to create the features for a
given XMIClass.

Creating and Reading Simple XMI Documents with the XMI Framework 233

234 Chapter 7

1

*

«interface»
Data

«interface»
XMIObject

«interface»
Value

«interface»
AttributeValue

«interface»
LinkEnd

«interface»
DataValue

«interface»
ObjectValue

«interface»
EnumValue

«interface»
Reference

«interface»
Container

«interface»
Contained

«interface»
Package

«interface»
Classifier

«interface»
XMIClass

«interface»
Feature

«interface»
Attribute

«interface»
AssociationEnd

«interface»
Enum

«interface»
Datatype

1

*

Figure 7.4 Framework object model.

// CRAModel.java

import com.ibm.xmi.framework.*;

import java.util.*;

// This class creates an XMI Framework model for the car rental agency

// problem domain. This model can be added to a workspace so the

// Framework will correctly restore XMI objects from an XMI document.

public class CRAModel {

public static Model makeCRAModel() throws Exception {

Source Code 7.15 The CRAModel program.

Creating and Reading Simple XMI Documents with the XMI Framework 235

ArrayList classes = new ArrayList();

XMIClass car = new XMIClassImpl("Car");

XMIClass style = new XMIClassImpl("Style");

XMIClass person = new XMIClassImpl("Person");

XMIClass option = new XMIClassImpl("Option");

classes.add(car);

classes.add(style);

classes.add(person);

classes.add(option);

// Car class

Feature vin = new FeatureImpl("vin");

vin.setXMIValueType(Value.DATA);

car.add(vin);

Feature available = new FeatureImpl("available");

available.setXMIValueType(Value.DATA);

car.add(available);

Feature carStyle = new FeatureImpl("style");

carStyle.setXMIValueType(Value.REFERENCE);

carStyle.setXMIType(style);

car.add(carStyle);

Feature driver = new FeatureImpl("driver");

driver.setXMIValueType(Value.REFERENCE);

driver.setXMIType(person);

car.add(driver);

Feature carOption = new FeatureImpl("option");

carOption.setXMIValueType(Value.OBJECT);

carOption.setXMIType(option);

car.add(carOption);

// Option class

Feature optionName = new FeatureImpl("name");

optionName.setXMIValueType(Value.DATA);

option.add(optionName);

Feature optionCar = new FeatureImpl("car");

optionCar.setXMIValueType(Value.REFERENCE);

optionCar.setXMIType(car);

option.add(optionCar);

// Style class

Feature make = new FeatureImpl("make");

make.setXMIValueType(Value.DATA);

Source Code 7.15 The CRAModel program. (Continued)

Note in the program that if we set the XMIValueType of a Feature to
Value.DATA we do not need to set an XMIType that is a Framework Datatype
for that Feature (although it is possible to do that). This makes it a little easier
to work with this kind of feature in the Framework. All the other kinds of fea-
tures have both their XMIValueType and XMIType set.

236 Chapter 7

style.add(make);

Feature model = new FeatureImpl("model");

model.setXMIValueType(Value.DATA);

style.add(model);

Feature year = new FeatureImpl("year");

year.setXMIValueType(Value.DATA);

style.add(year);

Feature styleCar = new FeatureImpl("car");

styleCar.setXMIValueType(Value.REFERENCE);

styleCar.setXMIType(car);

style.add(styleCar);

// Person class

Feature personName = new FeatureImpl("name");

personName.setXMIValueType(Value.DATA);

person.add(personName);

Feature licenseNumber = new FeatureImpl("licenseNumber");

licenseNumber.setXMIValueType(Value.DATA);

person.add(licenseNumber);

Feature personCar = new FeatureImpl("car");

personCar.setXMIValueType(Value.REFERENCE);

personCar.setXMIType(car);

person.add(personCar);

Model m = new Model("Car Rental Agency", classes.iterator());

return m;

}

// Print the model to determine if it is correct.

public static void main(String[] args) throws Exception {

Model m = makeCRAModel();

System.out.println(m);

}

}

Source Code 7.15 The CRAModel program. (Continued)

Just like the XMIContainer class, the Model class implements a toString()
method that lets you print the contents of the model it represents. You can run
the CRAModel program if you want to verify that the model was created
correctly. We explain the format of the output and the symbols that appear in
it immediately after the output of the CRAModel program itself:

Model:

name: Car Rental Agency version: null file: null

XMIClass Car

Features:

vin <DATA> owner: [XMIClass Car]

available <DATA> owner: [XMIClass Car]

style <REF> type: [XMIClass Style] owner: [XMIClass Car]

driver <REF> type: [XMIClass Person] owner: [XMIClass Car]

option <OBJ> type: [XMIClass Option] owner: [XMIClass Car]

XMIClass Style

Features:

make <DATA> owner: [XMIClass Style]

model <DATA> owner: [XMIClass Style]

year <DATA> owner: [XMIClass Style]

car <REF> type: [XMIClass Car] owner: [XMIClass Style]

XMIClass Person

Features:

name <DATA> owner: [XMIClass Person]

licenseNumber <DATA> owner: [XMIClass Person]

car <REF> type: [XMIClass Car] owner: [XMIClass Person]

XMIClass Option

Features:

name <DATA> owner: [XMIClass Option]

car <REF> type: [XMIClass Car] owner: [XMIClass Option]

The CRAModel program output includes information about each of the four
classes in the car rental agency model that we have represented in the Frame-
work with an XMIClass. Following the name of the class is a list of each Feature
that belongs to that class. For each Feature, the following information is
included:

■■ The name of the Feature

■■ The Framework Value type for the values of the Feature, such as
�DATA�

■■ The type for the Feature, if specified

■■ The owner of the Feature, which is the class the Feature belongs to

Table 7.4 explains the symbols used to show the Framework Value type for
the values of a Feature in the CRAModel program. It also shows how features in
an XMIClass map to values in an XMIObject.

Now that we know how to use the Framework to create the car rental
agency model, we need to make the model available to the Framework. By

Creating and Reading Simple XMI Documents with the XMI Framework 237

doing this, the Framework can use the model to determine whether a Frame-
work object’s Value is an AttributeValue or a Reference. We can do this using the
Workspace class. A Workspace is a set of models and files. It works with another
Framework class, XMIFiles, which represents a set of related XMI documents.
There are load() methods in the XMIFiles class that work the same way as the
load() methods in the XMIFile class. If you add an XMIFiles instance to a Work-
space and then call a load() method on the instance, the Framework can find
models that were added to the Workspace when it parses an XMI document.
The Framework matches the data in the XMI document with the model or
models in the Workspace. If it finds a match, the Framework makes the correct
type of values. For example, if an XML attribute name in the XMI document
matches a feature of a class in a model in the Workspace, and that feature’s XMI-
ValueType is Value.REFERENCE, the Framework makes a reference rather than
a data value in the corresponding XMIObject. Source Code 7.16 shows the
FrameRead2 program that loads an XMI document using a Workspace that con-
tains the car rental agency model.

When you run this program and specify the name of either of the XMI doc-
uments we created with the Framework, what you will see is similar to the
output shown here from a run of FrameRead2 using the frame1.xmi file
(irrelevant parts of the output have been omitted, and some minor formatting
has been done to accommodate the page width):

Object: Car id: _1

definer: XMIClass Car

Values:

available <DATA> 'false' definer: [available <DATA> owner:

[XMIClass Car]]

vin <DATA> 'v1' definer: [vin <DATA> owner: [XMIClass Car]]

driver <REF> [XMIObject Person _3] definer: [driver <REF> type:

[XMIClass Person] owner: [XMIClass Car]]

style <REF> [XMIObject Style _2] definer: [style <REF> type:

[XMIClass Style] owner: [XMIClass Car]]

option <OBJ> [XMIObject Option _1.1] definer: [option <OBJ> type:

[XMIClass Option] owner: [XMIClass Car]]

238 Chapter 7

Table 7.4 Output Symbols and Value Types

OUTPUT FEATURE VALUE VALUE IS
SYMBOL INTERFACE TYPE CALLED

<DATA> Attribute Value.DATA Data value

<OBJ> Attribute Value.OBJECT Object value

<REF> AssociationEnd Value.REFERENCE Reference

End object: Car

Object: Option id: _1.1

definer: XMIClass Option

Values:

name <DATA> 'air conditioning' definer: [name <DATA> owner:

[XMIClass Option]]

car <REF> [XMIObject Car _1] definer: [car <REF> type:

[XMIClass Car] owner: [XMIClass Option]]

End object: Option

Object: Style id: _2

definer: XMIClass Style

Values:

make <DATA> 'Jalopy' definer: [make <DATA> owner:

[XMIClass Style]]

model <DATA> 'Deluxe' definer: [model <DATA> owner:

[XMIClass Style]]

year <DATA> '2002' definer: [year <DATA> owner: [XMIClass Style]]

car <REF> [XMIObject Car _1] definer: [car <REF> type:

[XMIClass Car] owner: [XMIClass Style]]

Creating and Reading Simple XMI Documents with the XMI Framework 239

// FrameRead2.java

import com.ibm.xmi.framework.*;

// This class demonstrates that the Framework matches data in an XMI

// document with models that define the data when a Workspace is used.

// Using a Workspace enables the Framework to create the appropriate

// kind of attribute values and references for the XMIObjects that are

// restored.

public class FrameRead2 {

public static void main(String[] args) throws Exception {

if (args.length != 1) {

System.out.println("Enter the name of an XMI document.");

return;

}

Workspace w = new Workspace();

Model craModel = CRAModel.makeCRAModel();

w.add(craModel);

XMIFiles files = new XMIFiles();

w.add(files);

XMIFile file = files.load(args[0], XMIFile.DEFAULT, false);

XMIContainer c = new XMIContainer(file.getObjects().iterator());

System.out.println(c);

}

}

Source Code 7.16 The FrameRead2 program.

End object: Style

Object: Person id: _3

definer: XMIClass Person

Values:

licenseNumber <DATA> 'ln1' definer: [licenseNumber <DATA> owner:

[XMIClass Person]]

name <DATA> 'Anita Karr' definer: [name <DATA> owner:

[XMIClass Person]]

car <REF> [XMIObject Car _1] definer: [car <REF> type:

[XMIClass Car] owner: [XMIClass Person]]

End object: Person

As you can see, the attribute values and references of the Framework objects
are now correctly restored. To enable semantic checking of objects, the Frame-
work’s object model specifies a definer for objects and values. The definer of an
object is its class, and the definer of a value belonging to the object is the cor-
responding feature in the class. The previous output shows that when the
Framework loaded the frame1.xmi file, it was able to connect objects and their
values to their corresponding definers in the model we created. You can see
that each XMIObject has been matched to the XMIClass in the model that
defines its structure. Also, each attribute value has been matched with its cor-
responding attribute in the model, and each reference has been matched with
its corresponding association end in the model.

Now that you know how to get Framework objects from an XMI document,
you may want to know how to get instances of your own classes from an XMI
document. To do this for our example, we need to implement a reader adapter
and register it with the Framework. This is similar to when we implemented
an object writer adapter and registered it with the Framework to enable the
Framework to write instances of our classes to an XMI document, rather than
writing XMIObjects.

A Framework reader adapter is similar to a SAX content handler. The
Framework converts SAX events to object events. For example, rather than
calling a method each time the beginning of an XML element is encountered,
the Framework invokes a createObject() method when an XML element that
represents an object is encountered and a setValue() method when an object’s
value is encountered in an XMI document.

There is also a getType() method that the Framework invokes when encoun-
tering an XML attribute. The Framework expects one of the value types—
Value.DATA, Value.OBJECT, or Value.REFERENCE—to be returned. If the type
is Value.OBJECT or Value.REFERENCE, the Framework treats the value of the
XML attribute as an object; otherwise, it treats the value as a String. For exam-
ple, when the XML attribute driver that has a value of _3 is encountered in one
of the XMI documents we created with the Framework, if Value.DATA is

240 Chapter 7

returned as the type, the Framework invokes setValue() and sets the value to
_3. However, if Value.REFERENCE is returned as the type, the Framework
attempts to get the object with an XMI id of _3 and then invokes setValue(). The
value is then treated as a reference to an object rather than a String. How does
the Framework handle references to objects that it hasn’t seen yet? After pars-
ing the complete document, the Framework invokes the resolveValue() method
to set the values that could not be set previously because the values were for-
ward references to objects that appear later in the XMI document.

Now that we know the names and behaviors of the methods involved, let’s
look at the overall flow of things. The general flow of control proceeds as fol-
lows: The Framework begins parsing an XMI file. For each XML element that
represents an object, it invokes createObject(). For each value in the object, the
Framework first invokes the getType() method and then it invokes the set-
Value() method.

Before we show you the implementation of our reader adapter, we need to
explain the ObjectInfo class and the ValueInfo class. An ObjectInfo instance is
passed as a parameter when the Framework invokes the createObject() method.
An ObjectInfo instance contains the information you need to correctly create
one of your objects. An ObjectInfo contains the tag name of the XML element
representing the object; the object’s XMI id, uuid, and label; and other informa-
tion that we do not need for this application, such as the namespace, idref, and
href. A ValueInfo instance is passed as a parameter when the Framework
invokes the setValue() method and the getType() method. A ValueInfo instance
contains the information you need to correctly set a value for an object that you
have created in the createObject() method. A ValueInfo contains the object the
value belongs to, the name of the value, and the value itself. As explained pre-
viously, the value is a String if the type of the value is Value.DATA; otherwise,

Creating and Reading Simple XMI Documents with the XMI Framework 241

THE XMI:TYPE ATTRIBUTE AND A VALUE’S DEFINER

When we looked at the output of the FrameWrite program earlier in the
chapter, we noted that the option element included an xmi:type attribute. Now
that you have seen what a definer is, we can explain the reason that this
attribute was included. When an XMIFile is written, the Framework determines
whether to write the xmi:type attribute when it serializes an object value. It
does this by comparing the actual type of the value with the type of the feature
that is the value’s definer. If there is a definer, and the type in the definer
matches the type of the value, no xmi:type attribute needs to be written
because the Framework will use the type in the definer when it loads the file.
In the FrameWrite program, there was no definer set for the option object
value, so the Framework included the xmi:type attribute when it serialized the
option object value.

the value is an object. The value is null if it is a forward reference to an object
that occurs later in the XMI document.

One more detail of the setValue() method needs to be explained. If the value
passed in to be set is not null, the reader adapter can set it and then return to
the caller of the method. In this case, it returns the value null itself to indicate
that the value has been set. However, if the value passed in to be set is null, it
means that the value is an object that occurs later in the file. Therefore, the
value cannot be set until later. In this case, the reader adapter needs to return
an object that represents this so the Framework will remember to set it later.
That object will then be passed to the reader adapter when the Framework
invokes the second setValue() method, and it will serve to identify the value to
be set. For our purposes, all that we need to know is the name of the value, so
we can simply return the name of the value in a Java String object in this case.
Table 7.5 summarizes this behavior.

We can use the functionality of the CRAFactory class to help us implement
the reader adapter. We have added a couple new methods to the CRAFactory
class in this chapter, although most of it was developed in Chapter 6. The
methods that were developed in Chapter 6 that we need are included in Source
Code 7.17. The newInstance() method creates an instance of the appropriate
class from the cars package given an XML tag name. We can use this method to
implement the createObject() method of the reader adapter. The setAttribute()
and setReference() methods call the appropriate methods of the classes in the
cars package to set the attributes and references. We can use those methods to
implement the setValue() method of the reader adapter.

We have provided a DefaultReaderAdapter in the Framework with default
implementations of some of the methods in the ReaderAdapter interface to
make it easier to implement your own reader adapter. The methods that you
must implement are marked as abstract. Our CRAReaderAdapter, shown in
Source Code 7.18, inherits from the DefaultReaderAdapter, so we can ignore the
methods that we do not need to implement.

If you modify the CRAAdapterFactory by implementing the createReader-
Adapter() method, it can be used to register the CRAReaderAdapter with the
Framework. The complete CRAAdapterFactory class is shown in Source
Code 7.19.

242 Chapter 7

Table 7.5 Behavior of setValue()

VALUE ACTION VALUE FRAMEWORK
PASSED IN TAKEN RETURNED INTERPRETATION

Non-null value Value is set. null Value has been set.

Null Value is not set. String with the Value is set later
value’s name using setValue().

Creating and Reading Simple XMI Documents with the XMI Framework 243

// Methods in the CRAFactory class created in Chapter 6. We

// include the constructor so you can see how the

// tagNamesToClassNames HashMap is initialized.

// Initialize tagNamesToClassNames for the car rental agency.

public CRAFactory() {

tagNamesToClassNames = new HashMap();

// In the HashMap, we map the tag name of the element

// for an object to the Java class name. Note that there are two

// entries that map to cars.Option. Since the object attribute for

// the Car object's options is called "option", this is the tag name

// for the element for the Option object in the XMI file we wrote.

// Since there could also be an Option object with an XML element tag

// name of "Option" in another file, we include both "option" and

// "Option" in the Hashmap for completeness.

tagNamesToClassNames.put("Style", "cars.Style");

tagNamesToClassNames.put("Car", "cars.Car");

tagNamesToClassNames.put("Option", "cars.Option");

tagNamesToClassNames.put("option", "cars.Option");

tagNamesToClassNames.put("Person", "cars.Person");

}

// Make an instance of the correct class given the tag name of an XML

// element from an XMI file. Throw an exception if unsuccessful.

public Object newInstance(String tagName) throws Exception {

String clsName = (String) tagNamesToClassNames.get(tagName);

java.lang.Class cls = java.lang.Class.forName(clsName);

return cls.newInstance();

}

}

// Call the appropriate method based on the type of the object.

public void setAttribute(Object object, String attribName,

String value) {

if (object instanceof Car)

setAttribute((Car) object, attribName, value);

else if (object instanceof Option)

setAttribute((Option) object, attribName, value);

else if (object instanceof Style)

setAttribute((Style) object, attribName, value);

else if (object instanceof Person)

setAttribute((Person) object, attribName, value);

}

// Set the vin or available field of the Car object.

Source Code 7.17 CRAFactory methods used by CRAReaderAdapter.

244 Chapter 7

private void setAttribute(Car c, String attribName, String value) {

if (attribName.equals("vin"))

c.setVIN(value);

else if (attribName.equals("available") && value != null) {

if (value.equals("true"))

c.setAvailable(true);

else if (value.equals("false"))

c.setAvailable(false);

}

}

// Set the name of the Option object.

private void setAttribute(Option o, String attribName, String value) {

if (attribName.equals("name"))

o.setName(value);

}

// Set the name and license number of the Person object.

private void setAttribute(Person p, String attribName, String value) {

if (attribName.equals("name"))

p.setName(value);

else if (attribName.equals("licenseNumber"))

p.setLicenseNumber(value);

}

// Set the make, model, and year of the Style object.

private void setAttribute(Style s, String attribName, String value) {

if (attribName.equals("make"))

s.setMake(value);

else if (attribName.equals("model"))

s.setModel(value);

else if (attribName.equals("year")) {

int year = -1;

try {

if (value != null)

year = Integer.parseInt(value);

}

catch (Exception e) {

e.printStackTrace();

}

if (year != -1)

s.setYear(year);

}

Source Code 7.17 CRAFactory methods used by CRAReaderAdapter. (Continued)

Creating and Reading Simple XMI Documents with the XMI Framework 245

}

// Calls the appropriate method to set the reference based on the type

// of the object.

public void setReference(Object object, String referenceName,

Object value){

if (object instanceof Car)

setReference((Car) object, referenceName, value);

else if (object instanceof Option)

setReference((Option) object, referenceName, value);

else if (object instanceof Style)

setReference((Style) object, referenceName, value);

else if (object instanceof Person)

setReference((Person) object, referenceName, value);

}

// Set the driver or style references on a Car object.

private void setReference(Car c, String referenceName, Object value) {

if (referenceName.equals("driver") && (value instanceof Person))

c.add((Person) value);

else if (referenceName.equals("style") && (value instanceof Style))

c.setStyle((Style) value);

}

// Set the car reference from an Option object to a Car object.

private void setReference(Option o, String referenceName,

Object value) {

if (referenceName.equals("car") && (value instanceof Car))

o.setCar((Car) value);

}

// Set the car reference from a Style object to a Car object.

private void setReference(Style s, String referenceName,

Object value) {

if (referenceName.equals("car") && (value instanceof Car))

s.add((Car) value);

}

// Set the car reference from a Person object to a Car object.

private void setReference(Person p, String referenceName,

Object value) {

if (referenceName.equals("car") && (value instanceof Car))

p.add((Car) value);

}

Source Code 7.17 CRAFactory methods used by CRAReaderAdapter. (Continued)

246 Chapter 7

// CRAReaderAdapter.java

import com.ibm.xmi.framework.*;

import cars.Car;

import cars.Option;

// This class implements a Framework reader adapter to restore

// instances of the classes in the cars package.

public class CRAReaderAdapter extends DefaultReaderAdapter {

private CRAFactory factory;

// Initialize the factory.

public CRAReaderAdapter() {

factory = new CRAFactory();

}

// Create an object, given the tag name.

public java.lang.Object createObject(ObjectInfo info) {

Object newObject = null;

try {

if (info.getXMIName() != null)

newObject = factory.newInstance(info.getXMIName());

}

catch (Exception e) {

e.printStackTrace();

}

return newObject;

}

// If the value is a String, call setAttribute(); if the value is not

// a String (and not null), call setReference(); if the value is null,

// return the name of the object value. The setReference() method does

// not handle the option reference for Car objects, so it needs to

// be set here.

public java.lang.Object setValue(ValueInfo info) {

if (info.getValue() instanceof String)

factory.setAttribute(info.getObject(), info.getXMIName(),

(String) info.getValue());

Source Code 7.18 The CRAReaderAdapter class.

Creating and Reading Simple XMI Documents with the XMI Framework 247

else if (info.getValue() != null &&

info.getXMIName().equals("option"))

((Car) info.getObject()).add((Option) info.getValue());

else if (info.getValue() != null)

factory.setReference(info.getObject(), info.getXMIName(),

info.getValue());

if (info.getValue() == null)

return info.getXMIName();

else

return null;

}

// Returns Value.DATA for data values, Value.OBJECT for object

// values, and Value.REFERENCE for references.

public int getType(ValueInfo info) {

if (info.getXMIName().equals("option"))

return Value.OBJECT;

else if (info.getXMIName().equals("style") ||

info.getXMIName().equals("driver") ||

info.getXMIName().equals("car"))

return Value.REFERENCE;

else

return Value.DATA;

}

public int getType(ObjectInfo info) {

return -1;

}

// This method is called to set the value of references that could not

// be set when setValue() was called because the object that is

// the value occurred later in the file.

public void setValue(java.lang.Object object,

java.lang.Object reference,

java.lang.Object value) {

factory.setReference(object, (String) reference, value);

}

}

Source Code 7.18 The CRAReaderAdapter class. (Continued)

Finally, the program FrameRead3, displayed in Source Code 7.20, reads the
frame1.xmi file, registering the CRAReaderAdapter (by registering the
CRAAdapterFactory) with the Framework first.

Here is the output of the FrameRead3 program:

Car vin: v1 available: false make: Jalopy model: Deluxe year: 2002

Options:

air conditioning

Drivers:

Anita Karr

Style make: Jalopy model: Deluxe year: 2002 cars: v1

Person name: Anita Karr licenseNumber: ln1 cars: v1

This output indicates that instances of the Java classes in the cars package
were created, and the fields of those objects have been correctly restored.

Summary

It is much easier to use APIs that have been designed specifically to support
XMI than to use APIs that have been designed for XML. JOB lets you create
and restore XMI documents that contain your Java objects, with a minimum of
effort on your part. The XMI Framework lets you explore many of the issues

248 Chapter 7

// CRAAdapterFactory.java

import com.ibm.xmi.framework.*;

// This class is the adapter factory for the car rental

// agency problem domain.

public class CRAAdapterFactory extends AdapterFactory {

// Return the CRAObjectWriterAdapter. This method is called

// automatically by the Framework.

public ObjectWriterAdapter createObjectWriterAdapter() {

return new CRAObjectWriterAdapter();

}

// Return the CRAReaderAdapter. This method is called

// automatically by the Framework.

public ReaderAdapter createReaderAdapter() {

return new CRAReaderAdapter();

}

}

Source Code 7.19 The completed CRAAdapterFactory class.

Creating and Reading Simple XMI Documents with the XMI Framework 249

// FrameRead3.java

import com.ibm.xmi.framework.*;

import cars.*;

import java.util.*;

// Use the CRAReaderAdapter when reading the file.

public class FrameRead3 {

public static void main(String[] args) throws Exception {

AdapterFactory af = new CRAAdapterFactory();

AdapterFactoryRegister.registerAdapterFactory(af);

XMIFile file = XMIFile.load("frame1.xmi", XMIFile.DEFAULT,

false);

Iterator obj = file.getObjects().iterator();

while (obj.hasNext())

System.out.println(obj.next());

}

}

Source Code 7.20 The FrameRead3 program.

that are involved with creating and reading XMI documents, including match-
ing the data in XMI documents to models that you define. You can use the
Framework to work with generic representations of objects and their attribute
values and references, or you can work with your own objects by implement-
ing adapters and registering them with the Framework. You should select the
techniques that make the most sense for your application. Now that you know
the basic concepts of the XMI Framework, you are ready to learn about
advanced Framework capabilities.

251

Chapter 7 describes how to use the XMI Framework to read and write XMI
documents. This chapter explains the advanced functionality the Framework
provides. It builds on the material presented in Chapter 7, so you should read
that chapter before reading this one.

Although we strongly recommend that you specify namespaces in your
models, the programs in Chapter 7 do not deal with namespaces. We explain
in this chapter how to use Extensible Markup Language (XML) namespaces
with the XML Metadata Interchange (XMI) Framework. Other topics that we
explain in this chapter include how the Framework supports information
describing your XMI documents, using XMI extensions, compressing XMI
documents, handling cross-file references, and generating Java code. By learn-
ing how the XMI Framework supports this functionality, you can gain an
understanding of what XMI software can do for you.

We continue to use the car rental agency model and objects that were
explained in detail in the first section of Chapter 6. You may want to refer to
that section to review the details of the car rental agency model and the objects
we use.

We present a brief review of the basic concepts of the XMI Framework
before explaining how the Framework supports advanced functionality. You
can skip this section if you remember the Framework concepts explained in
Chapter 7. Since this chapter builds on Chapter 7’s Framework concepts, you
need to know them to understand this chapter. This chapter also uses the

Creating and Reading
Advanced XMI Documents

with the XMI Framework

C H A P T E R

8

software presented in Chapter 7, so we review that as well before discussing
advanced XMI functionality.

A Quick Review

The XMI Framework was introduced in Chapter 7. That chapter explained
how the XMI Framework represents your objects using the XMIObject inter-
face. Each XMIObject has an XMI name, id, uuid, label, and possibly Value
objects. The Value interface contains the information needed to serialize one or
more attribute values or references belonging to an object using XMI. Each
Value object has an XMI name, a type, and the actual value, which is a String,
an XMIObject, a Collection of Strings, or a Collection of XMIObjects. One Value
object is used to represent all the values of an attribute for an object. One Value
object is used to represent all references that are instances of a particular asso-
ciation end for an object. We use three kinds of Framework values: data values,
object values, and references.

The XMIFile class in the Framework represents an XMI document. You cre-
ate an XMI document by creating an instance of the XMIFile class and then
invoking the write() method. The write() method has a parameter that is an Iter-
ator for a Collection containing the objects to write to the document; it also has
a parameter for a write option. For our purposes, we always use the default
write option, XMIFile.DEFAULT.

There are two approaches for using the XMI Framework to write an XMI
document. You create an XMIFile and invoke the write() method for both
approaches. The difference between the approaches is in the objects you use.
The first approach involves representing your objects using the Framework
implementations of the XMIObject and Value interfaces. The second approach
involves using your own Java classes and implementing an object writer
adapter so the Framework can obtain the information it needs to write your
objects to an XMI document.

We saw both approaches in Chapter 7. We created a method called make-
FOMExample() in the CRAFactory class that creates XMIObjects and Values rep-
resenting the car rental agency objects; we then used that method in the
FrameWrite program to create the objects to put in an XMI document. To
demonstrate the second approach, we created a makeExample() method in the
CRAFactory class that creates instances of the four classes Style, Option, Car,
and Person in the cars package. Then we created an object writer adapter called
CRAObjectWriterAdapter that enables the Framework to get the information
it needs to write the objects. We also created an adapter factory called
CRAAdapterFactory that creates an instance of CRAObjectWriterAdapter. The
FrameWrite2 program registered the adapter factory with the Framework and
then used instances of the classes in the cars package from the makeExample()
method, rather than XMIObjects.

252 Chapter 8

We also saw that the Framework creates an XMIFile object whenever it loads
an XMI document. You can use the getObjects() method to obtain the top-level
objects from the XMI document. The Framework correctly interprets XMI doc-
uments when it knows the model that defines the data in a document. The
Workspace class enables you to register models with the Framework. We also
saw that you can implement a reader adapter to create instances of your own
classes rather than XMIObjects when the Framework loads an XMI document.
The three programs FrameRead, FrameRead2, and FrameRead3 in Chapter 7
demonstrate three ways of loading an XMI document using the Framework.

Namespaces

You can use the XMI Framework to read and write XMI documents that con-
tain XML namespaces. We explain how to do this after we review what XML
namespaces are and how to specify them in your models.

We saw in Chapter 2 that XML namespaces specify the context for a partic-
ular XML element or XML attribute. Each XML namespace consists of a name-
space Uniform Resource Identifier (URI) that uniquely identifies the
namespace and a namespace prefix that is used in a particular XML document
to identify the namespace.

We saw in Chapter 3 that you can specify the XML namespaces to use for
your models by specifying values for the nsURI and nsPrefix tags (remember
that XMI tags begin with the prefix org.omg.xmi., which is omitted in this chap-
ter for clarity). If you provide values for those tags in your model, XMI specifies
that the corresponding schema has a target namespace with the value of the
nsURI tag as its URI and with the value of the nsPrefix tag as its prefix. There are
several advantages to doing this. First, you can avoid name collisions in XML
documents if data from your model is mixed with data from different models.
Second, you can avoid name collisions between classes in different packages in
the same model by assigning an XML namespace to each package. In our opin-
ion, the advantages of specifying namespaces outweigh the additional work
required and the slight increase in the complexity of XMI documents.

To use a namespace with the car rental agency problem domain, we need to
decide what the URI is for the namespace and which namespace prefix to use.
We decide that the URI is http://mycompany.com/CarRentalAgency, and we will
use the namespace prefix CRA (for car rental agency) in our XMI documents.

The Framework has a Namespace class that you use to specify a namespace.
You specify the namespace prefix and the namespace URI when you create a
Namespace object. You use the setXMINamespace() method to set the namespace
for any of the constructs in the Framework object model. In particular, you can
set the namespace for an XMIObject. The Framework uses the namespace for
an XMIObject when it serializes the object in an XMI document.

Creating and Reading Advanced XMI Documents with the XMI Framework 253

Recall from Chapter 3 that XMI enables you to control the use of name-
spaces in XMI documents by using the form tag. If that tag has the value quali-
fied, then the form XML attribute of the declarations for attributes and
association ends is set to qualified, requiring the use of namespaces. The Frame-
work always serializes values without using namespace prefixes, though. It is
possible that a future version of the Framework will enable namespace pre-
fixes to be used when serializing values when the form tag is set to qualified.

The car rental agency model does not use the form tag. This means that the
declarations for the attributes and association ends are local ones, so a name-
space should not be used when attribute values and references are serialized in
an XMI document. If we set the namespace for the objects themselves rather
than the values of the objects, the Framework will serialize them correctly.

We can serialize the car rental agency objects by creating an XMIObject for
each of them, setting the values of each XMIObject, setting the namespace for
each XMIObject, and then using the XMIFile class. We can also serialize
instances of the Java classes in the cars package by modifying the CRAOb-
jectWriterAdapter to support the namespace we have chosen, registering the
CRAAdapterFactory with the Framework, and then using the XMIFile class. We
explain both approaches.

The makeFOMExample() method of the CRAFactory class makes an XMIOb-
ject for each object to save and sets the values for each XMIObject. It returns the
created objects in an ArrayList. We need to set the namespace for each XMIOb-
ject. We can set the namespace for the objects by implementing a new method
in the CRAFactory class. The new method is called assignNamespace(), and it
takes two arguments: a Namespace and a Collection of objects. It invokes a
helper method to set the namespace for each object in the Collection and each
object value. The two methods we add to the CRAFactory class are displayed in
Source Code 8.1. Note that we need to add import statements for the
java.util.Collection and java.util.Iterator classes to CRAFactory.java; those import
statements are not shown in Source Code 8.1.

The NamespaceWrite program writes the objects to an XMI document using
the namespace. It is shown in Source Code 8.2.

The document produced by NamespaceWrite is as follows (we split the lines
that were too long to fit the page width of this book):1

<?xml version="1.0" encoding="UTF-8"?>

<xmi:XMI xmi:version="2.0" xmlns:xmi="http://www.omg.org/XMI"

xmlns:CRA="http://mycompany.com/CarRentalAgency">

<xmi:Documentation>

<exporter>XMI Framework</exporter>

<exporterVersion>1.2</exporterVersion>

</xmi:Documentation>

<CRA:Car xmi:id="_1" available="false" vin="v1" driver="_3"

style="_2">

254 Chapter 8

<option xmi:id="_1.1" xmi:type="CRA:Option" name="air conditioning"

car="_1"/>

</CRA:Car>

<CRA:Style xmi:id="_2" make="Jalopy" model="Deluxe" year="2002"

car="_1"/>

<CRA:Person xmi:id="_3" licenseNumber="ln1" name="Anita Karr"

car="_1"/>

</xmi:XMI>

Creating and Reading Advanced XMI Documents with the XMI Framework 255

// New methods in CRAFactory to assign a Framework namespace to

// a collection of XMIObjects.

// Assign a namespace to each object in the Collection as well

// as to the object values for each object.

public void assignNamespace(Namespace n, Collection objects) {

Iterator objs = objects.iterator();

while (objs.hasNext())

assignNamespace(n, (XMIObject) objs.next());

}

// Assign the namespace to the given object and each object

// value the object has.

public void assignNamespace(Namespace n, XMIObject obj) {

obj.setXMINamespace(n);

Iterator values = obj.getXMIValues().iterator();

while (values.hasNext()) {

Value v = (Value) values.next();

// Object values have the type Value.OBJECT.

if (v.getXMIType() == Value.OBJECT) {

Object value = v.getXMIValue();

if (value instanceof Collection) {

Iterator objs = ((Collection) value).iterator();

while (objs.hasNext())

assignNamespace(n, (XMIObject) objs.next());

}

else if (value instanceof XMIObject)

assignNamespace(n, (XMIObject) value);

}

}

}

Source Code 8.1 Methods in CRAFactory to assign a Framework namespace to a
Collection of XMIObjects.

Notice that the Framework automatically put the namespace declaration for
the car rental agency namespace in the XMI document for us. The option XML
element does not use the namespace prefix CRA because XMI does not use name-
spaces for attribute values and references unless the form tag is set to qualified.

Now consider how to write instances of the classes Style, Person, Car, and
Option in the cars package. We will modify the CRAObjectWriterAdapter we
implemented in Chapter 7 to provide the namespace information the Frame-
work needs to write the namespaces to the document. Recall from Chapter 7
that the getNamespace() method of the CRAObjectWriterAdapter always returns
null, because we did not use namespaces in Chapter 7.

The Framework calls the getNamespace() method for each object and value it
writes to an XMI document. We add the following declaration to the CRAOb-
jectWriterAdapter to avoid making a Namespace object each time the getName-
space() method returns the namespace:

private static Namespace namespace = new Namespace("CRA",

"http://mycompany.com/CarRentalAgency");

Since we need the namespace for the objects themselves, not the values, we
implement the getNamespace() method as follows:

public Namespace getNamespace(Object data) {

if (data instanceof ValueWriteData)

return null;

256 Chapter 8

// NamespaceWrite.java

import com.ibm.xmi.framework.*;

import java.util.ArrayList;

// This class uses the CRAFactory to create XMIObjects and Values,

// sets the namespace for the objects, and then saves them in an XMI

// document.

public class NamespaceWrite {

public static void main(String[] args) throws Exception {

CRAFactory f = new CRAFactory();

Namespace n = new Namespace("CRA",

"http://mycompany.com/CarRentalAgency");

ArrayList l = f.makeFOMExample();

f.assignNamespace(n, l);

XMIFile file = new XMIFile("namespace.xmi");

file.write(l.iterator(), XMIFile.DEFAULT);

}

}

Source Code 8.2 The NamespaceWrite program.

else

return namespace;

}

Remember from Chapter 7 that we use the ValueWriteData class to represent
the data needed to write each value of an object. The getNamespace() method
returns null for ValueWriteData objects because a namespace is not required for
an object’s values for this example.

We also need to modify the getXMIName() method of the CRAObjectWriter-
Adapter. The Framework expects the XMI name to include the namespace pre-
fix in the name, if there is one. We implement an addNamespace() method that
takes a name and an object. It checks if the object has a namespace and adds
the namespace prefix to the object’s name if there is a namespace for the object
and the prefix is not the empty string (the prefix is the empty string for the
default namespace). Then we call the addNamespace() method in getXMIName()
for instances of the Car, Style, Person, and Option classes. Both methods appear
in Source Code 8.3.

Creating and Reading Advanced XMI Documents with the XMI Framework 257

// New addNamespace() method and updated getXMIName() method for the

// CRAObjectWriterAdapter class.

// Add the namespace prefix if there is one for the given object to

// the given name.

private String addNamespace(String name, Object object) {

Namespace n = getNamespace(object);

if (n != null && n.getPrefix() != null && !n.getPrefix().equals(""))

return n.getPrefix() + ":" + name;

else

return name;

}

public String getXMIName(Object data) {

if (data instanceof ValueWriteData)

return ((ValueWriteData) data).getName();

else if (data instanceof Car)

return addNamespace("Car", data);

else if (data instanceof Style)

return addNamespace("Style", data);

else if (data instanceof Person)

return addNamespace("Person", data);

else if (data instanceof Option)

return addNamespace("Option", data);

else

return null;

}

Source Code 8.3 A new and updated method in CRAObjectWriterAdapter for namespaces.

Now that we have modified the CRAObjectWriterAdapter to handle name-
spaces for our application, we can use the CRAAdapterFactory class from Chap-
ter 7 to register our object writer adapter with the Framework. We can also use
the makeExample() method of the CRAFactory class to make instances of the
classes in the cars package. The NamespaceWrite2 program in Source Code 8.4 is
identical to the FrameWrite2 program in Chapter 7, except that the name of the
XMI document it creates is namespace2.xmi.

The NamespaceWrite2 program produces the file namespace2.xmi, which is
equivalent to namespace.xmi. The only differences in the files occur because
some of the XML attributes appear in a different order (this difference does not
affect the semantics of the XML document, though). The contents of name-
space2.xmi are as follows (some lines have been split to fit the page width):

<?xml version="1.0" encoding="UTF-8"?>

<xmi:XMI xmi:version="2.0" xmlns:xmi="http://www.omg.org/XMI"

xmlns:CRA="http://mycompany.com/CarRentalAgency">

<xmi:Documentation>

<exporter>XMI Framework</exporter>

<exporterVersion>1.2</exporterVersion>

</xmi:Documentation>

<CRA:Car xmi:id="_1" vin="v1" available="false" driver="_3"

style="_2">

<option xmi:id="_1.1" xmi:type="CRA:Option" name="air conditioning"

258 Chapter 8

// NamespaceWrite2.java

import com.ibm.xmi.framework.*;

import java.util.ArrayList;

import java.util.Iterator;

// Use the CRAFactory to make the instances of the cars package to

// write, register the CRAAdapterFactory with the Framework, and then

// write the objects using an XMIFile.

public class NamespaceWrite2 {

public static void main(String[] args) throws Exception {

CRAFactory factory = new CRAFactory();

ArrayList objects = factory.makeExample();

AdapterFactoryRegister.registerAdapterFactory(

new CRAAdapterFactory());

XMIFile file = new XMIFile("namespace2.xmi");

file.write(objects.iterator(), XMIFile.DEFAULT);

}

}

Source Code 8.4 The NamespaceWrite2 program.

car="_1"/>

</CRA:Car>

<CRA:Style xmi:id="_2" make="Jalopy" model="Deluxe" year="2002"

car="_1"/>

<CRA:Person xmi:id="_3" name="Anita Karr" licenseNumber="ln1"

car="_1"/>

</xmi:XMI>

The Framework creates instances of the Namespace class and sets the name-
spaces for objects and values when it loads an XMI document that contains
XML namespaces. You can use the getNamespaces() method of the XMIFile class
to obtain the Namespace objects from an XMI document.

Recall from Chapter 7 that the XMIContainer class in the Framework can be
used to print XMIObjects and their values. The namespaces of the objects and
values are printed if they are set. We presented a simple program in Chapter 7
called FrameRead that reads an XMI document, puts the objects in an XMICon-
tainer, and prints the container. For convenience, we include the program in
Source Code 8.5.

When this program is run with namespace.xmi, the following output is
printed:

Object: CRA:Car id: _1

isProxy: false

Creating and Reading Advanced XMI Documents with the XMI Framework 259

// FrameRead.java

import com.ibm.xmi.framework.XMIFile;

import com.ibm.xmi.framework.XMIContainer;

// This class parses an XMI document, and then puts the XMIObjects the

// Framework made into an XMIContainer so they can be printed.

public class FrameRead {

public static void main(String[] args) throws Exception {

if (args.length != 1) {

System.out.println("Enter the name of an XMI document.");

return;

}

XMIFile file = XMIFile.load(args[0], XMIFile.DEFAULT, false);

XMIContainer c = new XMIContainer(file.getObjects().iterator());

System.out.println(c);

}

}

Source Code 8.5 The FrameRead program.

namespace: 'CRA',http://mycompany.com/CarRentalAgency

Values:

available <DATA> 'false'

vin <DATA> 'v1'

driver <DATA> '_3'

style <DATA> '_2'

option <OBJ> [XMIObject CRA:Option _1.1]

End object: CRA:Car

Object: CRA:Option id: _1.1

isProxy: false

namespace: 'CRA',http://mycompany.com/CarRentalAgency

Values:

name <DATA> 'air conditioning'

car <DATA> '_1'

End object: CRA:Option

Object: CRA:Style id: _2

isProxy: false

namespace: 'CRA',http://mycompany.com/CarRentalAgency

Values:

make <DATA> 'Jalopy'

model <DATA> 'Deluxe'

year <DATA> '2002'

car <DATA> '_1'

End object: CRA:Style

Object: CRA:Person id: _3

isProxy: false

namespace: 'CRA',http://mycompany.com/CarRentalAgency

Values:

licenseNumber <DATA> 'ln1'

name <DATA> 'Anita Karr'

car <DATA> '_1'

End object: CRA:Person

We describe proxies later in this chapter. Note that the namespace has been
set for the objects. Notice also that even though the option XML element does
not include a namespace prefix in its tag name, the Option object has its name-
space correctly set. This happens because the value of the xmi:type attribute of
the option XML element includes the namespace prefix CRA. Also, as explained
in Chapter 7, since the car rental agency model was not registered with the
Framework before loading the file, the references in the file have been restored
as data values. You may want to review Chapter 7 if you do not understand
why this occurs.

260 Chapter 8

Describing Your Documents

XMI enables you to specify information that describes XMI documents. For
example, you can identify the tool (its name and version number) that created
the document. You can also save the physical location of the model that defines
your objects.

Chapter 3 described the information that XMI enables you to put in your
documents to describe them. The additional information appears in a Docu-
mentation XML element, a Model XML element, and other elements. We saw
examples of the use of the Documentation XML element in the XMI documents
created by the Framework because the Framework identifies itself as the
exporter of an XMI document unless you change the exporter. We explain how
the Framework supports the Documentation XML element so you can put your
information into it. We also explain how to put a Model XML element into your
XMI documents that enables you to specify a physical location for a model
identified with a URI. We use the information in the Model XML element to cre-
ate an application that loads a model if it is needed.

Documentation Information
As explained in Chapter 3, XMI enables you to put a variety of information
that describes a document into a Documentation XML element. The Framework
enables you to specify this information by using methods on the XMIFile class.
The Framework puts the information into a Documentation element for you
when it writes objects to an XMI document. When the Framework loads an
XMI document, it saves the information in the Documentation XML element in
an XMIFile object, and you can get the information using accessor methods in
the XMIFile class.

If you do not set any of this information, the Framework specifies XMI Frame-
work for the exporter and 1.2 for the exporter version. You can provide your own
values for the exporter and exporter version rather than the default ones.

For each kind of information in the Documentation element, there are two
accessor methods in the XMIFile class. For example, to specify the exporter,
you use the setExporter() method. To get the exporter, you use the getExporter()
method. One limitation of the Framework is that you can only specify one
value for each kind of information, whereas the XMI specification says that
you can specify multiple values. For example, you should be able to put two
contacts in an XMI document.

Consider how to specify that your tool, which is called MyTool version 0.5, is
the exporter of XMI documents. Consider also how to put a short comment

Creating and Reading Advanced XMI Documents with the XMI Framework 261

into an XMI document that says Excellent Stuff. You can use the setExporter()
method, the setExporterVersion() method, and the setShortDescription() method
of the XMIFile class to provide this information; then use the write() method to
serialize your objects. We serialize a Car object by creating an XMIObject to rep-
resent it. The DocumentationWrite program can be found in Source Code 8.6.

The contents of documentation.xmi are as follows:

<?xml version="1.0" encoding="UTF-8"?>

<xmi:XMI xmi:version="2.0" xmlns:xmi="http://www.omg.org/XMI">

<xmi:Documentation>

<exporter>MyTool</exporter>

<exporterVersion>0.5</exporterVersion>

<shortDescription>Excellent Stuff</shortDescription>

</xmi:Documentation>

<Car xmi:id="_1"/>

</xmi:XMI>

Notice that the information we provided to the XMIFile class is inside the
Documentation XML element.

We can obtain Documentation information from an XMI document by using
the XMIFile object created when the Framework loads the XMI document. To do
so, we use the accessor methods on the XMIFile class. The DocumentationRead
program prints the exporter, exporter version, and a short description after
loading the documentation.xmi XMI document. It is shown in Source Code 8.7.

262 Chapter 8

// DocumentationWrite.java

import com.ibm.xmi.framework.*;

import java.util.ArrayList;

// This class demonstrates how to set documentation information for an

// XMI document using the Framework.

public class DocumentationWrite {

public static void main(String[] args) throws Exception {

XMIObject obj = new XMIObjectImpl("Car");

ArrayList l = new ArrayList();

l.add(obj);

XMIFile file = new XMIFile("documentation.xmi");

file.setExporter("MyTool");

file.setExporterVersion("0.5");

file.setShortDescription("Excellent Stuff");

file.write(l.iterator(), XMIFile.DEFAULT);

}

}

Source Code 8.6 The DocumentationWrite program.

The output of the DocumentationRead program is as follows:

exporter: MyTool

exporter version: 0.5

short description: Excellent Stuff

To improve the Framework application programming interfaces (APIs), a
Documentation class could be provided that would enable you to get and set
multiple values for each attribute in the Documentation class in the XMI model.
Then you could provide the Documentation object along with your other
objects when serializing a file, and the Documentation object could be handled
the same way as other objects being serialized. This may be added in a future
version of the Framework.

Model Information
By specifying a value for the nsURI tag, you can provide a URI for a model that
identifies your model unambiguously. However, a namespace URI does not
necessarily provide the location of a file containing the model. You can provide
the name of a file that contains a model using the Model XML element defined
by XMI.

Recall from Chapter 3 that XMI enables you to specify a name, a version, and
an href for a Model XML element. By setting the name of the Model element to a
namespace prefix in an XMI document, you can associate the Model element
with a particular XML namespace; the namespace URI of the XML namespace
is the URI for the model. The version attribute of the Model XML element can be

Creating and Reading Advanced XMI Documents with the XMI Framework 263

// DocumentationRead.java

import com.ibm.xmi.framework.*;

import java.util.ArrayList;

// This class demonstrates how to get documentation information for an

// XMI document after loading it using the Framework.

public class DocumentationRead {

public static void main(String[] args) throws Exception {

XMIFile f = XMIFile.load("documentation.xmi", XMIFile.DEFAULT,

false);

System.out.println("exporter: " + f.getExporter());

System.out.println("exporter version: " + f.getExporterVersion());

System.out.println("short description: " +

f.getShortDescription());

}

}

Source Code 8.7 The DocumentationRead program.

used to specify the version of the model (you can put the version in the URI for
the model as well). You can set the href attribute of the Model XML element to
point to a file that contains the model. This way XMI software can load the
model from the physical location specified in the href attribute if the URI of the
model does not provide the location.

The XMI Framework enables you to put one or more Model XML elements in
an XMI document and access the information in them after loading an XMI doc-
ument. The XMIFile.Model class in the Framework, which is an inner class of the
XMIFile class in the Framework, enables you to set the name, version, and href for
a Model XML element in an XMI document. You can create an instance of the
XMIFile.Model class, and then use the add() method of the XMIFile class to add the
XMIFile.Model instance to the XMIFile. The Framework creates a Model element
for each XMIFile.Model instance when it writes objects to an XMI document. The
Framework creates an instance of the XMIFile.Model class for each Model element
in an XMI document when it loads the XMI document. You can access the Model
element information by using the getModels() method of the XMIFile class.

We saw in the Namespaces section of this chapter how to use the namespace
with a URI of http://mycompany.com/CarRentalAgency and a prefix of CRA in the
car rental agency application. We can indicate that the car rental agency model
is saved in the file cramodel.xmi by writing a Model XML element in an XMI
document. The Model XML element has its href attribute set to cramodel.xmi, its
version attribute set to 1.0, and its name attribute set to CRA (to match the
namespace prefix). The NamespaceWrite program in the Namespaces section of
this chapter created the car rental agency objects and set the namespace of each
object. We can do the same thing: Create an instance of the XMIFile.Model class,
add the instance to an XMIFile, and then invoke the write() method of the XMI-
File to create the same document as the NamespaceWrite program did, except
for the inclusion of the Model XML element. The ModelWrite program does all
this and saves the information in an XMI document called model.xmi. This pro-
gram is shown in Source Code 8.8.

As you can see from the following output, a Model element is in model.xmi
(we split some lines that were too long for the page width):

<?xml version="1.0" encoding="UTF-8"?>

<xmi:XMI xmi:version="2.0" xmlns:xmi="http://www.omg.org/XMI"

xmlns:CRA="http://mycompany.com/CarRentalAgency">

<xmi:Documentation>

<exporter>XMI Framework</exporter>

<exporterVersion>1.2</exporterVersion>

</xmi:Documentation>

<xmi:Model name="CRA" version="1.0" href="cramodel.xmi"/>

<CRA:Car xmi:id="_1" available="false" vin="v1" driver="_3"

style="_2">

<option xmi:id="_1.1" xmi:type="CRA:Option" name="air conditioning"

car="_1"/>

264 Chapter 8

</CRA:Car>

<CRA:Style xmi:id="_2" make="Jalopy" model="Deluxe" year="2002"

car="_1"/>

<CRA:Person xmi:id="_3" licenseNumber="ln1" name="Anita Karr"

car="_1"/>

</xmi:XMI>

After loading an XMI document that has Model elements in it, you can access
the information in them by using the getModels() method of the XMIFile class.
The PrintModel program shown in Source Code 8.9 demonstrates the use of
this method.

The output of the program is as follows:

name: CRA

version: 1.0

href: cramodel.xmi

Now that we know how to put a Model XML element into an XMI document
and obtain the information from it, we can put that information to use. So far
in this book, we have presented simple programs that only work with XMI
documents that contain objects from the car rental agency model. You can
write more sophisticated applications, of course. We show you how to write an
application that loads a model from a file when it reads an XMI document that

Creating and Reading Advanced XMI Documents with the XMI Framework 265

// ModelWrite.java

import com.ibm.xmi.framework.*;

import java.util.ArrayList;

// This class demonstrates how to add model information to an XMI

// document using the Framework.

public class ModelWrite {

public static void main(String[] args) throws Exception {

CRAFactory f = new CRAFactory();

Namespace n = new Namespace("CRA",

"http://mycompany.com/CarRentalAgency");

ArrayList l = f.makeFOMExample();

f.assignNamespace(n, l);

XMIFile file = new XMIFile("model.xmi");

file.add(new XMIFile.Model("CRA", "1.0", "cramodel.xmi"));

file.write(l.iterator(), XMIFile.DEFAULT);

}

}

Source Code 8.8 The ModelWrite program.

contains a Model XML element. In fact, the application will load a model from
the file identified in the href attribute of the Model XML element.

Why is it desirable to do this? The Framework correctly interprets an XMI
document if you provide it with the model that defines the objects in the docu-
ment. To do this, you can use the Framework classes Workspace, Model, and XMI-
Files. The Workspace class is a collection of models that the Framework uses to
match objects in a file to their definers in models. Each instance of the Model class
represents a Framework model; this class is different than the XMIFile.Model
class we explained previously that contains the information for a Model XML ele-
ment in an XMI document. The XMIFiles class represents a collection of related
XMI documents. To provide the Framework with a model so that it correctly
interprets an XMI document when it is loaded, perform the following actions:

1. Make an instance of the Workspace class.

2. Make an instance of the Model class and add Framework declarations to
represent your model (you may want to review Chapter 7 for a more
complete explanation).

3. Add the Model instance to the Workspace instance.

4. Make an instance of the XMIFiles class.

5. Add the XMIFiles instance to the Workspace instance.

6. Use the load() method in the XMIFiles class to load the XMI document.

266 Chapter 8

// PrintModel.java

import com.ibm.xmi.framework.*;

import java.util.Iterator;

// This class demonstrates how to get model information from an

// XMI document after loading it using the Framework.

public class PrintModel {

public static void main(String[] args) throws Exception {

XMIFile f = XMIFile.load("model.xmi", XMIFile.DEFAULT, false);

Iterator models = f.getModels().iterator();

while(models.hasNext()) {

XMIFile.Model m = (XMIFile.Model) models.next();

System.out.println("name: " + m.getName());

System.out.println("version: " + m.getVersion());

System.out.println("href: " + m.getHref());

}

}

}

Source Code 8.9 The PrintModel program.

You can add the XMIFiles instance to the Workspace instance before you add
the Model instance, if you want. You can also add more than one Model instance
to a Workspace instance. However, you must add a Model instance to the Work-
space instance before you load the XMI document to make the Model available
to the Framework.

Chapter 7 explained how to create a Framework model using Framework
classes. You can also make a Framework model by loading an XMI document
that represents a model, as we explain later. Since you may forget to provide
the model to the Framework before loading an XMI document, it is better for
the Framework to load the model from a file and add the model to a Workspace,
so you do not need to remember to do it.

We implement this functionality by creating the Repository, LoadModel-
Adapter, and LMAdapterFactory classes, and the LoadModel program. The Repos-
itory class loads an XMI document containing a model and makes a
Framework model. The LoadModelAdapter class is a reader adapter that obtains
the XMIFile.Model instance from an XMIFile; it gets the href that identifies the
file containing the model and uses a Repository instance to load the file and cre-
ate a Framework model. The LoadModelAdapter class adds the Framework
model to a Workspace instance. The LMAdapterFactory creates a LoadModel-
Adapter. The LoadModel program registers the LMAdapterFactory, creates a
Workspace, adds an XMIFiles object to it, and loads an XMI document using the
XMIFiles object. Because the LoadModelAdapter adds a Framework model to
the Workspace, the LoadModel program does not need to do so. We explain the
Repository first, and then the LoadModelAdapter, the LMAdapterFactory, and the
LoadModel program.

The Repository class loads an XMI document and creates a Framework
model from the objects in it. The DeclarationFactory class in the Framework cre-
ates a Framework model from the objects in an XMI document. (Currently, the
DeclarationFactory requires an XMI 1.0 document rather than an XMI 2.0 docu-
ment, but a future version of the Framework may work with XMI 2.0 docu-
ments as well.) The CD-ROM for the book includes the cramodel.xmi XMI 1.0
document that contains the car rental agency model. The parts of a Framework
model are called declarations, so the class that makes them is called Declara-
tionFactory.

The Framework enables you to specify the namespace prefix and name-
space URI to use in a model when you create a DeclarationFactory object. When
you specify a URI and a prefix, the DeclarationFactory class creates a Namespace
object and sets the namespace of each part of the model to that Namespace
object. In the Namespaces section, we set the namespace for the objects, but not
for the values of the objects. The LoadModel program works if the namespace is
set for the attributes and association ends in the Framework representation of
the car rental agency model as well as the classes. The Repository class is shown
in Source Code 8.10.

Creating and Reading Advanced XMI Documents with the XMI Framework 267

The default implementation of the ReaderAdapter interface is ReaderAdapter-
Impl. We implement the LoadModelAdapter by inheriting from ReaderAdapter-
Impl so the LoadModelAdapter inherits the functionality of creating XMIObjects
and Values when reading an XMI document.

We can load the file containing a model by implementing the setXMIFile()
method in the LoadModelAdapter. The Framework invokes the setXMIFile()
method after processing any Documentation or Model XML elements in an XMI
document, but before XML elements for user objects are processed. The XMI-
File object the Framework creates when it loads an XMI document is a para-
meter in the setXMIFile() method. This enables us to access the Model
information from the XMIFile, determine which file to load, and load the file.
We can obtain the URI for the model by getting the XML namespace that has
the same prefix as the name of the model. We can obtain the Workspace indi-
rectly by accessing the XMIFiles object from the XMIFile object and then get-
ting the Workspace from the XMIFiles object. Then we use the Repository class to
load the model and add the model to the Workspace. The LoadModelAdapter
class is shown in Source Code 8.11.

The LMAdapterFactory, which is shown in Source Code 8.12, creates a Load-
ModelAdapter. The LoadModel program is shown in Source Code 8.13. Notice
that no model is added to the Workspace before an XMI document is loaded.

268 Chapter 8

// Repository.java

import com.ibm.xmi.framework.*;

import java.util.Iterator;

// This class loads a model with the given filename, and then assigns

// a namespace with the given prefix and the given URI to the

// model.

public class Repository {

public Model load(String prefix, String uri, String filename)

throws Exception {

XMIFile f = XMIFile.load(filename, XMIFile.DEFAULT, false);

DeclarationFactory df = new DeclarationFactory(prefix, uri);

Iterator decls =

df.makeDeclarations(f.getObjects().iterator()).iterator();

Model m = new Model("", decls);

m.setURI(uri);

return m;

}

}

Source Code 8.10 The Repository class.

Creating and Reading Advanced XMI Documents with the XMI Framework 269

// LoadModelAdapter.java

import com.ibm.xmi.framework.*;

import java.util.Iterator;

// This class implements a reader adapter that loads a model based on

// the model information in an XMI document.

public class LoadModelAdapter extends ReaderAdapterImpl {

// The Framework invokes this method after loading any documentation

// or model information, but before your objects are loaded.

public void setXMIFile(XMIFile file) {

super.setXMIFile(file);

Workspace w = null;

if (file.getXMIFiles() != null)

w = file.getXMIFiles().getWorkspace();

if (w != null) {

Iterator models = file.getModels().iterator();

Repository r = new Repository();

while (models.hasNext()) {

XMIFile.Model m = (XMIFile.Model) models.next();

Namespace n = file.getNamespace(m.getName());

Model frameworkModel = null;

try {

frameworkModel = r.load(n.getPrefix(), n.getURI(),

m.getHref());

}

catch (Exception e) {

e.printStackTrace();

}

if (frameworkModel != null)

w.add(frameworkModel);

}

}

}

}

Source Code 8.11 The LoadModelAdapter class.

When we run LoadModel with model.xmi, the LoadModelAdapter determines
that the car rental agency model can be found in cramodel.xmi and loads it
before loading the car rental agency objects in model.xmi. The following is the
output of LoadModel when model.xmi is loaded:

270 Chapter 8

// LMAdapterFactory.java

import com.ibm.xmi.framework.*;

// This class is the adapter factory for the

// LoadModelAdapter.

public class LMAdapterFactory extends AdapterFactory {

// Return the LoadModelAdapter. This method is called

// automatically by the Framework.

public ReaderAdapter createReaderAdapter() {

return new LoadModelAdapter();

}

}

Source Code 8.12 The LMAdapterFactory class.

// LoadModel.java

import com.ibm.xmi.framework.*;

// This class demonstrates that the LoadModelAdapter actually loads a

// model from a file if you don't add it to the Workspace yourself.

public class LoadModel {

public static void main(String[] args) throws Exception {

if (args.length != 1) {

System.out.println("Enter the name of the file to load...");

return;

}

AdapterFactoryRegister.registerAdapterFactory(

new LMAdapterFactory());

Workspace w = new Workspace();

XMIFiles files = new XMIFiles();

w.add(files);

XMIFile file = files.load(args[0], XMIFile.DEFAULT, false);

XMIContainer c = new XMIContainer(file.getObjects().iterator());

System.out.println(c);

}

}

Source Code 8.13 The LoadModel program.

Object: CRA:Car id: _1

definer: XMIClass CRA:Car

isProxy: false

namespace: 'CRA',http://mycompany.com/CarRentalAgency

Values:

CRA:available <ENUM> 'false' definer: [CRA:available <ENUM> type:

[Enumeration boolean true false] owner: [XMIClass CRA:Car]

namespace: 'CRA',http://mycompany.com/CarRentalAgency]

namespace: 'CRA',http://mycompany.com/CarRentalAgency

CRA:vin <DATA> 'v1' definer: [CRA:vin <DATA> type: [String] owner:

[XMIClass CRA:Car] namespace:

'CRA',http://mycompany.com/CarRentalAgency] namespace:

'CRA',http://mycompany.com/CarRentalAgency

CRA:driver <REF> [XMIObject CRA:Person _3] definer: [CRA:driver

<REF> type: [XMIClass CRA:Person] owner: [XMIClass CRA:Car]

multiplicity: '0..n' namespace:

'CRA',http://mycompany.com/CarRentalAgency] namespace:

'CRA',http://mycompany.com/CarRentalAgency

CRA:style <REF> [XMIObject CRA:Style _2] definer: [CRA:style <REF>

type: [XMIClass CRA:Style] owner: [XMIClass CRA:Car]

multiplicity: '1' namespace:

'CRA',http://mycompany.com/CarRentalAgency] namespace:

'CRA',http://mycompany.com/CarRentalAgency

CRA:option <OBJ> [XMIObject CRA:Option _1.1] definer: [CRA:option

<OBJ> type: [XMIClass CRA:Option] owner: [XMIClass CRA:Car]

multiplicity: '0..*' namespace:

'CRA',http://mycompany.com/CarRentalAgency] namespace:

'CRA',http://mycompany.com/CarRentalAgency

End object: CRA:Car

Object: CRA:Option id: _1.1

definer: XMIClass CRA:Option

isProxy: false

namespace: 'CRA',http://mycompany.com/CarRentalAgency

Values:

CRA:name <DATA> 'air conditioning' definer: [CRA:name <DATA> type:

[String] owner: [XMIClass CRA:Option] namespace:

'CRA',http://mycompany.com/CarRentalAgency] namespace:

'CRA',http://mycompany.com/CarRentalAgency

CRA:car <REF> [XMIObject CRA:Car _1] definer: [CRA:car <REF> type:

[XMIClass CRA:Car] owner: [XMIClass CRA:Option] multiplicity:

'1' namespace: 'CRA',http://mycompany.com/CarRentalAgency]

namespace: 'CRA',http://mycompany.com/CarRentalAgency

End object: CRA:Option

Object: CRA:Style id: _2

definer: XMIClass CRA:Style

isProxy: false

Creating and Reading Advanced XMI Documents with the XMI Framework 271

namespace: 'CRA',http://mycompany.com/CarRentalAgency

Values:

CRA:make <DATA> 'Jalopy' definer: [CRA:make <DATA> type: [String]

owner: [XMIClass CRA:Style] namespace:

'CRA',http://mycompany.com/CarRentalAgency] namespace:

'CRA',http://mycompany.com/CarRentalAgency

CRA:model <DATA> 'Deluxe' definer: [CRA:model <DATA> type: [String]

owner: [XMIClass CRA:Style] namespace:

'CRA',http://mycompany.com/CarRentalAgency] namespace:

'CRA',http://mycompany.com/CarRentalAgency

CRA:year <DATA> '2002' definer: [CRA:year <DATA> type: [int] owner:

[XMIClass CRA:Style] namespace:

'CRA',http://mycompany.com/CarRentalAgency] namespace:

'CRA',http://mycompany.com/CarRentalAgency

CRA:car <REF> [XMIObject CRA:Car _1] definer: [CRA:car <REF> type:

[XMIClass CRA:Car] owner: [XMIClass CRA:Style] multiplicity:

'0..n' namespace: 'CRA',http://mycompany.com/CarRentalAgency]

namespace: 'CRA',http://mycompany.com/CarRentalAgency

End object: CRA:Style

Object: CRA:Person id: _3

definer: XMIClass CRA:Person

isProxy: false

namespace: 'CRA',http://mycompany.com/CarRentalAgency

Values:

CRA:licenseNumber <DATA> 'ln1' definer: [CRA:licenseNumber <DATA>

type: [String] owner: [XMIClass CRA:Person] namespace:

'CRA',http://mycompany.com/CarRentalAgency] namespace:

'CRA',http://mycompany.com/CarRentalAgency

CRA:name <DATA> 'Anita Karr' definer: [CRA:name <DATA> type:

[String] owner: [XMIClass CRA:Person] namespace:

'CRA',http://mycompany.com/CarRentalAgency] namespace:

'CRA',http://mycompany.com/CarRentalAgency

CRA:car <REF> [XMIObject CRA:Car _1] definer: [CRA:car <REF> type:

[XMIClass CRA:Car] owner: [XMIClass CRA:Person] multiplicity:

'0..n' namespace: 'CRA',http://mycompany.com/CarRentalAgency]

namespace: 'CRA',http://mycompany.com/CarRentalAgency

End object: CRA:Person

This output indicates that the objects in model.xmi were correctly restored
and attached to their definers, which were created from the contents of
cramodel.xmi. This output is similar to the output of the FrameRead2 program in
Chapter 7. Please see that chapter for more details about the content. You may
notice that the available attribute value for the Car object is marked not as
�DATA�, which indicates a data value, but as �ENUM�. This occurs because
the DeclarationFactory makes a Framework enumeration for the Boolean
datatype in the model to support previous versions of XMI. XMI 2.0 does not
require this behavior, so a future version of the Framework may not do this.

272 Chapter 8

XMI Extensions

So far in this chapter, we have discussed how to use the Framework to create
XMI documents that contain XML namespaces and information describing the
documents. Using those capabilities of XMI helps create XMI documents that
can be interpreted correctly. This section explains how to put data into an XMI
document that is not to be shared with other applications. As explained in
Chapter 3, XMI defines an Extension XML element that can be put in either an
XML element that represents an object or in an XMI XML element.

The Framework can be used to create XMI extensions. There are two ways
to do so. The Framework creates XMI extensions for you if you specify sets of
tag values for an object. You can also use the Extension class in the Framework
to create advanced extensions.

Tag values in the Framework consist of a tag and a value, each represented
by a String. The tag identifies the value. They are similar to UML tagged val-
ues. Unlike UML tagged values, they can be grouped into sets, where each set
is identified by a String. You can create tag values for any XMIObject; the tag
values for one XMIObject are independent of the tag values that belong to
other XMIObjects. You can use a set to distinguish tag values for your applica-
tion from tag values for other applications if you use the name of your appli-
cation as the name of the set.

Consider a program used by the car rental agency that tracks the last time a
car was washed and the location of the car in the agency’s parking lot if the car
has not been rented. This information is not defined by the car rental agency
model. If other programs for the car rental agency need access to this data, it
should be added to the model so it can be reliably exchanged. However, no
other program for the car rental agency needs this information. Because it is
information that is specific to a particular program, we can put the information
in an XMI extension.

To use Framework tag values, we decide that the tag lastWashed has a value
that is the date when the car was last washed. The tag location has a value that
is the number of the space in the parking lot where the car is parked. The pro-
gram that uses this information is called Program1, so we put the tag values in
a set called Program1.

The following program creates an XMI document that contains a Car object
that has an Extension in it. The method setXMITagValue() has a set, a tag, and a
value as its parameters. It sets the value for the tag and puts the tag in the given
set. If the set does not exist, setXMITagValue() creates it. If the set already exists,
the tag is added to the existing set. The program is shown in Source Code 8.14.

The following is the output from the Extension1 program:

<?xml version="1.0" encoding="UTF-8"?>

<xmi:XMI xmi:version="2.0" xmlns:xmi="http://www.omg.org/XMI">

Creating and Reading Advanced XMI Documents with the XMI Framework 273

<xmi:Documentation>

<exporter>XMI Framework</exporter>

<exporterVersion>1.2</exporterVersion>

</xmi:Documentation>

<Car xmi:id="_1">

<xmi:Extension extender="IXAF TVS" extenderID="">

<ixafs n="Program1">

<ixaftv t="location" v="E23"/>

<ixaftv t="lastWashed" v="July 1, 2001"/>

</ixafs>

</xmi:Extension>

</Car>

</xmi:XMI>

Notice that the tag values were stored in an XMI extension and its extender
attribute is IXAF TVS (which stands for IBM XMI Application Framework Tag
Value Sets). The Program1 set is represented by an ixafs XML element. Each tag
value is represented by an ixaftv XML element.

When you use the Framework to load this document, it will restore the sets
of tag values based on the contents of the extension. You can use the

274 Chapter 8

// Extension1.java

import com.ibm.xmi.framework.*;

import java.util.ArrayList;

// This program demonstrates how to set tag values for XMI objects.

public class Extension1 {

public static void main(String[] args) throws Exception {

XMIObject car = new XMIObjectImpl("Car");

// Sets the "lastWashed" tag to the value "July 1, 2001". A

// set called "Program1" is created since it does not exist.

// The "lastWashed" tag is added to the "Program1" set.

car.setXMITagValue("Program1", "lastWashed", "July 1, 2001");

// Sets the "location" tag to the value "E23" and adds it to

// the "Program1" set.

car.setXMITagValue("Program1", "location", "E23");

ArrayList l = new ArrayList(1);

l.add(car);

XMIFile file = new XMIFile("extension1.xmi");

file.write(l.iterator(), XMIFile.DEFAULT);

}

}

Source Code 8.14 The Extension1 program.

getXMISets(), getXMITags(), and getXMITagValue() methods to access the sets of
tag values.

If you use the FrameRead program from Chapter 7 to load extension1.xmi, the
output appears as follows:

Object: Car id: _1

isProxy: false

Tag values:

set: 'Program1' tag: 'location' value: 'E23'

set: 'Program1' tag: 'lastWashed' value: 'July 1, 2001'

End object: Car

This output indicates that the tag values were correctly restored.
You can create advanced extensions using the Extension and XMLElement

interfaces. The Extension interface lets you specify the values of the extender
and extenderID XML attributes for the extension, as well as the content of the
extension. You can add XMIObjects or XMLElements to an extension. For each
XML element, you can specify its tag name, XML attributes, and content. You
can add text or an XML element to the content of an XML element using the
XMLElement interface.

For example, consider a program called Program2 that displays information
about cars using a graphical user interface. This program needs to store the
user interface data for each car, which consists of the location of the car icon on
the screen, the size of the icon, its color, and the font used to label it. This infor-
mation can be represented by an extension that has Program2UIInfo as its exten-
der. The extension contains three XML elements. The first XML element has the
tag name coordinates and has the XML attributes x, y, width, and height, which
specify the location of the upper-left corner of the icon, the width of the icon,
and the height. The second XML element has the tag name color; its content
specifies the color. The third XML element has the tag name font and two XML
attributes called name and size, which describe the font.

The Extension2 program shown in Source Code 8.15 creates the extension
and XML elements.

The output of the Extension2 program is as follows:

<?xml version="1.0" encoding="UTF-8"?>

<xmi:XMI xmi:version="2.0" xmlns:xmi="http://www.omg.org/XMI">

<xmi:Documentation>

<exporter>XMI Framework</exporter>

<exporterVersion>1.2</exporterVersion>

</xmi:Documentation>

<Car xmi:id="_1">

<xmi:Extension extender="Program2UIInfo" extenderID="">

<coordinates x="100" y="200" width="20" height="40"/>

Creating and Reading Advanced XMI Documents with the XMI Framework 275

276 Chapter 8

// Extension2.java

import com.ibm.xmi.framework.*;

import java.util.ArrayList;

// This program demonstrates how to use the Framework to create an

// extension and add XML elements to it.

public class Extension2 {

public static void main(String[] args) throws Exception {

XMIObject car = new XMIObjectImpl("Car");

// Create an extension with "Program2UIInfo" extender

// and "" extenderID.

Extension ext = new ExtensionImpl("Program2UIInfo", "");

car.add(ext);

// Create an XML element with "coordinates" tag name.

XMLElement coordinates = new XMLElementImpl("coordinates");

ext.add(coordinates);

// Set the XML attributes for the coordinates XML element

coordinates.add("x", "100");

coordinates.add("y", "200");

coordinates.add("width", "20");

coordinates.add("height", "40");

XMLElement color = new XMLElementImpl("color");

ext.add(color);

// Set the contents of the color XML element to "red"

// String.

color.add("red");

XMLElement font = new XMLElementImpl("font");

ext.add(font);

font.add("name", "Times New Roman");

font.add("size", "10");

ArrayList l = new ArrayList(1);

l.add(car);

XMIFile file = new XMIFile("extension2.xmi");

file.write(l.iterator(), XMIFile.DEFAULT);

}

}

Source Code 8.15 The Extension2 program.

<color>red</color>

</xmi:Extension>

</Car>

</xmi:XMI>

If extension2.xmi is loaded using the FrameRead program, the output is as fol-
lows:

Object: Car id: _1

isProxy: false

Extensions:

extender: 'Program2UIInfo' extenderID: ''

contents:

XML element tag: coordinates

attribs: [x,"100" y,"200" width,"20" height,"40"]

XML element tag: color

attribs: []

contents:

'red'

end contents:

XML element tag: font

attribs: [name,"Times New Roman" size,"10"]

end contents:

End object: Car

This output shows that the Framework restored the extension and the XML
elements inside it. You can use the Extension and XMLElement interfaces to
obtain each XML element from the extension, the values of the XML attributes
for each XML element, and the content of each XML element.

Using Framework tag values to create extensions is easier than using the
Extension and XMLElement interfaces to create extensions. We recommend that
you use tag values to create extensions if possible. If you need to make more
advanced extensions, use the Extension interface to do so.

ZIP Files

The XMI documents we create in this book are very small; however, you might
want to save many objects in an XMI document. XMI 2.0 files are smaller than
the equivalent XMI 1.1 files. Nevertheless, it is still useful to reduce the size of
XMI 2.0 documents by using ZIP files.

Creating and Reading Advanced XMI Documents with the XMI Framework 277

The Framework enables XMI documents to be written to an output stream
that you create, and XMI documents to be read from an input stream that you
create. The streams can be associated with ZIP files, ordinary files, or network
connections.

It is not hard to write an XMI document to a ZipOutputStream. You are
responsible for creating the output stream and closing it; the Framework
makes an entry in the output stream, writes the document, and then closes the
entry. The XMIFile class has a constructor that takes a ZipOutputStream and the
name of an entry. The ZipOut program shown in Source Code 8.16 creates a
ZIP file called my.zip that has an entry c.xmi, which is an XMI document con-
taining a Car object.

You can also put multiple XMI documents in one ZIP file. You can do this
because the Framework does not close the ZipOutputStream after it writes an
XMI document. You can create as many XMIFile objects as you want with the
same ZipOutputStream; in this case, an entry is created in the same ZIP file each
time the Framework creates an XMI document. You are responsible for closing
the ZipOutputStream after the last XMI document is written to the ZIP file.

278 Chapter 8

// ZipOut.java

import com.ibm.xmi.framework.*;

import java.util.zip.*;

import java.util.*;

import java.io.*;

// This demonstrates how to write an XMI document to a ZIP file.

public class ZipOut {

public static void main(String[] args) throws Exception {

XMIObject o = new XMIObjectImpl("Car");

File zip = new File("my.zip");

FileOutputStream fos = new FileOutputStream(zip);

ZipOutputStream zos = new ZipOutputStream(fos);

ArrayList l = new ArrayList();

l.add(o);

XMIFile f = new XMIFile(zos, "c.xmi");

f.write(l.iterator(), XMIFile.DEFAULT);

zos.close();

}

}

Source Code 8.16 The ZipOut program.

There are two ways to load an XMI document from a ZIP file. The first way
is to create an InputStream for the entry of a ZIP file to be loaded and use that
InputStream when loading. The other way is to set the file path for an XMIFiles
object that contains the location of a ZIP file, and then specify the entry name
in the load() method of the XMIFiles object. We explain both ways.

One of the load methods in the XMIFile class enables the Framework to read
an XMI document from an InputStream. To use that capability with ZIP files,
you need to create an input stream for the entry in the ZIP file. The ZipIn pro-
gram shown in Source Code 8.17 reads c.xmi from the my.zip file created by the
ZipOut program.

The output of the ZipIn program, which indicates that the XMI file was suc-
cessfully loaded, is as follows:

Object: Car id: _1

isProxy: false

End object: Car

The second way to load from a ZIP file involves setting the file path of an
XMIFiles object. A file path consists of a sequence of directories or ZIP files sep-
arated by semicolons. When you invoke a load() method for the XMIFiles
object, the Framework searches the directories and ZIP files in the file path

Creating and Reading Advanced XMI Documents with the XMI Framework 279

// ZipIn.java

import com.ibm.xmi.framework.*;

import java.util.zip.*;

import java.io.InputStream;

// This demonstrates how to read an XMIFile from a ZIP file.

public class ZipIn {

public static void main(String[] args) throws Exception {

ZipFile zf = new ZipFile("my.zip");

ZipEntry ze = zf.getEntry("c.xmi");

InputStream is = zf.getInputStream(ze);

XMIFile f = XMIFile.load("c.xmi", is, XMIFile.DEFAULT, false);

XMIContainer c = new XMIContainer(f.getObjects().iterator());

System.out.println(c);

zf.close();

}

}

Source Code 8.17 The ZipIn program.

until the file is found. By setting the file path to a ZIP file, you can avoid creat-
ing an InputStream for the particular entry you want to load. The Framework
will load the correct entry from the ZIP file and close the input streams that it
opens.

The ZipIn2 program shown in Source Code 8.18 sets the file path to the ZIP
file my.zip and then loads c.xmi.

The output of the ZipIn2 program is the same as the output of the ZipIn
program.

Cross-File References

So far, the programs in this book have saved objects in a single XMI file. How-
ever, XMI enables objects to be saved in multiple XMI files. If an object in a file
has a value that is an object in another file, the file contains a cross-file refer-
ence to the object in the other file. Each cross-file reference created by the
Framework is similar to a simple XLink. Although XMI lets you use all of the
capabilities of XLinks described in the XLink specification, the Framework
does not support XLinks. This section explains how to use the Framework to
create XMI files with cross-file references and how to load XMI files with cross-
file references.

There are advantages and disadvantages of using this capability. Some of
the disadvantages are that it adds complexity to your applications and slows
the loading of files. One advantage of splitting your objects into multiple XMI
files is that it gives you the opportunity to process a subset of your objects

280 Chapter 8

// ZipIn2.java

import com.ibm.xmi.framework.*;

// This demonstrates how to read an XMI document from a ZIP file

// by setting a file path.

public class ZipIn2 {

public static void main(String[] args) throws Exception {

XMIFiles files = new XMIFiles();

files.setFilepath("my.zip");

XMIFile f = files.load("c.xmi", XMIFile.DEFAULT, false);

XMIContainer c = new XMIContainer(f.getObjects().iterator());

System.out.println(c);

}

}

Source Code 8.18 The ZipIn2 program.

without loading all of them. For more discussion of the pros and cons of this
approach, please see the Cross-File References section in Chapter 4.

When you create an XMIFile object, you specify the name of the XMI file that
will be created when you write objects using the XMIFile object. Each object
that is written is put in that file unless you specify a particular Framework tag
value for the object. If the value part of the tag value is different than the name
of the XMI file being written, the object that has the tag value is not written to
the file; instead, the Framework creates a cross-file reference to the object.

Recall that a Framework tag value consists of a tag and a value, each repre-
sented by a String. Framework tag values are grouped in named sets. The par-
ticular tag value that determines whether an object is put in the document
being written or whether a cross-file reference is created for the object has the
tag name xmiFile. It is put in the set that has the empty String (““) as its name.
For example, the following line of code sets the xmiFile tag to the value car.xmi
for XMIObject car1:

car1.setXMITagValue("", "xmiFile", "car1.xmi");

The xmiFile tag applies to the XMIObject that has the tag and its contained
objects, which are related to the object via composition relationships. Recall
that an object value (an attribute value that is an object) has a composition rela-
tionship to the XMIObject that has the value. The xmiFile tag applies to the
directly contained objects, and the contained objects in the directly contained
objects, to any depth.

When the Framework creates a cross-file reference, it does not create the file
that is being referred to. For example, consider what happens if the Frame-
work writes file file.xmi, and it creates a cross-file reference to an object in file
file2.xmi. At the end of writing file.xmi, the Framework has created file.xmi only;
it has not created file2.xmi as a result of creating the cross-file reference. You
can create an XMIFile object for file2.xmi and write objects to it. In fact, you
should write the object in file2.xmi that is referenced in file.xmi so the cross-file
reference in file.xmi is valid.

If the value of the xmiFile tag for an object matches the name of the file cur-
rently being written, a cross-file reference is not created; the object that has the
tag is written to the file. For example, if an XMIFile object is created for file
file1.xmi and an object has the value file1.xmi for its xmiFile tag, the object is
written in file1.xmi.

Each cross-file reference that the Framework produces uses the object’s
identifier (the value of the attribute of type ID) and the file’s name to create a
URI that is put in an XML attribute named href. For example, if an object of
class C is saved in a file called f.xmi and its identifier is id, a cross-file reference
to this object appears as follows:

<C href="f.xmi#id"/>

Creating and Reading Advanced XMI Documents with the XMI Framework 281

In our favorite example so far in this chapter, and in the last chapter, we
saved a Car object, a Style object, an Option object, and a Person object in a sin-
gle XMI file. Imagine that the car rental agency needs to save information
about its customers separately from information about its cars. To do so, we
will save the Person object in a separate file from the other objects.

Because we are not saving all of our objects in the same file, we need to set
the xmiFile tags for the objects. We name the files to be saved so we know the
values to set for the xmiFile tags. There are two ways to set the tags. We first
describe the two ways in general terms here and then explain an example
using each way. The first way involves analyzing which relationships among
the objects cross files and then setting the xmiFile tags for the objects that have
such relationships. The second way is to set the xmiFile tag for each top-level
object in each file. The cross-file references are created correctly regardless of
which way you choose.

Let’s look at an example of the first way using the car rental agency objects.
We determine how to set the xmiFile tags for the objects by first naming the files
to be saved and deciding which objects will go in which files. Next we examine
the relationships among the objects to see which ones, if any, cross files. For this
example, let’s save the Car, Option, and Style objects in file car.xmi and the Per-
son object in file person.xmi. The Car object is related to the Person object through
the driver reference, and the two objects are to be saved in different files. To cre-
ate a cross-file reference to the Person object when car.xmi is written, we need to
set the Person object’s xmiFile tag to person.xmi. Note that the Person object is
related to the Car object through the car reference. To create a cross-file reference
to the Car object when person.xmi is written, we need to set the xmiFile tag of the
Car object to car.xmi. Since neither the Style object nor the Option object partici-
pates in a cross-file relationship, their xmiFile tags do not need to be set.

Now let’s look at an example of the second way using the car rental agency
objects. As in the previous example, let’s suppose we have decided to save the
Car, Option, and Style objects in file car.xmi and the Person object in file per-
son.xmi. The Car and Style objects will be at the top level in file car.xmi, so we
assign the value car.xmi to the xmiFile tags for the Car and Style objects. Since
the Option object is contained in the Car object, and the xmiFile tag is set for the
Car object, we do not need to set the xmiFile tag for the Option object. If we do
set the xmiFile tag for the Option object to car.xmi, the Framework will still write
the Car, Option, and Style objects to the car.xmi file. Since the Person object will
be at the top level in file person.xmi, we assign the value person.xmi to the xmi-
File tag for the Person object. Notice that we did not need to determine which
relationships crossed files, as we did previously. Instead, we determined
which objects would be at the top level in each file and set the xmiFile tags for
each of these objects to the corresponding filename.

Now we can write a program to save the objects in the two XMI files. The
program needs to set the xmiFile tags for the objects. We create a class Cross-

282 Chapter 8

FileHelper that has a method that sets the tags. Using this class makes the pro-
gram to save the objects less cluttered, and we can add methods to the Cross-
FileHelper class that makes the other programs in this section less cluttered as
well. The CrossFileHelper class is shown in Source Code 8.19.

Note that the method assigns the minimum number of xmiFile tags based on
the analysis of the objects’ relationships that cross files presented previously.

The CrossWrite program uses the CRAFactory class to make the XMIObjects
for the Car, Option, Style, and Person objects; invokes the assignXMIFileTags()
method to set the tag values; and then writes the Car, Option, and Style objects
to file car.xmi and the Person object to file person.xmi. The program is not
generic since it relies on the order of the objects in the ArrayList returned by the
makeFOMExample() method that gets the Car, Style, and Person objects. The
CrossWrite program is shown in Source Code 8.20.

The file car.xmi appears as follows (with some lines split to fit the page
width). Note that this file does not contain the Person object. It refers to the Per-
son object in the person.xmi file:

<?xml version="1.0" encoding="UTF-8"?>

<xmi:XMI xmi:version="2.0" xmlns:xmi="http://www.omg.org/XMI">

<xmi:Documentation>

<exporter>XMI Framework</exporter>

Creating and Reading Advanced XMI Documents with the XMI Framework 283

// CrossFileHelper.java

import com.ibm.xmi.framework.XMIObject;

import java.util.ArrayList;

import java.util.Iterator;

// This class contains methods that make the programs to save and

// load XMI files with cross-file references less cluttered.

public class CrossFileHelper {

// Assign car.xmi to the xmiFile tag for the Car object.

// Assign person.xmi to the xmiFile tag for the Person object.

public static void assignXMIFileTags(ArrayList objects) {

Iterator i = objects.iterator();

while (i.hasNext()) {

XMIObject obj = (XMIObject) i.next();

if (obj.getXMIName().equals("Car"))

obj.setXMITagValue("", "xmiFile", "car.xmi");

else if (obj.getXMIName().equals("Person"))

obj.setXMITagValue("", "xmiFile", "person.xmi");

}

}

}

Source Code 8.19 The CrossFileHelper class.

<exporterVersion>1.2</exporterVersion>

</xmi:Documentation>

<Car xmi:id="_1" available="false" vin="v1" style="_2">

<option xmi:id="_1.1" xmi:type="Option" name="air conditioning"

car="_1"/>

<xmi:Extension extender="IXAF TVS" extenderID="">

<ixafs n="">

<ixaftv t="xmiFile" v="car.xmi"/>

</ixafs>

</xmi:Extension>

<driver href="person.xmi#_1.2E"/>

</Car>

<Style xmi:id="_2" make="Jalopy" model="Deluxe" year="2002"

car="_1"/>

</xmi:XMI>

The file person.xmi appears as follows. Note the cross-file reference to the Car
object in car.xmi:

<?xml version="1.0" encoding="UTF-8"?>

<xmi:XMI xmi:version="2.0" xmlns:xmi="http://www.omg.org/XMI">

284 Chapter 8

// CrossWrite.java

import com.ibm.xmi.framework.*;

import java.util.*;

// This program writes the Car, Option, and Style objects to file

// car.xmi, and the Person object to person.xmi.

public class CrossWrite {

public static void main(String[] args) throws Exception {

ArrayList objs = new CRAFactory().makeFOMExample();

CrossFileHelper.assignXMIFileTags(objs);

ArrayList carObjs = new ArrayList();

carObjs.add(objs.get(0)); // Car object

carObjs.add(objs.get(1)); // Style object

XMIFile f = new XMIFile("car.xmi");

f.write(carObjs.iterator(), XMIFile.DEFAULT);

ArrayList personObjs = new ArrayList();

personObjs.add(objs.get(2)); // Person object

XMIFile f2 = new XMIFile("person.xmi");

f2.write(personObjs.iterator(), XMIFile.DEFAULT);

}

}

Source Code 8.20 The CrossWrite program.

<xmi:Documentation>

<exporter>XMI Framework</exporter>

<exporterVersion>1.2</exporterVersion>

</xmi:Documentation>

<Person xmi:id="_1.2E" licenseNumber="ln1" name="Anita Karr">

<xmi:Extension extender="IXAF TVS" extenderID="">

<ixafs n="">

<ixaftv t="xmiFile" v="person.xmi"/>

</ixafs>

</xmi:Extension>

<car href="car.xmi#_1"/>

</Person>

</xmi:XMI>

To use the Framework to load files with cross-file references, you need to
understand how the Framework handles cross-file references when a file is
loaded. A cross-file reference to an object that has not been loaded yet is repre-
sented by the Framework as a proxy object. It is called a proxy object because it
represents a reference to the actual object, but it is not the actual object refer-
enced. When the actual object is loaded, the Framework resolves the proxy
object by setting the values for the proxy object based on the values for the
actual object and changing the proxy object to a normal XMIObject.

To resolve proxy objects, the Framework needs to track the objects that have
been loaded. The XMIFiles class does this. By using the load methods in the
XMIFiles class, you enable the Framework to resolve proxy objects. When the
actual object is loaded from a file, a proxy object representing the actual object
is resolved. There is only a single proxy object for each actual object, even if
there are multiple cross-file references to the actual object. This feature ensures
that if you have a reference to a proxy object, you can use the same reference to
obtain the actual object after the proxy has been resolved.

When you load a file containing a cross-file reference using the XMIFiles
class, the Framework takes one of the following actions when it loads the
cross-file reference depending on the circumstances:

■■ The Framework creates a proxy object if the actual object has not been
loaded and a proxy object has not been created yet.

■■ The Framework obtains the proxy object from the XMIFiles object if a
proxy object exists, so there will only be one proxy object for an actual
object.

■■ The Framework obtains the actual object from the XMIFiles object and
uses it.

There are two ways to load the XMI file containing the actual object that a
proxy object represents. The first way is to invoke a load method in the XMI-
Files class for the correct file. The other way involves using a Framework fea-
ture called demand loading. Demand loading will load a file containing an

Creating and Reading Advanced XMI Documents with the XMI Framework 285

actual object if you ask a proxy object for information that can only be obtained
from the actual object. For example, if you ask a proxy object for the values of
the actual object, the actual object needs to be loaded. The Framework will
load the file containing the actual object, resolving the proxy by changing it to
the actual object, and then return the values of the actual object. Using demand
loading, your application will load files only when it is necessary, and you do
not need to load the files yourself.

This proxy-handling scheme is very simple; there are many more advanced
mechanisms for handling proxies. The proxy-handling scheme in the Frame-
work enables you to experiment with cross-file references and demand load-
ing. (IBM’s Websphere Studio Application Developer software on the
CD-ROM uses an advanced demand loading algorithm.)

We present three programs that demonstrate how the Framework handles
cross-file references when loading files. Each program prints all the objects
from the file car.xmi using the Framework XMIContainer class. If the Car and
Style objects are added to an XMIContainer and the container is printed, the
Option object is also printed because it is contained by the Car object through a
composition relationship. However, the Person object is not printed because it
is not contained in the Car object. To print all the objects using the Framework,
it is necessary to obtain the Person object through its relationship with the Car
object; put the Car, Style, and Person objects in the XMIContainer; and then
print the container. Since each program needs to obtain the Person object from
the Car object, we add the getPerson() method to the CrossFileHelper class. This
method is shown in Source Code 8.21.

286 Chapter 8

// The getPerson() method of the CrossFileHelper class.

// Iterate through the list of objects, and, when a Car object

// is found, obtain the Person object that is a driver for the Car.

// This method assumes that there is only one driver; however, the

// CRA model supports multiple drivers, so it won't work for

// all Car objects.

public static XMIObject getPerson(ArrayList objs) {

Iterator i = objs.iterator();

while (i.hasNext()) {

XMIObject obj = (XMIObject) i.next();

if (obj.getXMIName().equals("Car"))

return (XMIObject) obj.getXMIValueOfValue("driver");

}

return null;

}

Source Code 8.21 The getPerson() method in the CrossFileHelper class.

The parameter to this method is a collection of objects that are the top-level
objects from car.xmi (the Car and Style objects).

To ensure that the values of the objects in car.xmi are restored correctly, we
need to use a Workspace and add the car rental agency model to it. We can
obtain the model by using the CRAModel class from Chapter 7. The CrossRead
program loads car.xmi and prints all the objects in it; the program is shown in
Source Code 8.22.

Creating and Reading Advanced XMI Documents with the XMI Framework 287

// CrossRead.java

import com.ibm.xmi.framework.*;

import java.util.*;

// This class demonstrates that a proxy object is created when a

// cross-file reference is loaded and the actual object has not been

// loaded yet.

public class CrossRead {

public static void main(String[] args) throws Exception {

// Add the CRA model to the workspace, so the values

// can be restored correctly.

Workspace w = new Workspace();

Model craModel = CRAModel.makeCRAModel();

w.add(craModel);

// Add XMIFiles object to the workspace.

XMIFiles files = new XMIFiles();

w.add(files);

XMIFile file = files.load("car.xmi", XMIFile.DEFAULT, false);

// Since the collection returned by getObjects() is not

// modifiable, copy the top-level objects to a list.

ArrayList objs = new ArrayList();

objs.addAll(file.getObjects());

// Add the Person object to the list.

XMIObject p = CrossFileHelper.getPerson(objs);

if (p != null)

objs.add(p);

// Print the objects.

XMIContainer c = new XMIContainer(objs.iterator());

System.out.println(c);

}

}

Source Code 8.22 The CrossRead program.

The following is the output of the CrossRead program, formatted to fit the
width of the page. Note that the Person object is a proxy because the actual Per-
son object in person.xmi was not loaded.

Object: Car id: _1

definer: XMIClass Car

isProxy: false

Tag values:

set: '' tag: 'xmiFile' value: 'car.xmi'

Values:

available <DATA> 'false'

definer: [available <DATA> owner: [XMIClass Car]]

vin <DATA> 'v1' definer: [vin <DATA> owner: [XMIClass Car]]

style <REF> [XMIObject Style _2]

definer: [style <REF> type: [XMIClass Style]

owner: [XMIClass Car]]

option <OBJ> [XMIObject Option _1.1]

definer: [option <OBJ> type: [XMIClass Option]

owner: [XMIClass Car]]

driver <REF> [XMIObject Person _1.2E]

definer: [driver <REF> type: [XMIClass Person]

owner: [XMIClass Car]]

End object: Car

Object: Option id: _1.1

definer: XMIClass Option

isProxy: false

Values:

name <DATA> 'air conditioning'

definer: [name <DATA> owner: [XMIClass Option]]

car <REF> [XMIObject Car _1]

definer: [car <REF> type: [XMIClass Car]

owner: [XMIClass Option]]

End object: Option

Object: Style id: _2

definer: XMIClass Style

isProxy: false

Values:

make <DATA> 'Jalopy' definer: [make <DATA>

owner: [XMIClass Style]]

model <DATA> 'Deluxe'

definer: [model <DATA> owner: [XMIClass Style]]

year <DATA> '2002' definer: [year <DATA>

owner: [XMIClass Style]]

car <REF> [XMIObject Car _1]

definer: [car <REF> type: [XMIClass Car]

owner: [XMIClass Style]]

288 Chapter 8

End object: Style

Object: Person id: _1.2E

href: person.xmi#_1.2E

definer: XMIClass Person

isProxy: true

End object: Person

Since the Person object is a proxy object, it does not have the values for the
actual object.

If both the car.xmi and person.xmi files are loaded using the same XMIFiles
object, the Person object that is a proxy object is resolved to the actual Person
object. The CrossRead2 program shown in Source Code 8.23 demonstrates this.

The output of the CrossRead2 program shows that the Person object is no
longer a proxy object; its values have been filled in (since the Car, Style, and
Option objects are identical to the output of the CrossRead program, they have
been omitted):

Object: Person id: _1.2E

href: person.xmi#_1.2E

definer: XMIClass Person

isProxy: false

Tag values:

set: '' tag: 'xmiFile' value: 'person.xmi'

Values:

licenseNumber <DATA> 'ln1'

definer: [licenseNumber <DATA> owner: [XMIClass Person]]

name <DATA> 'Anita Karr'

definer: [name <DATA> owner: [XMIClass Person]]

car <REF> [XMIObject Car _1]

definer: [car <REF> type: [XMIClass Car] owner: [XMIClass Person]]

End object: Person

Rather than explicitly loading person.xmi, we can invoke a method on the
Person proxy object that will cause the Framework to load person.xmi to obtain
the actual object. The CrossRead3 program invokes the getXMIValues() method
on the proxy object to cause demand loading to occur. The CrossRead3 program
appears in Source Code 8.24.

The output of the CrossRead3 program is identical to the output of the Cross-
Read2 program. You can run the CrossRead3 program yourself to verify this.

If you do not want demand loading to occur, you can turn it off for a partic-
ular XMIFiles object.

Creating and Reading Advanced XMI Documents with the XMI Framework 289

Code Generation

As mentioned in Chapter 4, the Framework generates Java code from a UML
model. This capability is useful because it enables you to create objects with
simple interfaces derived from your model, rather than using the more
abstract XMIObject and Value interfaces. The generated code creates a Frame-
work model from the UML model. Using the generated code requires you to

290 Chapter 8

// CrossRead2.java

import com.ibm.xmi.framework.*;

import java.util.*;

// This class demonstrates that the Framework resolves a proxy object

// if the file containing the actual object is explicitly loaded.

public class CrossRead2 {

public static void main(String[] args) throws Exception {

// Add the CRA model to the workspace so the values can be

// restored correctly.

Workspace w = new Workspace();

Model craModel = CRAModel.makeCRAModel();

w.add(craModel);

// Add the XMIFiles object to the workspace.

XMIFiles files = new XMIFiles();

w.add(files);

// Load both car.xmi and person.xmi

XMIFile file1 = files.load("car.xmi", XMIFile.DEFAULT, false);

XMIFile file2 = files.load("person.xmi", XMIFile.DEFAULT, false);

// Obtain the top-level objects from car.xmi and add it to a

// list

ArrayList objs = new ArrayList();

objs.addAll(file1.getObjects());

// Obtain the Person object and add it to the list.

XMIObject p = CrossFileHelper.getPerson(objs);

if (p != null)

objs.add(p);

// Print the objects.

XMIContainer c = new XMIContainer(objs.iterator());

System.out.println(c);

}

}

Source Code 8.23 The CrossRead2 program.

know less about the Framework interfaces than using the Framework inter-
faces directly.

We explain how to generate code from the Framework, and then we explain
the interfaces and highlight the implementations of those interfaces that result
from code generation. It is not our intention to describe all aspects of Frame-
work code generation here, but we hope to give you an overview of the code

Creating and Reading Advanced XMI Documents with the XMI Framework 291

// CrossRead3.java

import com.ibm.xmi.framework.*;

import java.util.*;

// This class demonstrates that the Framework resolves a proxy when

// it loads the file containing the actual object during demand

// loading.

public class CrossRead3 {

public static void main(String[] args) throws Exception {

// Add the CRA model to the workspace so the values can

// be restored correctly.

Workspace w = new Workspace();

Model craModel = CRAModel.makeCRAModel();

w.add(craModel);

// Add the XMIFiles object to the workspace.

XMIFiles files = new XMIFiles();

w.add(files);

XMIFile file = files.load("car.xmi", XMIFile.DEFAULT, false);

// Put the top-level objects from car.xmi in a list.

ArrayList objs = new ArrayList();

objs.addAll(file.getObjects());

// Obtain the Person object and add it to the list; trigger

// demand loading by invoking getXMIValues() for the Person

// object.

XMIObject p = CrossFileHelper.getPerson(objs);

if (p != null) {

p.getXMIValues(); // Triggers demand load

objs.add(p);

}

// Print the objects.

XMIContainer c = new XMIContainer(objs.iterator());

System.out.println(c);

}

}

Source Code 8.24 The CrossRead3 program.

you get. This will help you understand some of the issues you face when using
generated code created by XMI software or when you implement your own
code generation software.

To generate Java code from the Framework, you need to have a UML model
in XMI format. The UML2Java program enables you to run the code generation
from the command line. We will generate code for the car rental agency model
that is stored in cramodel.xmi. We put the code in Java package cra (car rental
agency). Then we explain how to use the generated code to load and save the
car rental agency objects. After we do that, we explain some details about the
implementation of the generated interfaces.

How to Generate Java Code
The Framework generates code from an XMI representation of a UML model.
There are numerous options you can use when generating code. We will not
explain all of them here, but we will explain the options that we use to gener-
ate the code from the car rental agency model. You can run the UML2Java pro-
gram from the command line with no arguments to get a complete list of all
the code generation options along with a brief description of each one.

We use the following code generation options when we run UML2Java from
the command line:

-package cra. This option tells the Framework to put the generated code
in the given Java package.

-namespaceName CRA. This option tells the Framework to use this
namespace prefix.

-namespaceURI http://mycompany.com/CarRentalAgency. This option
tells the Framework to use this namespace URI.

-interfaces. This option tells the Framework to generate a Java interface
and a Java class for each class in the model (if this option is not specified,
the Framework creates a Java class for each class in the model).

-oneConstructor. This option tells the Framework to generate a single no
argument constructor for the generated Java class.

We also need to tell the Framework which file contains the model. In our
case, the model is in cramodel.xmi. We use the -model option to indicate the file
that contains the model. The following is the complete command-line invoca-
tion of the UML2Java program:

java com.ibm.xmi.framework.UML2Java

-model cramodel.xmi

-package cra

-namespaceName CRA

292 Chapter 8

-namespaceURI http://mycompany.com/CarRentalAgency

-interfaces

-oneConstructor

The Framework creates a cra directory in the directory where UML2Java is
invoked, and it places the generated Java code in that directory. You can then
compile the generated code. Now that you know how to generate the code,
let’s see how to use it.

The Generated Interfaces
If you look at the generated code, you will observe that there is an interface for
each class in the car rental agency model. The interfaces are located in files
Car.java, Option.java, Person.java, and Style.java. There are three methods in
each interface for each association end. There are either two or three methods
for each attribute, depending on the attribute’s multiplicity. If the maximum
multiplicity is 1, there are two methods. If the maximum multiplicity is greater
than 1, there are three methods. We explain in detail the generated methods for
attributes and association ends in this section.

We start by explaining the three methods that are generated for each associ-
ation end. The three methods enable you to add a referenced object, get the ref-
erenced objects, and delete a referenced object for a particular object. For
example, the Person class in the car rental agency model has a car association
end. The following are the method signatures for the three methods in the Per-
son interface that correspond to the car association end:

public Collection getCar();

public void addCar(Car object);

public void removeCar(Car object);

The getCar() method enables you to get all the Car objects that are referenced
objects for a Person object via the Person object’s car reference. If there are no
such objects, an empty Collection is returned. The addCar() method makes a Car
object a referenced object for a Person object via the Person object’s car refer-
ence. The removeCar() method removes a Car object from being a referenced
object for a Person object via the Person object’s car reference.

A current limitation of the Framework is that it generates these three meth-
ods regardless of the multiplicity of the association end. If the maximum mul-
tiplicity of the association end is 1, it would suffice to generate get and set
methods to get and set the one referenced object. This would prevent multiple
referenced objects from being specified. It is possible that a later version of the
Framework will have this enhancement.

For object attributes with a maximum multiplicity greater than 1, three
methods are generated just like the three methods that are generated for an

Creating and Reading Advanced XMI Documents with the XMI Framework 293

association end. For example, the Car class has an option object attribute with a
multiplicity of 0..*. The three methods in the Car interface for the option object
attribute are as follows:

public Collection getOption();

public void addOption(Option object);

public void removeOption(Option object);

For each attribute with a maximum multiplicity of 1, the Framework creates
two accessor methods: a get method that returns the attribute value and a set
method that sets the attribute value. We show examples of these two methods
for some of the data attributes in the car rental agency model.

The Framework maps integer, float, and boolean datatypes in a model to the
Java datatypes int, float, and boolean, respectively, regardless of the capitaliza-
tion of the names in the model. The Framework maps all other datatypes in a
model to the Java class java.lang.String. Table 8.1 summarizes this mapping.

Consider the make data attribute for the Style UML class in the car rental
agency model. The Framework generates the following two methods in the
Style interface:

public String getMake();

public void setMake(String value);

If the Framework maps the type of a data attribute to the Java boolean type,
the get accessor method name does not begin with get; it begins with is instead
to follow Java coding conventions. For example, the available data attribute in
the Car class in the car rental agency model has type Boolean, so the Framework
generates the following two methods for the Car interface corresponding to
the available data attribute:

public boolean isAvailable();

public void setAvailable(boolean value);

For each generated interface, the Framework creates a Java class that imple-
ments the interface. The name of the class is the name of the interface followed

294 Chapter 8

Table 8.1 Framework Datatype Mapping

MODEL DATATYPE NAME
(CAPITALIZATION IGNORED) GENERATED JAVA TYPE

int, integer int

float float

boolean boolean

by Impl. For example, the OptionImpl class implements the Option interface.
The Framework also generates a UserFactory class. We explain this class in

the next section.
Now that we know what the generated interfaces are for the car rental

agency model, we can use them to work with XMI documents.

Using the Generated Code
In this section, we explain how to use the generated code to work with XMI
documents. You can use the generated interfaces to create objects without
using the XMIObject and Value interfaces directly. You can use the factory gen-
erated by the Framework to create a Framework model, and then register that
model with the Framework. This causes the Framework to create instances of
the generated classes when loading an XMI document rather than generic
XMIObjects.

Consider how to use the generated code to make the car rental agency
objects and save them in an XMI document. We can accomplish this task by
using the generated interfaces and classes to create the objects, and then by
passing those objects to an XMIFile object. The GeneratedWrite program in
Source Code 8.25 accomplishes this task.

Notice that the only Framework class you need to use is XMIFile.
The generated.xmi file has the following contents (we split lines that were too

long for the page width):

<?xml version="1.0" encoding="UTF-8"?>

<xmi:XMI xmi:version="2.0" xmlns:xmi="http://www.omg.org/XMI"

xmlns:CRA="http://mycompany.com/CarRentalAgency">

<xmi:Documentation>

<exporter>XMI Framework</exporter>

<exporterVersion>1.2</exporterVersion>

</xmi:Documentation>

<CRA:Car xmi:id="_1" available="false" vin="v1" style="_2"

driver="_3">

<option xmi:id="_1.1" name="air conditioning" car="_1"/>

</CRA:Car>

<CRA:Style xmi:id="_2" make="Jalopy" model="Deluxe" year="2002"

car="_1"/>

<CRA:Person xmi:id="_3" name="Anita Karr" licenseNumber="ln1"

car="_1"/>

</xmi:XMI>

Although we did not create Framework namespaces and assign them before
writing the objects, the namespace we specified during code generation is
used correctly. That is one advantage of using the generated code.

You may have noticed that a UserFactory class is created when the Frame-
work generates code from a UML model. This class is an instance of the

Creating and Reading Advanced XMI Documents with the XMI Framework 295

Framework Factory class. It is shown in Source Code 8.26. When you make an
instance of this class, it registers itself with the Framework. That way, when
the Framework loads an XMI document, it creates instances of the generated
classes rather than the XMIObjectImpl class.

296 Chapter 8

//GeneratedWrite.java

import cra.*;

import com.ibm.xmi.framework.XMIFile;

import java.util.ArrayList;

// This program demonstrates how to use generated code to create

// objects to be written to an XMI document.

public class GeneratedWrite {

public static void main(String[] args) throws Exception {

Car car = new CarImpl();

Option option = new OptionImpl();

Person person = new PersonImpl();

Style style = new StyleImpl();

car.setAvailable(false);

car.setVin("v1");

car.addStyle(style);

car.addDriver(person);

car.addOption(option);

option.setName("air conditioning");

option.addCar(car);

person.setName("Anita Karr");

person.setLicenseNumber("ln1");

person.addCar(car);

style.setMake("Jalopy");

style.setModel("Deluxe");

style.setYear(2002);

style.addCar(car);

ArrayList objs = new ArrayList();

objs.add(car);

objs.add(style);

objs.add(person);

XMIFile f = new XMIFile("generated.xmi");

f.write(objs.iterator(), XMIFile.DEFAULT);

}

}

Source Code 8.25 The GeneratedWrite program.

The UserFactory class creates instances of the generated classes when the
makeXMIObject() methods are invoked. The first makeXMIObject() method uses
a HashMap called ixafntc, which relates XMI names to Java Class objects. If there
is no entry in that HashMap, the method looks up the correct class name from
an XMI name using the HashMap called ixafntcn, and then invokes Class.for-
Name() to obtain the Java Class object. If the class is found, it creates an entry
in the HashMap called ixafntc, so the Class.forName() method does not need to
be invoked multiple times for the same class. The HashMap called ixafntcn is
initialized in the init() method. That method is invoked by the first
makeXMIObject() method if it needs to use the HashMap called ixafntcn and it
has not been initialized yet; that is why the init() method is not invoked in the
constructor of the UserFactory class.

Creating and Reading Advanced XMI Documents with the XMI Framework 297

package cra;

import com.ibm.xmi.framework.*;

import com.ibm.xmi.framework.Package;

import java.util.*;

public class UserFactory extends FactoryAdapter {

static private Model ixafm;

static private HashMap ixafntc, ixafntcn;

public UserFactory() {

FactoryRegister.registerFactory(this);

}

private void init() {

ixafntcn = new HashMap();

ixafntcn.put("CRA:Car", "cra.CarImpl");

ixafntcn.put("Car", "cra.CarImpl");

ixafntcn.put("CRA:Person", "cra.PersonImpl");

ixafntcn.put("Person", "cra.PersonImpl");

ixafntcn.put("CRA:Style", "cra.StyleImpl");

ixafntcn.put("Style", "cra.StyleImpl");

ixafntcn.put("CRA:Option", "cra.OptionImpl");

ixafntcn.put("Option", "cra.OptionImpl");

}

public XMIObject makeXMIObject(String xmiName) {

if (ixafntc == null)

ixafntc = new HashMap();

Source Code 8.26 A generated UserFactory class.

298 Chapter 8

java.lang.Class cls = (java.lang.Class) ixafntc.get(xmiName);

if (cls == null) {

if (ixafntcn == null)

init();

String name = (String) ixafntcn.get(xmiName);

try {

if (name != null)

cls = java.lang.Class.forName(name);

}

catch (ClassNotFoundException e) {}

if (cls != null)

ixafntc.put(xmiName, cls);

}

if (cls == null)

return super.makeXMIObject(xmiName);

else {

java.lang.Object o = null;

try {

o = cls.newInstance();

}

catch (Exception e) {}

return (XMIObject) o;

}

}

public XMIObject makeXMIObject(String xmiName,

com.ibm.xmi.framework.Namespace n) {

if (n.getPrefix() == null || n.getPrefix().equals(""))

return makeXMIObject(xmiName);

else

return makeXMIObject(n.getPrefix() + ":" + xmiName);

}

public Model getModel() {

if (ixafm != null)

return ixafm;

ixafm = new Model("cramodel");

try {

Source Code 8.26 A generated UserFactory class. (Continued)

Creating and Reading Advanced XMI Documents with the XMI Framework 299

com.ibm.xmi.framework.Namespace ixafn1 = new

com.ibm.xmi.framework.Namespace("CRA",

"http://mycompany.com/CarRentalAgency");

XMIClass CRA_Car = makeXMIClass(null, "Car");

CRA_Car.setXMINamespace(ixafn1);

XMIClass CRA_Person = makeXMIClass(null, "Person");

CRA_Person.setXMINamespace(ixafn1);

XMIClass CRA_Style = makeXMIClass(null, "Style");

CRA_Style.setXMINamespace(ixafn1);

XMIClass CRA_Option = makeXMIClass(null, "Option");

CRA_Option.setXMINamespace(ixafn1);

com.ibm.xmi.framework.Feature ixaff;

ixaff = makeFeature(CRA_Car, "vin", null, Value.DATA,

null);

ixaff.setXMINamespace(ixafn1);

ixaff = makeFeature(CRA_Car, "available", null,

Value.ENUM, null);

ixaff.setXMINamespace(ixafn1);

ixaff = makeFeature(CRA_Car, "option", CRA_Option,

Value.OBJECT, null);

ixaff.setXMINamespace(ixafn1);

ixaff = makeFeature(CRA_Car, "driver", CRA_Person,

Value.REFERENCE, null);

ixaff.setXMINamespace(ixafn1);

ixaff = makeFeature(CRA_Car, "style", CRA_Style,

Value.REFERENCE, null);

ixaff.setXMINamespace(ixafn1);

ixaff = makeFeature(CRA_Person, "name", null, Value.DATA,

null);

ixaff.setXMINamespace(ixafn1);

ixaff = makeFeature(CRA_Person, "licenseNumber", null,

Value.DATA, null);

ixaff.setXMINamespace(ixafn1);

ixaff = makeFeature(CRA_Person, "car", CRA_Car,

Value.REFERENCE, null);

ixaff.setXMINamespace(ixafn1);

ixaff = makeFeature(CRA_Style, "make", null, Value.DATA,

null);

ixaff.setXMINamespace(ixafn1);

ixaff = makeFeature(CRA_Style, "model", null, Value.DATA,

null);

ixaff.setXMINamespace(ixafn1);

ixaff = makeFeature(CRA_Style, "year", null, Value.DATA,

null);

Source Code 8.26 A generated UserFactory class. (Continued)

The getModel() method of the UserFactory class returns the Framework
model corresponding to the UML model. It creates the model once and reuses
the existing model when getModel() is invoked again. The getModel() method
returns the model if it has already been created. Otherwise, it creates the
classes, sets their namespaces, and then creates the features of the classes and
sets their namespace. Note that the makeFeature() method adds the new feature
to the given class. Then the getModel() method adds the created classes to the
model. The getModel() method creates a variable for each created class based
on the name of the class and the namespace prefix, if there is one. To avoid
potential name collisions, the other variables in the UserFactory class begin
with a prefix of ixaf.

You can use the UserFactory class to create a model to register with a Work-
space before loading an XMI document. The GeneratedRead program shown in
Source Code 8.27 demonstrates the use of the generated UserFactory class.

You can run this program yourself to verify that the output is correct. Notice
that you do not need to make a Framework model yourself; the generated
UserFactory makes a Framework model for you.

300 Chapter 8

ixaff.setXMINamespace(ixafn1);

ixaff = makeFeature(CRA_Style, "car", CRA_Car,

Value.REFERENCE, null);

ixaff.setXMINamespace(ixafn1);

ixaff = makeFeature(CRA_Option, "name", null, Value.DATA, null);

ixaff.setXMINamespace(ixafn1);

ixaff = makeFeature(CRA_Option, "car", CRA_Car, Value.REFERENCE,

null);

ixaff.setXMINamespace(ixafn1);

ixafm.add(CRA_Car);

ixafm.add(CRA_Person);

ixafm.add(CRA_Style);

ixafm.add(CRA_Option);

} catch(XMIException e) {

e.printStackTrace();

}

return ixafm;

}

} // UserFactory

Source Code 8.26 A generated UserFactory class. (Continued)

Understanding the
Implementation Classes
Now that you have seen how to use the generated code, we make some gen-
eral observations about the Framework’s implementation of the generated
interfaces and the UserFactory class. It is not our intention to describe all
aspects of the implementations, but we will make some observations about the
general way that the code works. We also explain alternative strategies that
you might employ for your own generated code. You can skip this section if
you are not interested in the details of the generated code.

Each interface the Framework makes inherits from the XMIObject Frame-
work interface, and each implementation class inherits from XMIObjectImpl.
The constructor for each implementation class sets the XMI name appropri-
ately, sets the namespace for the object if necessary, and sets the definer of the
class. This ensures that the Framework will serialize the object correctly.

The implementations of the accessor methods work with Framework Value
objects. They use the XMIObject interface methods to add, set, and delete

Creating and Reading Advanced XMI Documents with the XMI Framework 301

// GeneratedRead.java

import cra.*;

import com.ibm.xmi.framework.*;

import java.util.*;

// This program demonstrates the use of a generated UserFactory

// class when an XMI document is loaded.

public class GeneratedRead {

public static void main(String[] args) throws Exception {

Workspace w = new Workspace();

UserFactory f = new UserFactory();

w.add(f.getModel());

XMIFiles files = new XMIFiles();

w.add(files);

XMIFile file = files.load("generated.xmi", XMIFile.DEFAULT,

false);

XMIContainer c = new XMIContainer(file.getObjects().iterator());

System.out.println(c);

}

}

Source Code 8.27 The GeneratedRead program.

Framework Value objects. They also set the definer for newly created Value
objects so the Framework serializes the Value objects correctly. One advantage
of this approach is that the user does not need to be aware of the creation of
Value objects. Source Code 8.28 shows the generated implementation class for
the Style interface.

302 Chapter 8

package cra;

import com.ibm.xmi.framework.*;

import java.util.*;

import cra.UserFactory;

public class StyleImpl extends XMIObjectImpl implements Style {

private com.ibm.xmi.framework.Model getXMIModel() {

cra.UserFactory f;

if (FactoryRegister.getFactory() instanceof cra.UserFactory)

f = (cra.UserFactory) FactoryRegister.getFactory();

else

f = new cra.UserFactory();

return f.getModel();

}

public StyleImpl() {

super();

try { setXMIName("Style"); } catch (XMIException e) {}

com.ibm.xmi.framework.Model m = getXMIModel();

com.ibm.xmi.framework.Namespace n = new

com.ibm.xmi.framework.Namespace("CRA",

"http://mycompany.com/CarRentalAgency");

com.ibm.xmi.framework.Data definer = m.getDeclaration(n,

WriterAdapter.CLASS, "Style", false);

try { setXMIDefiner(definer); } catch (XMIException e) {};

}

public String getMake() {

return (String) getXMIValueOfValue("CRA:make");

}

public void setMake(String value) {

com.ibm.xmi.framework.Value p = setXMIValue("CRA:make", value,

Value.DATA);

Source Code 8.28 A generated implementation class for the Style interface.

Creating and Reading Advanced XMI Documents with the XMI Framework 303

if (p.getXMIDefiner() == null) {

com.ibm.xmi.framework.Model m = getXMIModel();

com.ibm.xmi.framework.Namespace n = new

com.ibm.xmi.framework.Namespace("CRA",

"http://mycompany.com/CarRentalAgency");

com.ibm.xmi.framework.Data definer = m.getDeclaration(n,

getXMIDefiner(), "make", false);

try { p.setXMIDefiner(definer); } catch (XMIException e) {};

}

}

public String getModel() {

return (String) getXMIValueOfValue("CRA:model");

}

public void setModel(String value) {

com.ibm.xmi.framework.Value p = setXMIValue("CRA:model", value,

Value.DATA);

if (p.getXMIDefiner() == null) {

com.ibm.xmi.framework.Model m = getXMIModel();

com.ibm.xmi.framework.Namespace n = new

com.ibm.xmi.framework.Namespace("CRA",

"http://mycompany.com/CarRentalAgency");

com.ibm.xmi.framework.Data definer = m.getDeclaration(n,

getXMIDefiner(), "model", false);

try { p.setXMIDefiner(definer); } catch (XMIException e) {};

}

}

public int getYear() {

return Integer.valueOf((String)

getXMIValueOfValue("CRA:year")).intValue();

}

public void setYear(int value) {

com.ibm.xmi.framework.Value p = setXMIValue("CRA:year",

String.valueOf(value), Value.DATA);

if (p.getXMIDefiner() == null) {

com.ibm.xmi.framework.Model m = getXMIModel();

com.ibm.xmi.framework.Namespace n = new

com.ibm.xmi.framework.Namespace("CRA",

"http://mycompany.com/CarRentalAgency");

com.ibm.xmi.framework.Data definer = m.getDeclaration(n,

getXMIDefiner(), "year", false);

try { p.setXMIDefiner(definer); } catch (XMIException e) {};

Source Code 8.28 A generated implementation class for the Style interface. (Continued)

304 Chapter 8

}

}

public Collection getCar() {

java.lang.Object v = getXMIValueOfValue("car");

if (v instanceof java.util.Collection)

return (Collection) v;

ArrayList l = new ArrayList(1);

if (v instanceof XMIObject)

l.add(v);

return l;

}

public void addCar(Car object) {

com.ibm.xmi.framework.Value l = addXMIValue("car", object,

Value.REFERENCE);

if (l.getXMIDefiner() == null) {

com.ibm.xmi.framework.Model m = getXMIModel();

com.ibm.xmi.framework.Namespace n = new

com.ibm.xmi.framework.Namespace("CRA",

"http://mycompany.com/CarRentalAgency");

com.ibm.xmi.framework.Data definer = m.getDeclaration(n,

getXMIDefiner(), "car", false);

try { l.setXMIDefiner(definer); } catch (XMIException e) {};

}

}

public void removeCar(Car object) {

java.lang.Object v = getXMIValueOfValue("car");

if (v == object)

try { delete(getXMIValue("car")); } catch (XMIException e) {};

if (v instanceof Collection) {

((Collection) v).remove(object);

if (((Collection) v).size() == 0)

try { delete(getXMIValue("car")); } catch (XMIException e) {};

}

}

} // StyleImpl

Source Code 8.28 A generated implementation class for the Style interface. (Continued)

A drawback to this approach is that getting and setting values is not as effi-
cient as it could be because it requires the creation and setting of Value objects.
The Value objects are actually only required when the Framework serializes
objects. A more efficient approach would be for the implementation of the
accessor methods to be simpler, using a field in each implementation class to
store the values. Then each implementation class could implement the
getXMIValues() method of the XMIObject interface and create the Value objects
in the implementation of that method. This approach makes getting and set-
ting values efficient, and the serialization of the objects slightly less efficient. It
also makes loading an XMI document more complicated, but that extra com-
plication may be worth the price for greater efficiency in setting and getting
object values.

Summary

Now you know how to use the Framework to work with XMI files that contain
namespaces, information describing your documents, extensions, and cross-
file references. You also know how to put XMI documents in ZIP files and load
them from ZIP files using the Framework, as well as how to generate Java code
using the Framework. Although the Framework functionality is simple, using
it can help you to understand the kinds of services that XMI software can pro-
vide for you. Now that you know how to use the Framework to work with
XMI documents, you are ready to learn how to use the Framework to create
schemas.

Creating and Reading Advanced XMI Documents with the XMI Framework 305

307

The previous three chapters explain how to work with XML Metadata Inter-
change (XMI) documents. This chapter explains how to create XMI schemas
using the XMI Framework so that Extensible Markup Language (XML) parsers
can perform XML validation on your XMI documents. This chapter also
explains how to perform XML validation when you load an XMI document
with the Framework.

Although Chapter 3 describes in detail how to create XMI schemas, it
doesn’t describe the kinds of errors that can be detected by using validation
with schemas or how your choices to tailor the schemas affect validation. This
chapter gives you more insight into whether validation is useful in your appli-
cations and whether tailoring the default schemas to detect more errors is
necessary.

This chapter uses the XMI Framework. The capabilities of the XMI Frame-
work are described in Chapter 7 and Chapter 8. This chapter also uses soft-
ware from those chapters, so you should refer to those chapters for more
information about the Framework. Additional information on the Framework
is provided in Appendix A.

XMI Schemas

C H A P T E R

9

Creating XMI Schemas

The Framework creates XMI schemas, but it does not support the XMI tags
that enable you to tailor the schemas you create. At this time, you can use the
Framework to create default XMI schemas. You can also supply a namespace
Uniform Resource Identifier (URI) and a namespace prefix by adding a
Framework namespace to the Framework representation of a model; if the
Framework supports the XMI tags in the future, you will also be able to spec-
ify a namespace by using the nsURI and nsPrefix tags (remember that XMI tags
have the prefix org.omg.xmi, which we are omitting for brevity).

In this chapter, we examine how to create a schema for the car rental agency
model using the Framework. Then we discuss how to use the generated
schema to validate an XMI document when loading the document with the
Framework. We demonstrate that validation occurs by loading an XMI docu-
ment that is a well-formed XML document, but that also contains data that is
not defined by the car rental agency model and therefore not defined by the
schema generated from the model. Unless XML validation is done when the
document is loaded, the parser does not report an error.

Creating an XMI Schema with the
XMISchema Framework Class
The XMISchema class in the Framework represents an XMI schema. You spec-
ify a filename when you create an XMISchema object, and then you invoke the
write() method to create a schema. The parameter for the write() method is an
Iterator for the declarations in the model (classes, features, and packages in a
model are called declarations in the Framework). If you create a schema with
a target namespace, you must set the target namespace (using the setTarget-
Namespace() method) before invoking the write() method.

Recall from Chapter 7 that the Framework represents packages and classes
in a model using the Package and XMIClass interfaces. The attributes and asso-
ciation ends of a class are represented by interfaces that inherit from the
Feature interface. Chapter 7 includes a Java class called CRAModel that has a
method that uses the Framework interfaces to create a Framework representa-
tion for the car rental agency model.

In this chapter, we modify the CRAModel class by adding a method that
assigns a namespace to the declarations in a Framework model. Then we use
that method to create the Framework declarations to put in the schema.

As in Chapter 8, we use a namespace with a namespace URI of http://
mycompany.com/CarRentalAgency and a namespace prefix of CRA.

The addNamespace() method that we add to the CRAModel class assigns the
given namespace to each declaration in the given model:

308 Chapter 9

// Method added to CRAModel.java

// Adds the given Namespace to the declarations in the given Model.

public static void addNamespace(Namespace n, Model m)

throws Exception {

Iterator decls = m.getDeclarations().iterator();

while (decls.hasNext()) {

Data decl = (Data) decls.next();

decl.setXMINamespace(n);

}

}

We can use that method in the following CRASchema program to create a
default XMI schema for the car rental agency model:

// CRASchema.java

import com.ibm.xmi.framework.*;

import java.util.*;

// This program demonstrates how to create a schema from the

// Framework representation of a model.

public class CRASchema {

public static void main(String[] args) throws Exception {

Model m = CRAModel.makeCRAModel();

Namespace n = new Namespace("CRA",

"http://mycompany.com/CarRentalAgency");

CRAModel.addNamespace(n, m);

XMISchema schema = new XMISchema("cra.xsd");

schema.setTargetNamespace(n);

schema.write(m.getDeclarations().iterator());

}

}

Notice that the target namespace of the XMISchema is set before writing the
schema because the current version of the Framework requires it to be set. The
content of the file cra.xsd is as follows:

<?xml version="1.0" encoding="UTF-8"?>

<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"

xmlns:xmi="http://www.omg.org/XMI"

xmlns="http://mycompany.com/CarRentalAgency"

targetNamespace="http://mycompany.com/CarRentalAgency">

<xsd:import namespace="http://www.omg.org/XMI"

schemaLocation="xmi20.xsd"/>

<xsd:annotation>

XMI Schemas 309

<xsd:documentation>CLASS: Car</xsd:documentation>

</xsd:annotation>

<xsd:complexType name="Car">

<xsd:choice minOccurs="0" maxOccurs="unbounded">

<xsd:element name="vin" type="xsd:string" nillable="true"/>

<xsd:element name="available" type="xsd:string" nillable="true"/>

<xsd:element name="option" type="xmi:Any"/>

<xsd:element name="style" type="xmi:Any"/>

<xsd:element name="driver" type="xmi:Any"/>

<xsd:element ref="xmi:Extension"/>

</xsd:choice>

<xsd:attribute ref="xmi:id"/>

<xsd:attributeGroup ref="xmi:ObjectAttribs"/>

<xsd:attribute name="vin" type="xsd:string" use="optional"/>

<xsd:attribute name="available" type="xsd:string" use="optional"/>

<xsd:attribute name="style" type="xsd:IDREFS" use="optional"/>

<xsd:attribute name="driver" type="xsd:IDREFS" use="optional"/>

</xsd:complexType>

<xsd:element name="Car" type="Car"/>

<xsd:annotation>

<xsd:documentation>CLASS: Style</xsd:documentation>

</xsd:annotation>

<xsd:complexType name="Style">

<xsd:choice minOccurs="0" maxOccurs="unbounded">

<xsd:element name="make" type="xsd:string" nillable="true"/>

<xsd:element name="model" type="xsd:string" nillable="true"/>

<xsd:element name="year" type="xsd:string" nillable="true"/>

<xsd:element name="car" type="xmi:Any"/>

<xsd:element ref="xmi:Extension"/>

</xsd:choice>

<xsd:attribute ref="xmi:id"/>

<xsd:attributeGroup ref="xmi:ObjectAttribs"/>

<xsd:attribute name="make" type="xsd:string" use="optional"/>

<xsd:attribute name="model" type="xsd:string" use="optional"/>

<xsd:attribute name="year" type="xsd:string" use="optional"/>

<xsd:attribute name="car" type="xsd:IDREFS" use="optional"/>

</xsd:complexType>

<xsd:element name="Style" type="Style"/>

<xsd:annotation>

<xsd:documentation>CLASS: Person</xsd:documentation>

</xsd:annotation>

<xsd:complexType name="Person">

<xsd:choice minOccurs="0" maxOccurs="unbounded">

<xsd:element name="name" type="xsd:string" nillable="true"/>

310 Chapter 9

<xsd:element name="licenseNumber" type="xsd:string"

nillable="true"/>

<xsd:element name="car" type="xmi:Any"/>

<xsd:element ref="xmi:Extension"/>

</xsd:choice>

<xsd:attribute ref="xmi:id"/>

<xsd:attributeGroup ref="xmi:ObjectAttribs"/>

<xsd:attribute name="name" type="xsd:string" use="optional"/>

<xsd:attribute name="licenseNumber" type="xsd:string"

use="optional"/>

<xsd:attribute name="car" type="xsd:IDREFS" use="optional"/>

</xsd:complexType>

<xsd:element name="Person" type="Person"/>

<xsd:annotation>

<xsd:documentation>CLASS: Option</xsd:documentation>

</xsd:annotation>

<xsd:complexType name="Option">

<xsd:choice minOccurs="0" maxOccurs="unbounded">

<xsd:element name="name" type="xsd:string" nillable="true"/>

<xsd:element name="car" type="xmi:Any"/>

<xsd:element ref="xmi:Extension"/>

</xsd:choice>

<xsd:attribute ref="xmi:id"/>

<xsd:attributeGroup ref="xmi:ObjectAttribs"/>

<xsd:attribute name="name" type="xsd:string" use="optional"/>

<xsd:attribute name="car" type="xsd:IDREFS" use="optional"/>

</xsd:complexType>

<xsd:element name="Option" type="Option"/>

</xsd:schema>

If you do not set the Framework datatype for an attribute, the Framework
uses the schema string datatype. Notice also that the Framework set the
default namespace for the schema to the target namespace rather than using
the namespace prefix CRA. If there are aspects of this schema that you do not
understand, please read the Generating Schemas from Models section in Chap-
ter 3, which explains XMI schemas in detail, or read the Schemas section in
Chapter 2, which explains XML schemas.

Validating Documents
with the Framework
Now that we have an XMI schema, we can use it to validate an XMI document
when we load one with the Framework. To do this, we need to specify the

XMI Schemas 311

schema location for the car rental agency namespace and the XMI namespace
in the XMI document so that the parser can locate the schemas that will be
used. In Chapter 8, we discuss a program called NamespaceWrite that creates an
XMI document called namespace.xmi, which has the following content:

<?xml version="1.0" encoding="UTF-8"?>

<xmi:XMI xmi:version="2.0" xmlns:xmi="http://www.omg.org/XMI"

xmlns:CRA="http://mycompany.com/CarRentalAgency">

<xmi:Documentation>

<exporter>XMI Framework</exporter>

<exporterVersion>1.2</exporterVersion>

</xmi:Documentation>

<CRA:Car xmi:id="_1" available="false" vin="v1" driver="_3"

style="_2">

<option xmi:id="_1.1" xmi:type="CRA:Option" name="air conditioning"

car="_1"/>

</CRA:Car>

<CRA:Style xmi:id="_2" make="Jalopy" model="Deluxe" year="2002"

car="_1"/>

<CRA:Person xmi:id="_3" licenseNumber="ln1" name="Anita Karr"

car="_1"/>

</xmi:XMI>

We need to add the schema location for the car rental agency namespace and
the XMI namespace so that the XML parser can locate the schemas that will be
used when validating the file. We can use the schemaLocation attribute to do
this. The value of that attribute consists of pairs of information; each pair con-
sists of a namespace URI and the file that contains the namespace. We include
the schema xmi20.xsd on the CD-ROM; the target namespace of that schema is
the XMI namespace. We created the schema cra.xsd with the CRASchema pro-
gram. The updated content appears as follows (some lines have been split to fit
the page):1

<?xml version="1.0" encoding="UTF-8"?>

<xmi:XMI xmi:version="2.0" xmlns:xmi="http://www.omg.org/XMI"

xmlns:CRA="http://mycompany.com/CarRentalAgency"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://www.omg.org/XMI xmi20.xsd

http://mycompany.com/CarRentalAgency cra.xsd">

<xmi:Documentation>

<exporter>XMI Framework</exporter>

<exporterVersion>1.2</exporterVersion>

</xmi:Documentation>

<CRA:Car xmi:id="_1" available="false" vin="v1" driver="_3"

style="_2">

<option xmi:id="_1.1" xmi:type="CRA:Option" name="air conditioning"

car="_1"/>

</CRA:Car>

<CRA:Style xmi:id="_2" make="Jalopy" model="Deluxe" year="2002"

312 Chapter 9

car="_1"/>

<CRA:Person xmi:id="_3" licenseNumber="ln1" name="Anita Karr"

car="_1"/>

</xmi:XMI>

Notice that the schemaLocation attribute is declared in the schema instance
namespace, so we declare that namespace as well. We put this updated content
in the file valid.xmi to avoid confusion with the namespace.xmi file from Chapter
8.

Once this is done, we can load valid.xmi using the Framework and instruct
the Framework to perform validation when the document is loaded. In Chap-
ters 7 and 8, we use the program FrameRead, which loads a document, puts the
objects in a Framework container, and prints the container. In this chapter, we
modify that program to create the program ValidateRead, which performs
schema validation. The only change we need to make to FrameRead to perform
validation is to set the validation parameter of the load() method of the XMIFile
class to true. To run ValidateRead, the XMI document and all the schemas need
to be in the directory where ValidateRead is run. The following is the source
code for ValidateRead:

// ValidateRead.java

import com.ibm.xmi.framework.XMIFile;

import com.ibm.xmi.framework.XMIContainer;

// This class parses an XMI document and then puts the XMIObjects the

// Framework made into an XMIContainer so they can be printed. It

// performs XML validation on the XMI document.

public class ValidateRead {

public static void main(String[] args) throws Exception {

if (args.length != 1) {

System.out.println("Enter the name of an XMI document.");

return;

}

XMIFile file = XMIFile.load(args[0], XMIFile.DEFAULT, true);

XMIContainer c = new XMIContainer(file.getObjects().iterator());

System.out.println(c);

}

}

Running ValidateRead with valid.xmi results in the expected output—the
document is loaded and each XMIObject and Value created by the Framework
is printed. You can verify this yourself by running the program.

The file valid.xmi validates correctly with the generated schema. Let’s create
an XMI document that is well-formed, but does not validate. To do so, we add
an XML attribute called invalid to the Car XML element in valid.xmi. We give
invalid a value called anything. Then we put this content in a file called
invalid.xmi (as before, some lines have been split to fit the page):

XMI Schemas 313

<?xml version="1.0" encoding="UTF-8"?>

<xmi:XMI xmi:version="2.0" xmlns:xmi="http://www.omg.org/XMI"

xmlns:CRA="http://mycompany.com/CarRentalAgency"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://www.omg.org/XMI xmi20.xsd

http://mycompany.com/CarRentalAgency cra.xsd">

<xmi:Documentation>

<exporter>XMI Framework</exporter>

<exporterVersion>1.2</exporterVersion>

</xmi:Documentation>

<CRA:Car xmi:id="_1" available="false" vin="v1" driver="_3"

style="_2" invalid="anything">

<option xmi:id="_1.3" xmi:type="CRA:Option" name="air conditioning"

car="_1"/>

</CRA:Car>

<CRA:Style xmi:id="_2" make="Jalopy" model="Deluxe" year="2002"

car="_1"/>

<CRA:Person xmi:id="_3" licenseNumber="ln1" name="Anita Karr"

car="_1"/>

</xmi:XMI>

When ValidateRead loads invalid.xmi, it reports the following error:

org.xml.sax.SAXParseException: Attribute "invalid" must be

declared for element type "CRA:Car".

This demonstrates that ValidateRead is performing validation. If FrameRead,
which does not perform validation, loads invalid.xmi, the document loads
without a parser error.

Validating with XMI Schemas

As we demonstrated in the last section, XMI schemas can be used to perform
XML validation with XMI documents, although you are not required to do so.
However, XML validation cannot perform semantic checking; it can only per-
form syntactic checking. This section explains the types of errors that XML val-
idation with XMI schemas detects, so you can decide whether to use XML
validation.

XML Validation
Before discussing which types of checking can be done by XMI schemas, it is
useful to review which types of checking can be done by XML schemas. There
are three kinds of checking that can be done for any XML document:

314 Chapter 9

Well-formed document checking. Is the XML document well formed
according to the XML 1.0 specification? For example, do all begin tags
have corresponding end tags? All XML parsers are required to perform
this level of checking.

Syntactic checking. Does the syntax of an XML document conform to a
schema? For example, are the correct number and type of XML elements
nested inside other XML elements? XML parsers that perform validation
do this checking.

Semantic checking. Does the XML document reflect the semantics of the
data being represented? To accomplish this checking, the minimum nec-
essary processing is to match the data in an XML document with a defi-
nition of the data and determine whether the data conforms to the
semantics expressed in the definition. For XMI, the objects in a model
are compared to a model that defines the objects, enabling semantic
checking.

Schemas enable more powerful syntactic checking than Document Type
Definitions (DTDs), but they do not enable semantic checking. More semantic
checking can be done by matching objects in an XML document with a Unified
Modeling Language (UML) model. This is because there is a loss of informa-
tion when creating a schema from a model. For example, if there is multiple
inheritance in the model, it cannot be directly mapped to schemas by using
schema extension because a schema type can extend only one other type. As a
result, you cannot determine all of the superclasses of a class by examining the
corresponding type declaration in a schema.

XML parsers that perform XML validation with XML schemas can detect the
following kinds of errors:

■■ Incorrectly nested XML elements

■■ An incorrect number of nested XML elements

■■ XML elements that appear in an incorrect order

■■ XML elements that are in the document, but are not declared in the
schema

■■ XML attributes that are not declared

■■ XML attributes with values that are not legal

Some of these errors are reported only if strict validation is performed,
rather than lax or skip validation. For example, if lax validation is performed
for an XML element, a validating parser does not report an error for XML
attributes and nested XML elements that are not declared in a schema. If a dec-
laration exists for them and they do not match the declaration, then a validat-
ing parser reports an error with lax validation.

XMI Schemas 315

Errors Detected by
Default XMI Schemas
XMI schemas specify that the XMI XML element is validated using strict vali-
dation. The XML elements corresponding to object values and references are
validated using skip validation by default. In terms of the objects and values
that are written in an XMI document and the models that define them, default
XMI schemas detect the following kinds of errors when used with XML
validation:

■■ Top-level objects that are not defined by a model

■■ XML attributes and elements that do not correspond to UML attributes
or association ends in a model

■■ Incorrect references to objects within an XMI document

■■ Incorrect XML attributes specified for the XML elements defined
by XMI

We already saw an example of the second type of error from this list in a pre-
vious section. In that example, we started with a document named valid.xmi
and added an XML attribute named invalid to an XML element representing a
Car object. This resulted in a parser validation error because the attribute did
not correspond to a UML attribute or association end in the Car class from the
car rental agency model. Note that in contrast to this situation, XMI specifies
that lax validation is performed for Extension XML elements, so you can put
additional information in them that is not defined in a model without causing
a parser error during validation.

We’ll now look at examples of some of the other kinds of errors in the list by
creating variations of the valid.xmi document we used before. We’ll also see the
error messages that arise when these variations are loaded with the Validate-
Read program.

Consider the XMI document error1.xmi:

<?xml version="1.0" encoding="UTF-8"?>

<xmi:XMI xmi:version="2.0" xmlns:xmi="http://www.omg.org/XMI"

xmlns:CRA="http://mycompany.com/CarRentalAgency"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://www.omg.org/XMI xmi20.xsd

http://mycompany.com/CarRentalAgency cra.xsd">

<xmi:Documentation>

<exporter>XMI Framework</exporter>

<exporterVersion>1.2</exporterVersion>

</xmi:Documentation>

<CRA:NoClass xmi:id="_1"/>

</xmi:XMI>

316 Chapter 9

The NoClass XML element should correspond to an object that is an instance
of a class from the car rental agency model. However, there is not a class in that
model called NoClass. This is an example of a top-level object that is not defined
by a model. ValidateRead reports the following error when it loads error1.xmi:

org.xml.sax.SAXParseException: Element type "CRA:NoClass"

must be declared.

Consider error2.xmi, which contains a Car element that has a driver attribute
that is supposed to have the value _2, the value of the xmi:id attribute of the
Person element. The value is incorrectly specified without the leading under-
score as 2:

<?xml version="1.0" encoding="UTF-8"?>

<xmi:XMI xmi:version="2.0" xmlns:xmi="http://www.omg.org/XMI"

xmlns:CRA="http://mycompany.com/CarRentalAgency"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://www.omg.org/XMI xmi20.xsd

http://mycompany.com/CarRentalAgency cra.xsd">

<xmi:Documentation>

<exporter>XMI Framework</exporter>

<exporterVersion>1.2</exporterVersion>

</xmi:Documentation>

<CRA:Car xmi:id="_1" driver="2"/>

<CRA:Person xmi:id="_2" car="_1"/>

</xmi:XMI>

Since 2 is not a valid XML identifier (XML identifiers cannot begin with a
number), ValidateRead reports the following error when error2.xmi is loaded:

org.xml.sax.SAXParseException: Datatype error: Value '2' is

not a valid IDREF.

Errors Detected by
Tailored XMI Schemas
You can tailor XMI schemas so that parsers detect the following errors that
they do not detect when using default XMI schemas:

■■ Incorrect object values

■■ Incorrect numbers of values and references

■■ Incorrect data values

Use the useSchemaExtensions tag to detect the first kind of error, the enforce-
MinimumMultiplicity and enforceMaximumMultiplicity tags to detect the second
kind of error, and the schemaType tag to detect the third kind of error.

XMI Schemas 317

To show you how to tailor schemas to detect these errors, we present two
simple models and the default XMI schemas for those models, and explain
how to tailor the schemas to detect these three kinds of errors. We cannot use
the Framework to create the tailored schemas because it does not currently
handle XMI tags. However, we can use the ValidateRead program to load XMI
documents that use the tailored schemas to verify that they detect these errors.

Consider the Car1 model in Figure 9.1. It consists of a Car class with a wheel
object attribute that has the class Wheel as its type. The multiplicity of the wheel
attribute is 4..4. FancyWheel is a subclass of Wheel. For XMI documents con-
taining instances of the classes in Figure 9.1, we can use a namespace URI of
http://Car1 and a namespace prefix of CAR1.

We can create the Framework model for the Car1 UML model and generate
the default XMI schema for it, placing the schema in the file car1.xsd as follows:

<?xml version="1.0" encoding="UTF-8"?>

<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"

xmlns:xmi="http://www.omg.org/XMI"

xmlns="http://Car1"

targetNamespace="http://Car1">

<xsd:import namespace="http://www.omg.org/XMI"

schemaLocation="xmi20.xsd"/>

<xsd:annotation>

<xsd:documentation>CLASS: Car</xsd:documentation>

</xsd:annotation>

<xsd:complexType name="Car">

<xsd:choice minOccurs="0" maxOccurs="unbounded">

<xsd:element name="wheel" type="xmi:Any"/>

<xsd:element ref="xmi:Extension"/>

</xsd:choice>

318 Chapter 9

wheel[4..4] : Wheel

Car Wheel

FancyWheel

Figure 9.1 The Car1 model.

<xsd:attribute ref="xmi:id"/>

<xsd:attributeGroup ref="xmi:ObjectAttribs"/>

</xsd:complexType>

<xsd:element name="Car" type="Car"/>

<xsd:annotation>

<xsd:documentation>CLASS: Wheel</xsd:documentation>

</xsd:annotation>

<xsd:complexType name="Wheel">

<xsd:choice minOccurs="0" maxOccurs="unbounded">

<xsd:element ref="xmi:Extension"/>

</xsd:choice>

<xsd:attribute ref="xmi:id"/>

<xsd:attributeGroup ref="xmi:ObjectAttribs"/>

</xsd:complexType>

<xsd:element name="Wheel" type="Wheel"/>

<xsd:annotation>

<xsd:documentation>CLASS: FancyWheel</xsd:documentation>

</xsd:annotation>

<xsd:complexType name="FancyWheel">

<xsd:choice minOccurs="0" maxOccurs="unbounded">

<xsd:element ref="xmi:Extension"/>

</xsd:choice>

<xsd:attribute ref="xmi:id"/>

<xsd:attributeGroup ref="xmi:ObjectAttribs"/>

</xsd:complexType>

<xsd:element name="FancyWheel" type="FancyWheel"/>

</xsd:schema>

We do not include the program that creates this schema because it is similar
to the CRASchema program we presented in the first section of this chapter. We
do include the schemas and XMI documents covered in this section on the
CD-ROM.

Consider the XMI document car1A.xmi that contains a Car object and a Wheel
object:

<?xml version="1.0" encoding="UTF-8"?>

<xmi:XMI xmi:version="2.0" xmlns:xmi="http://www.omg.org/XMI"

xmlns:CAR1="http://Car1"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://www.omg.org/XMI xmi20.xsd

http://Car1 car1.xsd">

<CAR1:Car>

XMI Schemas 319

<wheel/>

</CAR1:Car>

</xmi:XMI>

When ValidateRead loads car1A.xmi, no parser error is reported even though
there is only one wheel because default XMI schemas do not enforce multi-
plicities.

Now consider the XMI document car1B.xmi that contains a Car object with
the correct number of values for the wheel attribute; however, the last value is
a Car object rather than a Wheel object:

<?xml version="1.0" encoding="UTF-8"?>

<xmi:XMI xmi:version="2.0" xmlns:xmi="http://www.omg.org/XMI"

xmlns:CAR1="http://Car1"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://www.omg.org/XMI xmi20.xsd

http://Car1 car1.xsd">

<CAR1:Car>

<wheel/>

<wheel/>

<wheel/>

<wheel xmi:type="CAR1:Car"/>

</CAR1:Car>

</xmi:XMI>

When ValidateRead loads car1B.xmi, no parser error is reported because the
parser cannot detect an incorrect value for the type attribute in the XMI name-
space. If the xsi:type attribute is used instead, a parser error is detected because
the parser can determine from the schema that the Car complex type is not
related to the Wheel complex type by schema extension.

We can create a schema that detects both kinds of errors. To do so, we set the
enforceMinimumMultiplicity and enforceMaximumMultiplicity tags to true for the
Car class in the Car1 UML model. We also set the useSchemaExtensions tag to
true for the Wheel class and FancyWheel class. The XMI schema that results,
car1_strict.xsd, is as follows:

<?xml version="1.0" encoding="UTF-8"?>

<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"

xmlns:xmi="http://www.omg.org/XMI"

xmlns="http://Car1"

targetNamespace="http://Car1">

<xsd:import namespace="http://www.omg.org/XMI"

schemaLocation="xmi20.xsd"/>

<xsd:annotation>

<xsd:documentation>CLASS: Car</xsd:documentation>

</xsd:annotation>

320 Chapter 9

<xsd:complexType name="Car">

<xsd:sequence>

<xsd:element name="wheel" minOccurs="4" maxOccurs="4"

type="Wheel"/>

<xsd:element ref="xmi:Extension" minOccurs="0"

maxOccurs="unbounded"/>

</xsd:sequence>

<xsd:attribute ref="xmi:id"/>

<xsd:attributeGroup ref="xmi:ObjectAttribs"/>

</xsd:complexType>

<xsd:element name="Car" type="Car"/>

<xsd:annotation>

<xsd:documentation>CLASS: Wheel</xsd:documentation>

</xsd:annotation>

<xsd:complexType name="Wheel">

<xsd:choice minOccurs="0" maxOccurs="unbounded">

<xsd:element ref="xmi:Extension"/>

</xsd:choice>

<xsd:attribute ref="xmi:id"/>

<xsd:attributeGroup ref="xmi:ObjectAttribs"/>

</xsd:complexType>

<xsd:element name="Wheel" type="Wheel"/>

<xsd:annotation>

<xsd:documentation>CLASS: FancyWheel</xsd:documentation>

</xsd:annotation>

<xsd:complexType name="FancyWheel">

<xsd:complexContent>

<xsd:extension base="Wheel"/>

</xsd:complexContent>

</xsd:complexType>

<xsd:element name="FancyWheel" type="FancyWheel"/>

</xsd:schema>

Notice that the FancyWheel type declaration extends the Wheel type
declaration.

We create a new XMI document called car1A_strict.xmi that is the same as
car1A.xmi except that car1_strict.xsd is specified in the schemaLocation attribute.
The file car1A_strict.xmi is as follows:

<?xml version="1.0" encoding="UTF-8"?>

<xmi:XMI xmi:version="2.0" xmlns:xmi="http://www.omg.org/XMI"

XMI Schemas 321

xmlns:CAR1="http://Car1"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://www.omg.org/XMI xmi20.xsd

http://Car1 car1_strict.xsd">

<CAR1:Car>

<wheel/>

</CAR1:Car>

</xmi:XMI>

When ValidateRead loads car1A_strict.xmi, it reports the following error:

org.xml.sax.SAXParseException: The content of element type "CAR1:Car"

is incomplete, it must match "(wheel,wheel,wheel,wheel,Extension*)".

This demonstrates that the tailored schema is correctly enforcing multiplicities.
We create the XMI document car1B_strict.xmi with the same contents as

car1B.xmi except that it specifies the car1_strict.xsd schema in the schema-
Location attribute. Also, rather than using the xmi:type attribute, the xsi:type
attribute is used because extension is used. The file car1B_strict.xmi appears as
follows:

<?xml version="1.0" encoding="UTF-8"?>

<xmi:XMI xmi:version="2.0" xmlns:xmi="http://www.omg.org/XMI"

xmlns:CAR1="http://Car1"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://www.omg.org/XMI xmi20.xsd

http://Car1 car1_strict.xsd">

<CAR1:Car>

<wheel/>

<wheel/>

<wheel/>

<wheel xsi:type="CAR1:Car"/>

</CAR1:Car>

</xmi:XMI>

When ValidateRead loads car1B_strict.xmi, it reports the following error:

org.xml.sax.SAXParseException: General Schema Error: Type :

http://Car1,Car does not derive from the type http://Car1,Wheel.

This demonstrates that the tailored schema can detect incorrect values for an
object attribute.

We included the FancyWheel class in the Car1 model, so you can verify that
car1_strict.xsd allows a FancyWheel object to be a value for the wheel attribute.
The file car1C_strict.xmi is identical to car1B_strict.xmi except that the value of
the xsi:type attribute of the last wheel attribute is CAR1:FancyWheel:

<?xml version="1.0" encoding="UTF-8"?>

<xmi:XMI xmi:version="2.0" xmlns:xmi="http://www.omg.org/XMI"

322 Chapter 9

xmlns:CAR1="http://Car1"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://www.omg.org/XMI xmi20.xsd

http://Car1 car1_strict.xsd">

<CAR1:Car>

<wheel/>

<wheel/>

<wheel/>

<wheel xsi:type="CAR1:FancyWheel"/>

</CAR1:Car>

</xmi:XMI>

When car1C_strict.xmi is loaded with ValidateRead, no parser error occurs,
indicating that car1_strict.xsd allows a FancyWheel object to be the value of the
wheel attribute.

To demonstrate how tailoring a schema can detect an illegal attribute value,
consider the model Car2 shown in Figure 9.2. It has a Car class with one
attribute, year, which has Integer as its type. We use the namespace URI
http://Car2 for this model. The Framework creates the following default XMI
schema for this model in file car2.xsd:

<?xml version="1.0" encoding="UTF-8"?>

<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"

xmlns:xmi="http://www.omg.org/XMI"

xmlns="http://Car2"

targetNamespace="http://Car2">

<xsd:import namespace="http://www.omg.org/XMI"

schemaLocation="xmi20.xsd"/>

<xsd:annotation>

<xsd:documentation>CLASS: Car</xsd:documentation>

</xsd:annotation>

<xsd:complexType name="Car">

<xsd:choice minOccurs="0" maxOccurs="unbounded">

<xsd:element name="year" type="xsd:string" nillable="true"/>

<xsd:element ref="xmi:Extension"/>

</xsd:choice>

<xsd:attribute ref="xmi:id"/>

<xsd:attributeGroup ref="xmi:ObjectAttribs"/>

XMI Schemas 323

year : Integer

Car
«datatype»

Integer

Figure 9.2 The Car2 model.

<xsd:attribute name="year" type="xsd:string" use="optional"/>

</xsd:complexType>

<xsd:element name="Car" type="Car"/>

</xsd:schema>

Notice that the type for year is the schema string datatype rather than the
schema int datatype because the Framework maps datatypes in a model to the
schema string datatype. Now consider the file car2.xmi, where the year
attribute is given the illegal value this year:

<?xml version="1.0" encoding="UTF-8"?>

<xmi:XMI xmi:version="2.0" xmlns:xmi="http://www.omg.org/XMI"

xmlns:CAR2="http://Car2"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://www.omg.org/XMI xmi20.xsd

http://Car2 car2.xsd">

<CAR2:Car year="this year"/>

</xmi:XMI>

When ValidateRead loads car2.xmi, no parser error is reported.
If the schemaType tag is set to int for the Integer datatype in the Car2 model,

XMI specifies the XMI schema car2_strict.xsd:

<?xml version="1.0" encoding="UTF-8"?>

<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"

xmlns:xmi="http://www.omg.org/XMI"

xmlns="http://Car2"

targetNamespace="http://Car2">

<xsd:import namespace="http://www.omg.org/XMI"

schemaLocation="xmi20.xsd"/>

<xsd:annotation>

<xsd:documentation>CLASS: Car</xsd:documentation>

</xsd:annotation>

<xsd:complexType name="Car">

<xsd:choice minOccurs="0" maxOccurs="unbounded">

<xsd:element name="year" type="xsd:int" nillable="true"/>

<xsd:element ref="xmi:Extension"/>

</xsd:choice>

<xsd:attribute ref="xmi:id"/>

<xsd:attributeGroup ref="xmi:ObjectAttribs"/>

<xsd:attribute name="year" type="xsd:int" use="optional"/>

324 Chapter 9

</xsd:complexType>

<xsd:element name="Car" type="Car"/>

</xsd:schema>

Notice that the type of the XML element and the XML attribute correspond-
ing to the year attribute is now xsd:int.

The file car2_strict.xmi is the same as car2.xmi except that car2_strict.xsd is
specified in the schemaLocation attribute so that schema is used by the parser
when it performs XML validation:

<?xml version="1.0" encoding="UTF-8"?>

<xmi:XMI xmi:version="2.0" xmlns:xmi="http://www.omg.org/XMI"

xmlns:CAR2="http://Car2"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://www.omg.org/XMI xmi20.xsd

http://Car2 car2_strict.xsd">

<CAR2:Car year="this year"/>

</xmi:XMI>

When ValidateRead loads car2_strict.xmi, the following parser error is
reported:

org.xml.sax.SAXParseException: Datatype error: 'this year' is not a

decimal.

This demonstrates that you can tailor a schema to detect illegal attribute val-
ues by using the schemaType tag.

Summary

You can use the XMI Framework to produce XMI schemas by representing
your models using Framework interfaces and classes like XMIClass, Model,
and Package. You can validate an XMI document when you load it with the
Framework. The default schemas specified by XMI can be used to perform
some checking, but more checking can be performed if you tailor the schemas.

The last four chapters have provided a variety of examples that describe the
kinds of programs you can write that work with XMI. The next chapter
explains how XMI fits into a broad strategy for using models in software
development and how XMI can be used with models that are not UML
models.

XMI Schemas 325

327

In this chapter, we examine the role that XML Metadata Interchange (XMI)
plays in the Model Driven Architecture (MDA), a new software development
approach that leverages the open standards that have been developed by the
Object Management Group (OMG), the World Wide Web Consortium (W3C),
and others. After introducing MDA, we examine the advantages it has over
more traditional software development techniques. As an example of the
many types of modeling that fall under the MDA approach, we introduce the
Flow Composition Model (FCM) and examine how it can be used by software
developers to describe the data and control flows among application compo-
nents in a software system. Finally, we develop an FCM model for an exten-
sion of the car broker domain example that we introduced in Chapter 4. By
doing this, we show how a new application can be built that leverages an exist-
ing legacy application—in this case, an application that manages the inventory
for a car dealer. The integration points of this example utilize XMI. If you have
not read Chapter 4, the introduction that we give to the car broker example in
this chapter is sufficient to understand how we extend the example here.

Compared to most of the earlier chapters in this book, this chapter is written
at a higher, more conceptual level. Although understanding the technical
details presented in the earlier chapters will enhance your understanding of
the material we present in this chapter, you can still get a general understand-
ing of MDA and the role XMI plays in it without having read all of the preced-
ing chapters. We recommend, however, that you do read Chapter 1 prior to

Model Driven Architecture
(MDA) and XMI

C H A P T E R

10

reading this chapter so that you have a basic introduction to XMI. Also, if you
have no prior experience with software modeling, you may want to read the
sections of Chapter 2 that describe the Unified Modeling Language (UML).
Since we show XMI files in this chapter, if you do read this chapter without
having read all of the earlier material, you may want to selectively read parts
of it again after learning more about XMI, as this may enhance your under-
standing of the topics we present.

What Is the Model Driven Architecture?

Since its founding in 1990, the focus of the OMG has been on the development
of open standards that facilitate the integration of multivendor and multilan-
guage software systems. To this end, the OMG successfully developed inter-
operability standards for the Object Management Architecture (OMA).
Building upon this, and recognizing the introduction of new technologies like
Java and XML, the scope of the OMG has more recently expanded.

Beginning in 1997, the OMG issued several new specifications, including
the following:

■■ UML, which we introduced in Chapter 2.

■■ The Meta Object Facility (MOF), which provides a universal way of
describing modeling constructs (known as metamodels).

■■ XMI, a standard for the representation, sharing, and interchange of data
and meta data.

■■ The Common Warehouse Metamodel (CWM), which includes a meta-
model for relational data modeling.

■■ The Enterprise Distributed Object Computing (EDOC) Profile, which
includes a model for FCM, Java, and Enterprise JavaBeans (EJB).

■■ The Enterprise Application Integration (EAI) specification. The EAI
specification defines models for messages, C, C��, and COBOL, and
provides datatype mappings between mixed languages, facilitating
access to enterprise applications.

In addition to these, the Java Metadata Interface (JMI), an upcoming stan-
dard from the Java Community Process, provides standard Java interfaces for
software models.

To effectively define the relationships among these new standards (and
those yet to come) and provide a roadmap for how they can be used in a coor-
dinated fashion, the OMG has expanded its original vision of the OMA. This
new architecture is what is known as MDA.

328 Chapter 10

The MDA approach is based on using abstraction techniques to effectively
manage the high level of complexity that arises in software development. As
its name suggests, MDA achieves this by utilizing modeling. In Chapter 2, we
provide a basic introduction to UML, and throughout the book, we present
examples of how modeling can serve as a useful way to provide an abstraction
for a problem domain. Since the models we have seen have been depicted in
UML class and object diagrams, you might wonder if any pictorial representa-
tion of a problem can serve as a model for the purpose of MDA. If not, what
restrictions apply?

As defined by the OMG, a model is a formal specification of the structure or
function of a system. A pictorial representation can be used to provide a visual
embodiment of a model. The model follows the rules of MOF, which we cover
later in this chapter, whereas the visual representation is based on the dia-
grammatic rules defined for the type of model that it represents. Under this
definition, a specification that is not based on some rigorously defined nota-
tion is not considered a model. Thus, the kinds of models that can serve as
abstractions of systems being developed using the MDA approach must fol-
low the rigorous guidelines of standards like UML and MOF. Picture diagrams
that are not backed by strict semantic guidelines that ensure uniformity of rep-
resentation and a standard understanding of their content are not considered
representations of models under MDA.

Benefits of Modeling

If you have been developing software for a while in your organization, you
probably have a process that you follow. Whatever process you use, you prob-
ably progress through the following steps in going from the initial idea for an
application to a working implementation of that application that is in use by
your customers:

1. Design

2. Development

3. Test

4. Delivery

5. Maintenance and support

These steps are not necessarily done only one time in the application life
cycle or only in the order shown. Often, there are repeated iterations of these
steps, with feedback from one iteration serving as input into the next. How-
ever, all of these activities need to take place at some time in the application

Model Driven Architecture (MDA) and XMI 329

life cycle. Additionally, although these steps usually require participation by
the development team, at some point members of other groups in the organi-
zation, such as marketing or technical writing, will become involved in the
development, sale, or delivery of the application. Finally, current or potential
customers may participate in focus groups or have interactions with the
development team, thereby providing valuable input into the design of the
application.

There are a number of ways that you can go about creating the design for an
application. Modeling, as a design approach, has a number of advantages over
more traditional ways of creating and documenting a product design. In some
cases, software teams create technical documents that detail the design of the
application that they are developing. Although these documents provide a
way to record and share ideas with other team members, it takes time to write,
review, and then update the documents as the design changes. Even with the
best intentions of keeping the design documents up-to-date, as the developers
become involved in translating the design into a working application, the doc-
uments often become out-of-date, especially when time becomes scarce. In
fact, it is often during those times when the design needs to change to accom-
modate a new requirement or correct a defect that members of the develop-
ment team have the least amount of time to update the design specifications.
At that point, the only real embodiment of the design is the software itself.
This creates a problem: Once the software becomes the only accurate reflection
of the design, there is no easy way to share the design with others, since read-
ing the code provides too much detail to quickly understand the structure and
interfaces of the application.

An alternative to working with design documents is to utilize modeling as
a way to record the design. Modeling does not preclude the use of textual
annotations to provide detailed descriptions of the components of the model,
but because the model is expressed graphically, it does provide a pictorial
representation of the application that is easy to share with others. In some
cases, it may be the only way to effectively share the design with people who
are not programmers themselves. Because this representation is an abstrac-
tion of the application, it is easier—and faster—for people to understand.
Additionally, with the proper tools, a model can be used to generate some of
the initial application code itself. Tools that support reverse engineering
enable the development team to easily update the model as the application
code evolves, thereby keeping the model synchronized with the application
over time. Finally, because the model provides a visual representation of the
problem domain, it can be helpful in enabling programmers to visualize and
clarify relationships in the application that may be less apparent from exam-
ining the actual code itself.

Beyond the benefits of documenting and enabling the sharing of the design
among those involved in the development of the application, using a model

330 Chapter 10

can be helpful in spanning the organizational boundaries within a company.
Because the model surfaces the interfaces of the application, programming
teams working in different areas of the same company can see the possible
integration points that exist between two designs more easily. Also, reorgani-
zations within the company, or even mergers with another company, can be
more effectively managed because the interfaces to the differing groups’ soft-
ware can be seen more readily. Finally, when new people join the organiza-
tion, they may be able to become contributors to the team faster because an
up-to-date model enables them to learn the structure of an application more
quickly.

There are other advantages to using modeling that can help you to develop
better products—and build them faster. Because a model can be shared more
easily with others than a written design specification, you’re more likely to get
early feedback from people within your own group and from other groups
that have dependencies on the software that you’re going to deliver. It is much
easier to make changes to the model (and application code) during the early
stages of development than if you wait until the implementation has been
completed and you find out that it doesn’t meet the requirements of the other
groups that depend on it. By helping to surface the application interfaces,
intra- and intergroup dependencies can be analyzed early in the product
development cycle when it’s easier to correct problems.

Finally, modeling is helpful to the management team because it helps to
ensure that the organization doesn’t allow the big picture to become obscured
by the details of the implementation. As Harvard University professor
Theodore Levitt explained in his landmark paper “Marketing Myopia”
(Levitt, 1960), businesses that define themselves too narrowly are less able to
adapt to change. The railroad industry experienced trouble because they
thought they were in the railroad business, instead of the transportation busi-
ness. With the advent of television, the Hollywood film industry experienced
trouble because they thought they were in the movie business, instead of the
entertainment business. By using modeling, you can help to ensure that your
organization’s focus does not become too narrow by becoming dependent on
the details of one particular implementation. You can focus on your customers’
needs—not just your products. In this way, you can adapt to the inevitable
changes in technology and the marketplace more readily and thereby help to
ensure the viability of your business for the long term.

Information Representations and Modeling

We have seen how class and object-based models can be used to provide an
abstract representation of a particular problem domain. However, this is just one
type of information that is found in a typical business enterprise. Information

Model Driven Architecture (MDA) and XMI 331

that is important to the enterprise exists in many forms: system and application
programs, databases, process descriptions, technical manuals, regulation
guides, and a host of others. What is needed is not only a way to model all these
disparate forms of information, but also a way for the applications that they rep-
resent to exchange data and be used together. In order to achieve this, we need
to have a common way of expressing different types of modeling information.
As we will see next, MOF provides a hierarchy that enables us to represent infor-
mation at progressively higher levels of abstraction and define ways to express
different types of models. Because XMI is based on MOF, what can be expressed
in a MOF-compliant model can be represented in XMI.

XMI and MOF
In the examples we looked at earlier, we saw how XMI can be used to repre-
sent the content of object-oriented models that are expressed in UML.
Although this capability is valuable in providing a standard way to represent
UML models, the expressive power of XMI extends far beyond this. When we
introduced XMI in Chapter 1, we explained that XMI is based on MOF. To
understand the expressive power that XMI has, let’s first take a look at the
capabilities provided by MOF.

MOF provides the capability to represent information at multiple levels of
abstraction, or metalevels. Information at a higher metalevel provides a more
abstract representation of the information at the metalevel below it. Although
this may seem like a simple idea, it is actually the capability to represent infor-
mation at higher levels that gives the MOF (and XMI) its expressive capability.

For some common architectures, it is convenient to show four levels of
abstraction. However, it is important to emphasize that these are examples of
common architectures, and the actual number of abstraction levels can vary. In
practice, your models will be at different levels depending on how they are
used. It is very common to use multiple levels together. Figure 10.1 shows an
example with four levels of information representation. Starting with the most
concrete information level at the bottom, we’ll go through each level to intro-
duce the terminology that is used and help you to see how the information
becomes more abstract as we move up in the hierarchy.

We include this taxonomy to help you to understand some of the terminol-
ogy (such as metamodel, meta data, and so on) that you may encounter when
working with XMI. However, if you’re not interested in knowing about infor-
mation hierarchies, for the purposes of this chapter all that you need to under-
stand is that FCM provides a type of modeling that is different from UML, but
both UML and FCM are similar in terms of their relationship to MOF. As with
UML, models created with FCM can be represented with XMI. Tools that can
read and generate XMI corresponding to these models can be used to establish
integration points for the modeled applications, even if the applications being

332 Chapter 10

integrated are represented by different types of modeling notations. Tools also
exist that can generate standard Java interfaces from models using JMI. The
WebSphere Studio and XMI Framework covered in this book generate Java
interfaces that match a given model. When combined with XMI, Java inter-
faces let you share information within and across software programs.

Model Information Hierarchy
Although the terminology for describing levels of abstraction may be new to
you, the concept of representing data at different levels is something you’ve
probably been aware of for quite some time, especially for the bottom two lev-
els of our example. The main point to remember is that for each level you
move up in the hierarchy, the metalevel (and the number of occurrences of the
meta prefix) increases by one. As we present each level of Figure 10.1, we will
give an example of the type of information that could be represented at that
level that corresponds to the car rental agency model we discussed at the
beginning of Chapter 6. If you have not read Chapter 6, you may want to
quickly look at the car rental agency model to help you better understand this
section. The relationship between any two levels is the same as the relation-
ship between a class and an object, or the relationship between a schema (or a
Document Type Definition [DTD]) and an XML document.

Let’s look at the example in Figure 10.1 by starting at the bottom level. The
type of information that is represented at this level is simply an instance of

Model Driven Architecture (MDA) and XMI 333

 Meta-metamodel MOF model

 Metamodel UML, FCM (others)

 Model

 Data 2002 Jalopy Deluxe

Information Type Example

In
cr

ea
si

ng
 L

ev
el

 o
f A

bs
tr

ac
tio

n

Car rental agency model

Figure 10.1 Different levels of information abstraction.

something. Examples of this could be the information in a column of a data-
base record, the score you got at the golf course last weekend, or, to tie into the
example we’ve been working with since Chapter 6, a 2002 Jalopy Deluxe—the
car from the car rental agency model. Objects running in a Java program are
also typically at this level.

Now let’s move up a level in the example. By moving up a level, we know
that the information represented here is more abstract than that in the level
below it. We also know that we can name the information at this level by pre-
fixing an additional meta to the name for the information in the level immedi-
ately below it. Applying this rule to the name for the bottom level—data—we
call information in this level meta data. A more common name for information
represented at this level is a model. An example of this is the car rental agency
UML model that we presented in Chapter 6. The Java classes we have used as
examples throughout this book are another example.

Now let’s move up another level in the example. Information at this level
has a meta relationship to the information in the level beneath it, which are
called models. Therefore, information at this level is called a metamodel. An
example of a metamodel is the UML metamodel. The UML metamodel con-
tains the constructs that are needed to represent a UML model. However,
metamodels representing other types of modeling and software architectures
can also be represented at this level. For example, the metamodel for FCM, a
message flow architecture that we will look at later in this chapter, is repre-
sented at this level. Models for programming languages such as Java, C��,
and COBOL are at this level, too1. The models for these languages are part of
the EDOC and EAI specifications. Also, models of other software architectures
such as EJB, which is a component architecture, are also at this level.

Finally, let’s move up to the top level in the example. Just as with the previ-
ous levels, information at this level is more abstract than the information in the
level beneath it. Because that information was called a metamodel, informa-
tion at this level is sometimes referred to as a meta-metamodel. An example of
this is the MOF model. Although we chose to use four levels of information
abstraction in this example, the number of levels is arbitrary. Also, the same
information may be considered to be at a different level of abstraction depend-
ing on the application. Finally, regardless of the level of abstraction at which
you view your objects to be represented, the objects can freely reference infor-
mation at any of the other levels of abstraction.

The more abstract concepts of meta data and metamodels may initially seem
strange since most people are more comfortable dealing with concrete entities.
However, once you understand the basic idea, you will understand what
makes MOF (and XMI) so powerful as a means to represent information in a
standard way. Because MOF provides the capability to describe many different
types of metamodels, software developers have many kinds of modeling at

334 Chapter 10

their disposal that they can use to build software that is used throughout all
areas of their businesses.

Now that you have seen the information representation capabilities of MOF,
you can see why XMI is also so powerful. Because XMI is based on MOF, it is
able to express information at any of the levels in the MOF hierarchy. There-
fore, models that you create that are based on MOF can be represented in XMI.
This provides a standard way to represent all of the different types of MOF-
based models that you utilize in developing the architecture of your business’s
software. The XMI representation is expressed using XML—another industry
standard. As a result of this standardization, information represented in XMI
can be created and exchanged in the suite of tools you use to develop your
applications. Further, because XMI is an open standard, any software tool
developer can create tools to read, manipulate, and generate XMI. This com-
mon way of expressing information enables tools that work with XMI to work
together.

What we have talked about up to this point is mostly theoretical. We
explained what gives MOF (and XMI) the capability to represent disparate
types of business information and share that information across multiple tools.
We will now look at a more concrete example of MOF’s expressive power by
examining another type of modeling—modeling with FCM. In doing this, we
will see how XMI can be used to represent information that is different from
the examples we have seen thus far, which used only UML.

The Flow Composition Model (FCM)

FCM is used to describe flows of information among components of an appli-
cation. FCM enables complex interactions to be broken down into simple flow
components. Similarly, it enables simple flow components to be composed into
more complex flow models. Like UML, FCM is a MOF-compliant metamodel.
We utilize the elements of the FCM metamodel to create models of problem
domains. Further, because FCM is a MOF-compliant metamodel, we can gen-
erate XMI for the FCM models that we create, just as we have done for the
UML models that we have seen thus far. FCM is the model for WebSphere MQ
(for Message Queueing), IBM’s message flow/workflow middleware for
exactly-once delivery of messages. When an FCM system is running, the mes-
sage flows are at the data level in the hierarchy in our example.

FCM supports models that represent different levels of granularity. The
more coarse-grained flows at the top level—termed macroflows—may be the
result of a business process analysis. These macroflows can then be described
in greater detail by microflows. For example, in a banking scenario, the
macroflow may represent a workflow process, such as opening an account.

Model Driven Architecture (MDA) and XMI 335

This process, in turn, may be broken down into more detailed microflows,
such as identifying the customer, determining the type of account to open,
accepting the initial deposit, and so on.

FCM supports the modeling of complex flows in different runtime environ-
ments. Because a complex flow may be made up of subflows that are deployed
in separate runtime environments, an FCM model can be used to model inte-
gration among domains that have software running in different application
runtimes (for example, a Java application, a COBOL application, and a rela-
tional database, such as DB2). In this chapter, we will see how FCM can be
used to model an extension of the car broker application described in Chapter
4 that spans different runtime environments.

We will not look at the entire FCM metamodel, but will examine a simple
example showing how you can model data and control flows to get an idea of
how this type of modeling differs from the modeling that is done with UML. If
you are interested in learning more about FCM, a more extensive treatment is
provided in the EDOC specification (OMG, June 2001).

Using FCM with the Car Broker Application

In Chapter 4, we introduced an application involving a car broker and a car
dealer. You may recall from that application that the car broker and car dealer
decided to implement a computer application to facilitate the exchange of
information that occurs during the purchase negotiation process. To quickly
review, the process works as follows:

1. The broker examines the cars the dealer has for sale.

2. For a car that the broker wants to purchase, he submits a bid to the
dealer.

3. The dealer examines the bid and either accepts it or proposes a higher
price. If he accepts the bid, the car is sold, and the negotiation process
ends. If the dealer proposes a higher price, he notifies the broker. The
broker can then submit a higher bid or end the negotiation process. If
he submits a higher bid, the process continues until either the car is
sold or the broker decides not to bid anymore.

The broker and the dealer have each hired a programmer to implement his
part of the system. The broker has hired a programmer named Bob, and the
dealer has hired a programmer named Dave. In Chapter 4, Bob and Dave
developed a model to represent the information that they wanted to exchange
during the negotiation process, and then they generated an XMI schema based
on this model. Figure 10.2 shows the model they developed.

336 Chapter 10

Up until this point, Bob and Dave have focused on developing the format of
the information that they would like to exchange. Having used a model to
accomplish that, they would now like to take the next step toward implement-
ing the application software that will utilize the information that they have
agreed on. To do this, they first have some more discussions about how they
will implement their respective sides of the application. For example, from
Dave’s point of view, he needs to figure out how he can access the dealer’s
inventory so that he can respond to queries by Bob’s application for informa-
tion about what cars are for sale on the dealer’s lot. Since both have already
agreed on the format of the data that they are going to exchange, each of them

Model Driven Architecture (MDA) and XMI 337

VIN : String
bidPrice : float
offerPrice : float
status : Status
date : Date
time : Time
dealer : String

Car

name : String

Option

car1

option*

available
sold
negotiating

«enumeration»
Status

make : String
model : String
year : int

Style

style

1

car

*

«datatype»
String

«datatype»
int

«datatype»
float

«datatype»
Date

«datatype»
Time

Figure 10.2 The UML model for the car broker application.

can now implement his side of the application. We’ll focus on how Dave
implements the dealer’s side of the application in this chapter.

Dave is pleased with how modeling and XMI helped him and Bob to agree
on the format of the data to exchange. Now that this has been decided, Dave
needs to implement the dealer’s side of the application, which consists of the
following two parts:

■■ A component that handles the bids the dealer receives from the broker.
This component should enable the dealer to either accept the bid or
return a counter-offer to the broker.

■■ A component that accesses the dealer’s car inventory database and
retrieves a list of the cars available for sale. The dealer already has a
legacy COBOL application that manages the database. Dave would like
to be able to use the COBOL application from his new Java application
to obtain the cars available for sale to send to the broker.

After each of these components is implemented, Dave will need to imple-
ment the logic to enable them to work together and interact with the broker’s
side of the application. Because this logic involves control flow, Dave would
like to create a model for the integration using FCM and follow an MDA
approach to developing his part of the application. This should not only help
him in successfully developing the application, but it will also help to ensure
that the application can be updated and enhanced in the future.

The dealer already uses a DB2 database to manage the inventory on his lot.
He also has an existing COBOL application that he uses to perform queries on
the database. Up until this point, the COBOL application has worked well for
the dealer. He and his sales staff are able to submit real-time queries to the data-
base using an application with a graphical user interface (GUI) that runs on the
workstations in their offices and on the floor of the showroom. The application
provides a template that mirrors the fields of an input record named INV-REQ-
IN, for Inventory Request Input (we will look at this record in detail later in the
chapter). They are able to fill in the information corresponding to their queries
and then submit them to the COBOL application. The output of a query is pre-
sented in a formatted file that they can view online or send to a printer to create
a hardcopy. They currently perform these manual queries to check if a car is
available for a customer or to respond to requests from the car broker men-
tioned earlier. If they implement this capability as a Web service, the results of
a query can be returned directly to the broker. The dealership also runs a
monthly inventory accounting program that queries the database. The inven-
tory application reconciles the monthly sales, the new shipments received, and
the inventory on hand at the end of each month. Figure 10.3 shows the different
clients of the inventory application. Because this application is already in pro-
duction and serving many clients, the dealer would like to make minimal
changes to the application to accommodate requests from the broker.

338 Chapter 10

Now that the dealer and broker plan to work together, Dave would like to
find a way for a query from Bob’s application in the broker’s office to reach the
database and return the results. This will permit the broker to see what inven-
tory the dealer has on hand before submitting a bid on a car. Dave and Bob
have decided to implement their respective parts of the application in Java and
use the Internet to deploy their application as a Web service. Dave’s applica-
tion will accept inventory requests from Bob’s application. After authenticat-
ing that the request is legitimate, he would like to make a request that the
COBOL application can understand. He would like the results to be returned
to his Java application, so that he can then send them to Dave’s application
over their Internet connection. The ability to accept these requests for process-
ing is the dealer’s Web service.

Dave decides to use the FCM modeling capability of IBM’s WebSphere soft-
ware to create models of the control and information flows for the two appli-
cation components on the dealer’s side—the component that handles the
negotiation process and the component that queries the dealer’s inventory.
When the application is complete, Dave will use WebSphere Studio to publish
the application as a Web service. To do this, Dave can utilize another Web-
Sphere Studio tool to generate a Web Services Definition Language represen-
tation that describes this service.2

We’ll look at an FCM representation for the negotiation component to intro-
duce the FCM methodology. Then we’ll look at an FCM representation of the
inventory component and see how it can be represented in XMI. Although we
will introduce some of the notation and terminology used in FCM, what is
important for you to understand is the general idea of how an FCM model can

Model Driven Architecture (MDA) and XMI 339

Dealership Database

Monthly Inventory
Application

COBOL Database
Application

Dealership Office Clients

DB2

Figure 10.3 Clients of the car dealer’s inventory application.

be used to model the flow of an application. Then, by focusing on a particular
part of the example, you will see how an FCM model can be represented in XMI.

Figure 10.4 contains an FCM model of the component that will implement
the negotiation process on the dealer’s side of the application. The flow dia-
gram in Figure 10.4 is what is known as an FCMComposition. An FCMCom-
position defines the flow of control and the flow of data between FCMNodes.
The solid lines in the flow diagram represent FCMControlLinks and show the
flow of control. The dot-dash lines represent FCMDataLinks and show the
flow of data. In an FCM model, control flows route the data flows. Both FCM-
ControlLinks and FCMDataLinks are specialized FCMConnections. The node
labeled Check Availability is known as an FCMFunction. An FCMFunction can
be thought of as being analogous to a programming language statement that
makes a procedural call or invokes a transaction.

Each of the two diamond-shaped nodes in the flow diagram is an FCM-
DecisionNode. The leftmost node (labeled Bid) is known as an FCMSource.
This node acts as a public entry point into the composition and defines the
input for the operation of submitting a bid on a car. The rightmost node
(labeled Bid Response) is the corresponding FCMSink, and it defines the results.
Although in this example the composition has just one FCMSource, in general,
it can have more than one, each acting as another public entry point. Although
the flow diagram shows the steps in the bid and negotiation process, to an
external user the FCMComposition simply provides the operation of submit-
ting a bid and receiving a response.

Let’s examine the flow diagram in Figure 10.4 to see the data and control
flows that occur from the point of receiving a bid from the broker to returning
a response. Beginning at the left, a bid for a car enters the flow composition
through the FCMSource node labeled Bid. The FCMControlLink that goes
from the Bid node to the Check Availability node triggers the activation of the
Check Availability node. The data representing the bid flows from the Bid node
to the Check Availability and Assess Bid nodes, as indicated by the FCM-
DataLinks in the flow diagram.

From the Check Availability node, control transfers to the Car Available?
FCMDecisionNode. The result of this decision determines whether control
flows to the Assess Bid or Respond “not available” FCMFunction nodes. If the car
being bid on is not available, control flows from the Respond “not available”
node to the Bid Response FCMSink. If the car is available, control flows to the
Assess Bid FCMFunction node, where the bid is evaluated. From here, control
flows to the Bid OK? FCMDecisionNode. If the bid is not acceptable, control
flows to the Send Counteroffer FCMFunction node, where a counteroffer is
determined. From there, flow transfers to the Bid Response FCMSink. If the bid
is acceptable, control flows from the Bid OK? FCMDecisionNode to the Accept
Bid FCMFunction node, and from there, to the Bid Response FCMSink.

340 Chapter 10

Model Driven Architecture (MDA) and XMI 341

B
id

C
he

ck
A

va
ila

bi
lit

y
A

ss
es

s
B

id
C

ar
A

va
ila

bl
e?

B
id

O
K

?
A

cc
ep

t
B

id

R
es

po
nd

 "
no

t
av

ai
la

bl
e"

S
en

d
C

ou
nt

er
of

fe
r

B
id

R
es

po
ns

e

Fi
gu

re
 1

0.
4

FC
M

 m
od

el
 fo

r
th

e
de

al
er

’s
 n

eg
ot

ia
tio

n
co

m
po

ne
nt

.

A key feature of FCM is hierarchical composition—the ability to use flow com-
positions to create new flow compositions. For example, the FCMComposition
in Figure 10.4 could be bound as the implementation of an FCMComponent in
a more complex car purchasing scenario. In this way, compositions can be
used together hierarchically to build more complex flows.

In Figure 10.5, we show an FCM model of the component for the inventory
query. This model is somewhat simpler, consisting of just three FCMNodes.
The leftmost node, labeled Inventory Request, is the FCMSource. The rightmost
node, labeled Inventory Response, is the FCMSink. The node labeled Check
Inventory is an FCMFunction node. The model flow involves receiving a
request from the broker, checking the inventory, and finally issuing a response
back to the broker.

XMI Example 10.1 contains a segment of the XMI file corresponding to the
FCM diagram shown in Figure 10.5. This is a representation of the kind of out-
put you would get from a tool that supported FCM modeling and had the
capability to generate the corresponding XMI representation of an FCM
model. We provide an explanation of this next.

The FCMFunction XML element corresponds to the FCMFunction node in
the model in Figure 10.5. Note that the value of the name attribute corresponds
to the label on the node in Figure 10.5. The inbound elements correspond to the
data and control links that enter the FCMFunction node in Figure 10.5; the out-
bound elements correspond to the data and control links that leave that node.
The FCMOperation element corresponds to the inventory entry point in the
COBOL inventory application. The inputs and outputs elements contained in
the FCMOperation element correspond to the inputs and outputs of the
COBOL inventory entry point. Each contains an XML element named lan-
guageElement that contains an href attribute that links it to an XMI representa-
tion of the input and output to the COBOL application. Before we look at the
XMI representation of the input and output, let’s examine the format of the
input and output that the COBOL application expects to receive.

342 Chapter 10

Inventory
Request

Check
Inventory

Inventory
Response

Figure 10.5 FCM model for the dealer’s inventory query component.

The inventory application accepts a COBOL record with the following struc-
ture as input:3

01 INV-REQ-IN.

03 INV-REQ-TYPE PIC X.

03 INV-CAR-INFO.

05 CAR-TYPE.

07 CAR-MODEL PIC X(5).

07 CAR-MAKE PIC X(5).

07 CAR-YEAR PIC X(4).

05 CAR-VIN PIC X(20).

The INV-REQ-TYPE entry indicates the type of query that is being submit-
ted. For example, the dealer may want to find all the entries that match a par-
ticular query or just the first one that matches. The INV-CAR-INFO entry
contains a CAR-TYPE, which holds the make, model, and year for a car in the
CAR-MODEL, CAR-MAKE, and CAR-YEAR record entries, respectively. It
also contains a CAR-VIN entry, which holds the vehicle identification number
for the car. You will note that some of this information is similar to that
described in the UML model that Bob and Dave developed. The fields follow-
ing the names of the record entries (for example, PIC X(5)) indicate the format
of the data for the entries. The numbers preceding the entries in the record are
known as level numbers and are used to indicate the relative nesting of one
entry to another in the structure of the record. For the purposes of this exam-
ple, the only thing you need to understand is what the names in the record
represent.

Model Driven Architecture (MDA) and XMI 343

<FCMFunction xmi:id="Function_1" name="checkInventory">

<inbound xmi:idref="ControlLink_7"/>

<inbound xmi:idref="DataLink_6"/>

<outbound xmi:idref="ControlLink_8"/>

<outbound xmi:idref="DataLink_7"/>

<invokes xmi:idref="FCMOperation_5"/>

</FCMFunction>

<FCMOperation xmi:id="FCMOperation_5" name="inventory">

<inputs xmi:id="FCMParameter_10">

<languageElement

href="COBOLINV-REQ-IN.xml#Element:INV-REQ-IN"/>

</inputs>

<outputs xmi:id="FCMParameter_10">

<languageElement

href="COBOLINV-REQ-OUT.xml#Element:INV-REQ-IN"/>

</outputs>

</FCMOperation>

XMI Example 10.1 Segment of an XMI file for an FCM model.

The dealer may want to perform a query that returns all the cars in the
inventory with a particular make, model, and year. In this case, the dealer
would specify the query type to return all the records that match, along with
the make, model, and year of the cars he wants to see. In this case, he would
not specify a vehicle identification number, since he would like to get records
for all the cars that match. The results of a query are returned in a record with
the following structure:

01 INV-REQ-OUT.

03 INV-REQ-MATCHES PIC 999.

03 INV-CAR-INFO OCCURS 1 TO 999 TIMES

DEPENDING ON INV-REQ-MATCHES.

05 CAR-TYPE.

07 CAR-MODEL PIC X(5).

07 CAR-MAKE PIC X(5).

07 CAR-YEAR PIC X(4).

05 CAR-VIN PIC X(20).

The output record INV-REQ-OUT has a numeric entry, INV-REQ-
MATCHES, which indicates the number of records that were found that match
the information in the query that was submitted. The INV-CAR-INFO entry
contains the same information that is in the input structure. This information
is repeated for as many matches as have been found that match the input
query. This is indicated by the OCCURS clause for the INV-CAR-INFO entry.
For example, if the dealer had submitted a query for cars of a particular make,
model, and year, the application would return an INV-CAR-INFO entry for
each car the dealer has of that make, model, and year. Each entry would also
include the vehicle identification number for the car it represents.

Now that we know the structure of the information that the COBOL appli-
cation expects for input and output, let’s return to our discussion of the XMI
segment for the FCM model in XMI Example 10.1. We are now ready to see the
information that is contained in the files that are referenced through the href
attributes for the language elements we looked at before. The href attributes
point to files that contain an XMI representation of the COBOL input and out-
put records. If the data representing the broker’s query is represented using
the format specified by these XMI files, then an adapter program can convert
the data in a query from the broker into the required COBOL parameters to
call the COBOL program. In this way, the functionality of the COBOL applica-
tion can be extended to a new client without changing the application. The
XMI representation of the COBOL input record, INV-REQ-IN, is shown in XMI
Example 10.2. This XMI document was created according to the COBOL model
defined in the EAI specification (OMG, September 2001). The COBOL model
provides a way to represent COBOL data structures using standard XMI rules.
Next we will explain the format of this file and how it maps to the COBOL
INV-REQ-IN record we saw earlier.

344 Chapter 10

Model Driven Architecture (MDA) and XMI 345

<?xml version="1.0" encoding="UTF-8"?>

<xmi:XMI xmi:version="2.0" xmlns:xmi="http://www.omg.org/XMI"

xmlns:COBOL="COBOL.xmi" xmlns:TypeDescriptor="TypeDescriptor.xmi">

<COBOL:COBOLElement xmi:id="Element:INV-REQ-IN" name="INV-REQ-IN"

level="01">

<sharedType xmi:idref="Type:INV-REQ-IN"/>

<instanceTDBase href="TDINV-REQ-IN.xml#AggregateInstanceTD_1"/>

</COBOL:COBOLElement>

<COBOL:COBOLComposedType xmi:id="Type:INV-REQ-IN">

<element xmi:id="Element:INV-REQ-IN/INV__REQ__TYPE"

name="INV__REQ__TYPE" level="03">

<sharedType xmi:idref="Type:INV-REQ-IN/INV__REQ__TYPE"/>

<instanceTDBase href="TDINV-REQ-IN.xml#SimpleInstanceTD_1"/>

</element>

<element xmi:id="Element:INV-REQ-IN/INV__CAR__INFO"

name="INV__CAR__INFO" level="03">

<sharedType xmi:idref="Type:INV-REQ-IN/INV__CAR__INFO"/>

<instanceTDBase href="TDINV-REQ-xml#AggregateInstanceTD_2"/>

</element>

</COBOL:COBOLComposedType>

<COBOL:COBOLAlphaNumericType xmi:id="Type:INV-REQ-IN/INV__REQ__TYPE"

usage="display" pictureString="X" synchronized="false"

justifyRight="false"/>

<COBOL:COBOLComposedType xmi:id="Type:INV-REQ-IN/INV__CAR__INFO">

<element xmi:id="Element:INV-REQ-IN/INV__CAR__INFO/CAR__TYPE"

name="CAR__TYPE" level="05">

<sharedType xmi:idref="Type:INV-REQ-IN/INV__CAR__INFO/CAR__TYPE"/>

<instanceTDBase href="TDINV-REQ-IN.xml#AggregateInstanceTD_3"/>

</element>

<element xmi:id="Element:INV-REQ-IN/INV__CAR__INFO/CAR__VIN"

name="CAR__VIN" level="05">

<sharedType xmi:idref="Type:INV-REQ-IN/INV__CAR__INFO/CAR__VIN"/>

<instanceTDBase href="TDINV-REQ-IN.xml#SimpleInstanceTD_2"/>

</element>

</COBOL:COBOLComposedType>

<COBOL:COBOLComposedType

xmi:id="Type:INV-REQ-IN/INV__CAR__INFO/CAR__TYPE">

<element

xmi:id="Element:INV-REQ-N/INV__CAR__INFO/CAR__TYPE/CAR__MODEL"

name="CAR__MODEL" level="07">

<sharedType

xmi:idref="Type:INV-REQ-IN/INV__CAR__INFO/CAR__TYPE/CAR__MODEL"/>

<instanceTDBase href="TDINV-REQ-IN.xml#SimpleInstanceTD_3"/>

</element>

<element

xmi:id="Element:INV-REQ-IN/INV__CAR__INFO/CAR__TYPE/CAR__MAKE"

name="CAR__MAKE" level="07">

<sharedType

XMI Example 10.2 COBOL INV-REQ-IN record expressed in XMI.

The XMI file shown in XMI Example 10.2 represents the hierarchical struc-
ture of the COBOL INV-REQ-IN record in XMI. Starting at the top of this file,
we’ll step through a few of the elements so that you can get the idea for how
this is done. Although we will refer to the elements and attributes by the
names used in the file to help you identify them, do not be overly concerned
with the names that are used for these constructs. What is important to under-
stand is how the hierarchical structure of the COBOL record is represented,
along with the types of the record entries. As we go through the first few
entries of the file, you may want to refer back to the definition of the INV-
REQ-IN record to see that the XMI file represents the corresponding hierar-
chical structure.

The first element following the XMI XML element has a tag name of
COBOL:COBOLElement. This type of element is used to represent data ele-
ments. Note that both the xmi:id and the name attributes are based on the name
of the level 01 record entry INV-REQ-IN. Correspondingly, the level attribute

346 Chapter 10

xmi:idref="Type:INV-REQ-IN/INV__CAR__INFO/CAR__TYPE/CAR__MAKE"/>

<instanceTDBase href="TDINV-REQ-IN.xml#SimpleInstanceTD_4"/>

</element>

<element

xmi:id="Element:INV-REQ-IN/INV__CAR__INFO/CAR__TYPE/CAR__YEAR"

name="CAR__YEAR" level="07">

<sharedType

xmi:idref="Type:INV-REQ-IN/INV__CAR__INFO/CAR__TYPE/CAR__YEAR"/>

<instanceTDBase href="TDINV-REQ-IN.xml#SimpleInstanceTD_5"/>

</element>

</COBOL:COBOLComposedType>

<COBOL:COBOLAlphaNumericType

xmi:id="Type:INV-REQ-IN/INV__CAR__INFO/CAR__TYPE/CAR__MODEL"

usage="display" pictureString="X(5)" synchronized="false"

justifyRight="false"/>

<COBOL:COBOLAlphaNumericType

xmi:id="Type:INV-REQ-IN/INV__CAR__INFO/CAR__TYPE/CAR__MAKE"

usage="display" pictureString="X(5)" synchronized="false"

justifyRight="false"/>

<COBOL:COBOLAlphaNumericType

xmi:id="Type:INV-REQ-IN/INV__CAR__INFO/CAR__TYPE/CAR__YEAR"

usage="display" pictureString="X(4)" synchronized="false"

justifyRight="false"/>

<COBOL:COBOLAlphaNumericType

xmi:id="Type:INV-REQ-IN/INV__CAR__INFO/CAR__VIN" usage="display"

pictureString="X(20)" synchronized="false" justifyRight="false"/>

</xmi:XMI>

XMI Example 10.2 COBOL INV-REQ-IN record expressed in XMI. (Continued)

has the value 01. The sharedType element that it contains has an xmi:idref
attribute with a value that matches the xmi:id of the COBOL:COBOLComposed-
Type element a few lines down. The sharedType element is used to represent the
type of a record entry. This indicates that the COBOL:COBOLComposedType ele-
ment has information about the type of the INV-REQ-IN record entry.

Looking now at the COBOL:COBOLComposedType element, we see that the
xmi:id contains the value of the xmi:idref of the sharedType element contained in
the COBOL:COBOLElement we saw previously. A COBOLComposedType is used
for nested declarations that contain additional entries, which the INV-REQ-IN
entry has. Nested within this element in the file is another element that has the
tag name element. A few lines below that element is another element that also
has the tag name element. These two elements correspond to the two level 03
record entries in the COBOL INV-REQ-IN record—the INV-REQ-TYPE and the
INV-CAR-INFO record entries.

If you examine the values for the xmi:id, name, and level attributes of these
two elements, you will see that they correspond to those two record entries in
the INV-REQ-IN record. Thus, these elements represent the first level of nest-
ing in the hierarchy. Each of these elements has a sharedType element that has
an xmi:idref that points to its type. For the element of the INV-REQ-TYPE entry,
the value of the xmi:idref corresponds to the value for the xmi:id of the
COBOL:COBOLAlphaNumericType element a few lines down in the file. This
type of element is used to represent a COBOL string of alphabetic and numeric
characters. In this case, the COBOL:COBOLAlphaNumericType element corre-
sponds to the PIC(X) type of the INV-REQ-TYPE entry. The value of the
xmi:idref attribute in the sharedType element belonging to the element for the
INV-CAR-INFO entry corresponds to the next COBOL:COBOLComposedType
element in the file. As you would expect, this element has two XML elements
with the tag name element that correspond to the two record entries nested in
the INV-CAR-INFO record entry—CAR-TYPE and CAR-VIN. This same pat-
tern continues throughout the file as it completes the representation of the
INV-REQ-IN COBOL record.

As we stepped through the XMI file in XMI Example 10.2, you may have
noticed some elements with the tag name instanceTDBase and wondered what
they represented. These elements are used to describe the low-level represen-
tation of the data in a language-independent way. Although the file in XMI
Example 10.2 represents the structure of the data in terms that a COBOL pro-
gram would, we also need a way to describe the actual data itself. By provid-
ing this complete description, an application development tool can generate a
program (called an adapter) that can read the low-level bytes of data and con-
vert them into a format that the COBOL application can understand.

Each of the instanceTDBase elements in the XMI file we looked at has an href
attribute that points into another XMI file—TDINV-REQ-IN.xml. This file con-
tains type descriptions for the low-level data representation that are language-

Model Driven Architecture (MDA) and XMI 347

independent. To get an idea for what is contained in this file, let’s look at XMI
Example 10.3, which contains an element from the TDINV-REQ-IN.xml file.
The element shown, TypeDescriptor:StringTD, is a type description for the lan-
guage-independent representation of a string. If you look at the attributes for
this element, you should recognize some that are commonly used to describe
the important aspects of a string, such as its length and justification.

As we mentioned earlier, to convert the information from the broker’s query
into the parameters for a call to the COBOL inventory application, they need
to be converted into a format that the COBOL program understands. To do
this, we need code that converts data represented in one language (Java) into a
form that the another language (COBOL) can understand. We will use an
adapter to do this. Fortunately, the adapter code for our example can be gen-
erated by a WebSphere tool using the XMI representation, so this process is
completely automated. All that Dave needs to do is use the XMI file shown in
XMI Example 10.2 as input into this tool, and he can generate the code that will
convert the information supplied by the broker’s query into parameters to the
COBOL application. Similarly, adapter code would need to be generated to
reverse this translation when sending the information back from the COBOL
application to the broker’s program.

Finally, if the dealer is happy with the application once it is up and running,
he may want to expand the number of clients that his dealership can serve. As
mentioned earlier, to do this Dave can utilize another WebSphere Studio tool
to generate a Web Services Definition Language representation that describes
this service. This will enable the dealer to make the service that is currently
available to just one broker a public service available to other brokers who
want to use it. In this way, he can expand the number of clients that can buy
cars through his dealership using this automated application.

In Figure 10.6, we show an illustration of how Dave’s implementation could
provide a public Web service that could accommodate multiple car brokers. In
this scenario, multiple brokers who want to query the dealer’s inventory to see
which cars are available can do so. As shown in Figure 10.6, a broker could
submit a request using XMI to a WebSphere server that is running the dealer’s
service that Dave implemented. From here, the request would be routed

348 Chapter 10

<TypeDescriptor:StringTD

xmi:id="StringTD_1" addrUnit="byte" width="8" alignment="1"

nickname="NT_string" bigEndian="false" encoding="8859_1"

lengthEncoding="fixedLength"

maxLengthFormula="1" checkValidity="false" format="X"

stringJustification="leftJustify" paddingCharacter=" "

characterSize="1"/>

XMI Example 10.3 Element from the TDINV-REQ-IN.xml file.

Model Driven Architecture (MDA) and XMI 349

M
Q

 S
er

ve
r

F
C

M
A

da
pt

er

D
ea

le
rs

hi
p

D
at

ab
as

e

D
B

2

C
O

B
O

L
A

pp
lic

at
io

n

D
ea

le
r

W
eb

S
er

vi
ce

W
eb

S
p

h
er

e
S

er
ve

r
C

ar
 B

ro
ke

r
X

M
I R

eq
ue

st

X
M

I M
es

sa
ge

In
vo

ke
In

vo
ke

Q
ue

ry

Fi
gu

re
 1

0.
6

Th
e

in
ve

nt
or

y
qu

er
y

ap
pl

ic
at

io
n

as
 a

 W
eb

 s
er

vi
ce

.

through an MQ Server to the legacy COBOL application via the data adapter.
Finally, the COBOL inventory application could query the dealer’s DB2 data-
base and return the result to the broker in the reverse direction.

This section has provided examples that show how XMI can be used to pro-
vide integration points for a diverse range of technologies, both old and new.
It can be used to represent FCM models, since FCM models are MOF models.
It can also be used to represent programming language data structures,
language-independent datatypes, and, of course, much more. Although we
looked at examples of some actual XMI files, what is important to understand
is not the details of those examples, but the integration capability that XMI can
provide for you through application development tools that can read and
write XMI. Because of its versatility as a standard way for representing so
many types of data, XMI provides a foundation on which tools can be built
that realize the MDA approach to software development.

Summary

The MDA approach is the future direction of software development. Modeling
provides a way to develop an application design that can be easily kept up-to-
date with the software that implements it. Additionally, it facilities integration
of new applications with existing ones in a way that does not require extensive
changes to them. A model, as a representation of an application design, can be
shared not only with members of the development team, but others in the
organization who are involved in the development and delivery process. Fur-
ther, modeling leverages the open standards provided by the OMG and
enables the long-term preservation, enhancement, and integration of a busi-
ness’s software assets. As we have seen through the extension of the car broker
application in this chapter, XMI, by providing a standard representation for
data (and meta data), enables data sharing and interchange, and it serves as a
fundamental standard in enabling the development of enterprise software sys-
tems using the MDA approach.

350 Chapter 10

351

The examples we covered earlier in this book were based on real-world
domains, but they were designed to be relatively simple to enable you to focus
on the XML Metadata Interchange (XMI) concepts that they demonstrated.
Although this is a good way to learn about XMI, before you make the decision
to use XMI in your own development projects, you probably want to know
how it is being used in existing, real-world applications. In this chapter, we
will examine just that by looking at how XMI is being used in IBM’s Web-
Sphere Studio Application Developer, a suite of integrated tools built on open
standards that supports end-to-end development, testing, and deployment of
e-business applications.

WebSphere Studio Application Developer (referred to as WebSphere Studio
in this chapter) provides an advanced development environment for Java 2
Platform, Enterprise Edition (J2EE) applications. It includes the following:

■■ A powerful Java development environment that includes support for
Java Development Kit (JDK) 1.3, a configurable runtime, an incremental
Java compiler, a scrapbook, dynamic debugging, and a Java text editor.

■■ Advanced Web, Java, and Extensible Markup Language (XML) devel-
opment tools.

■■ A Relational Schema Center (RSC) focused on relational database
design and database administration tasks, such as importing and map-
ping schemas and other advanced functions.

A Real-World Use of XMI:
WebSphere Studio

Application Developer

C H A P T E R

11

defined by a model for XML that includes XML elements, XML attributes, and
other parts of XML documents.

WebSphere Studio provides many examples of how to use the XML to XML
mapping editor. In this chapter, we will look at one of the examples and exam-
ine the XMI file that contains the mapping. You may want to look at the exam-
ple in more detail in WebSphere Studio. You will be able to see the steps that you
need to follow to create the mapping and generate the corresponding XSL file.

The CD Example
The example we will look at involves starting with an XML document that
describes a musical CD library and generating a second XML document that
validates with a different schema. The generated XML document contains
most of the same information as the first, but in a slightly different format. This
example illustrates how you can use the mapping editor to map between XML
elements, or to map an XML element to an XML attribute. In this discussion,
we’ll refer to the first document as the source document, and the second docu-
ment as the target document. Similarly, we’ll refer to the schemas for those two
documents as the source and target schemas.

The information about each CD in the source document includes the title,
the recording artist, the format (such as whether it includes two physical CDs),

A Real-World Use of XMI: WebSphere Studio Application Developer 353

Model of the Target
SchemaMappingModel of the Source

Schema

Target Schema
(newcdtitle.xsd)

XMI
(newcdtitle.xmx)

Source Schema
(cdtitle.xsd)

href href

Save Save Save

In Memory

Files

Figure 11.1 The relationship between a mapping in memory and the corresponding
saved files.

and a description of its content. The target document contains just the title, the
artist, and the description; the format information is not included. Also, the
information in the target document is in a slightly different format than it is in
the source document. The artist, represented as an XML element in the source
document, is represented as an XML attribute in the target document. The dif-
ferences in the formats of the two documents are defined by their schemas.
We’ll look at these differences in more detail as we examine the source and tar-
get schemas.

The Source Schema
The schema that validates the source document is shown in Schema 11.1. The
schema shows that the content of a valid CDLib element consists of one or
more CD elements. Each CD element is made up of an ordered sequence of up
to four elements, three of which are required to occur at least once. An artist
element must be present, occur at most once, and be the first element con-
tained in a valid CD element. This is followed by one or more title elements. A
single format element may follow the last title element, but is not required.
Finally, a single, optional description element is last. The type for the artist, title,
format, and description elements is the string schema datatype, as shown near
the end of Schema 11.1.

One of the sample XML documents provided with the example is shown in
XML Example 11.1. This document validates with the schema in Schema 11.1
and is used as the source document in the mapping example. This document
represents a CD library of three CDs. The CDs are represented by three CD ele-
ments that are contained in a CDLib element. Each of the three CD elements
contains the required artist element and one title and description element. The
third CD element in the document also contains a format element.

The Target Schema
The schema that validates the target document is shown in Schema 11.2. XML
documents validated by this schema represent much of the same information
as those described by the source schema. However, some differences exist in
both the information that can be included and the way it is organized. The
outermost element declaration in this schema is called Collections. Each valid
Collections element can contain exactly one Library element. A valid Library ele-
ment is made up of CD elements. There must be at least one CD element, while
the maximum number of CD elements is unbounded. Each CD element con-
tains one or more title elements, followed by at most one description element.
The type for both the title and description elements is the string schema
datatype. Finally, each CD element has a required attribute named artist that
has a type that is also the string schema datatype.

354 Chapter 11

The target schema differs from the source schema in a few subtle but impor-
tant ways. In the target schema, the CD elements occur in a sequence that is
nested inside a Library element, which is itself nested inside a Collections ele-
ment. In the source schema, the CD elements are nested inside a CDLib ele-
ment. However, the CDLib element is not nested inside another element. The
CD elements in the target schema do not contain a format element. Also,
although the name of the recording artist is placed in an artist element in the
source schema, this information is stored in the value of an artist attribute
belonging to a CD element in the target schema.

The Mapping
WebSphere Studio provides an easy-to-use wizard and a visual mapping edi-
tor to create the mapping between the two schemas. Figure 11.2 shows what
the visual mapping editor looks like in WebSphere Studio. Notice that the two
panes in the upper-right portion of the view contain tree representations of the

A Real-World Use of XMI: WebSphere Studio Application Developer 355

<?xml version="1.0"?>

<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema">

<xsd:element name="CDLib">

<xsd:complexType>

<xsd:sequence>

<xsd:element ref="CD" minOccurs="1" maxOccurs="unbounded"/>

</xsd:sequence>

</xsd:complexType>

</xsd:element>

<xsd:element name="CD">

<xsd:complexType>

<xsd:sequence minOccurs="1" maxOccurs="1">

<xsd:element ref="artist" minOccurs="1" maxOccurs="1"/>

<xsd:element ref="title" minOccurs="1" maxOccurs="unbounded"/>

<xsd:element ref="format" minOccurs="0" maxOccurs="1"/>

<xsd:element ref="description" minOccurs="0" maxOccurs="1"/>

</xsd:sequence>

</xsd:complexType>

</xsd:element>

<xsd:element name="artist" type="xsd:string"/>

<xsd:element name="title" type="xsd:string"/>

<xsd:element name="format" type="xsd:string"/>

<xsd:element name="description" type="xsd:string"/>

</xsd:schema>

Schema 11.1 The schema for the source XML document.

to read, we have reformatted it slightly by changing the indentation and
putting the Mapping:MappingRoot attributes on separate lines. Some of the
longer href attribute values span more than one line in XMI Example 11.1, but
are one line in the actual file created in WebSphere Studio.

As you may notice, the format of the href XML attribute values is somewhat
complicated.3 However, you do not need to understand all the details about
them. It is sufficient to have a general understanding of the XML elements and
XML attributes that are being referred to. The values of the href attributes use a
hierarchical naming convention to point into the source and target XML
schema definitions. Figure 11.3 contains a graphical representation of the
information in this file. You may want to refer to this figure as we describe the
contents of the file in detail in the rest of the chapter.

A Real-World Use of XMI: WebSphere Studio Application Developer 357

<?xml version="1.0"?>

<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema">

<xsd:element name="Collections">

<xsd:complexType>

<xsd:sequence>

<xsd:element ref="Library" minOccurs="1" maxOccurs="1"/>

</xsd:sequence>

</xsd:complexType>

</xsd:element>

<xsd:element name="Library">

<xsd:complexType>

<xsd:sequence>

<xsd:element ref="CD" minOccurs="1" maxOccurs="unbounded"/>

</xsd:sequence>

</xsd:complexType>

</xsd:element>

<xsd:element name="CD">

<xsd:complexType>

<xsd:sequence minOccurs="1" maxOccurs="1">

<xsd:element ref="title" minOccurs="1" maxOccurs="unbounded"/>

<xsd:element ref="description" minOccurs="0" maxOccurs="1"/>

</xsd:sequence>

<xsd:attribute name="artist" type ="xsd:string" use="required"/>

</xsd:complexType>

</xsd:element>

<xsd:element name="title" type="xsd:string"/>

<xsd:element name="description" type="xsd:string"/>

</xsd:schema>

Schema 11.2 The schema for the target XML document.

A Real-World Use of XMI: WebSphere Studio Application Developer 359

<?xml version="1.0" encoding="UTF-8"?>

<Mapping:MappingRoot

xmi:version="2.0"

xmlns:xmi="http://www.omg.org/XMI"

xmlns:Mapping="Mapping.xmi"

xmlns:XML="XML.xmi"

xmi:id="MappingRoot_1"

outputReadOnly="true"

topToBottom="true">

<nested xmi:id="Mapping_1">

<nested xmi:id="Mapping_2">

<inputs xmi:type="XML:XMLElement"

href="cdtitle.xsd.CDLib.dtdxml#1:CDLib.1:CD.1:artist"/>

<outputs xmi:type="XML:XMLAttribute"

href="newcdtitle.xsd.Collections.dtdxml#1:Collections.1:Library.1:

CD.2:artist"/>

</nested>

<nested xmi:id="Mapping_3">

<inputs xmi:type="XML:XMLElement"

href="cdtitle.xsd.CDLib.dtdxml#1:CDLib.1:CD.1:title"/>

<outputs xmi:type="XML:XMLElement"

href="newcdtitle.xsd.Collections.dtdxml#1:Collections.1:Library.1:

CD.1:title"/>

</nested>

<nested xmi:id="Mapping_4">

<inputs xmi:type="XML:XMLElement"

href="cdtitle.xsd.CDLib.dtdxml#1:CDLib.1:CD.1:description"/>

<outputs xmi:type="XML:XMLElement"

href="newcdtitle.xsd.Collections.dtdxml#1:Collections.1:Library.1:

CD.1:description"/>

</nested>

<inputs xmi:type="XML:XMLElement"

href="cdtitle.xsd.CDLib.dtdxml#1:CDLib.1:CD"/>

<outputs xmi:type="XML:XMLElement"

href="newcdtitle.xsd.Collections.dtdxml#1:Collections.1:Library.1:C

D"/>

</nested>

<inputs xmi:type="XML:XMLDocument"

href="cdtitle.xsd.CDLib.dtdxml#9"/>

<outputs xmi:type="XML:XMLDocument"

href="newcdtitle.xsd.Collections.dtdxml#9"/>

</Mapping:MappingRoot>

XMI Example 11.1 The XMI document containing the mapping.

the mapping from the artist element in the CD element in the source schema
to the artist attribute of the CD element in the target schema. Mapping_3
describes the mapping from the title element in the source schema to the title
element in the target schema. Mapping_4 describes the mapping from the
description element in the source schema to the description element in the target
schema.

The Mapping Metamodel
The relevant parts of the metamodel used for the mappings are very simple.
Figure 11.4 shows that each mapping consists of inputs and outputs, and pos-
sibly nested mappings as well. A RefObject is a generic representation of an
object in WebSphere Studio. A RefObject is not exposed to an end user of the
WebSphere Studio tools.

Figure 11.5 shows one kind of mapping that is called a MappingRoot. The
MappingRoot is the top-level mapping. Typically, a mapping is specified with a

A Real-World Use of XMI: WebSphere Studio Application Developer 361

RefObjectMapping

nestedIn1

nested

0..*

inputs 0..*

outputs

0..*

Figure 11.4 The Mapping and RefObject classes.

Mapping

outputReadOnly : Boolean
topToBottom : Boolean

MappingRoot

Figure 11.5 The Mapping and MappingRoot classes.

MappingRoot that contains all of the other mappings nested inside it. From
looking at the XMI file containing the mapping for the CD example, you
should be able to see how these parts of the metamodel correspond to ele-
ments in the file.

Using Models and EJBs

Now we’ll take a look at how XMI is being used in another area of WebSphere
Studio: EJB. EJB is a component architecture defined by Sun Microsystems for
the development and deployment of object-oriented, distributed, enterprise-
level applications. We do not cover EJB concepts in detail here, but you should
still be able to follow this discussion and see how XMI is used with EJBs in
WebSphere Studio, even if you’ve not worked with EJBs before.

The J2EE 1.2 and EJB 1.1 specifications were a big step forward for enter-
prise Java developers. They introduced a concept that enterprise applications
had been missing for some time: that the meta data of a J2EE application could
be read and written in a simple, easy-to-understand format, which is essen-
tially plain text. Through its WebSphere software, IBM has become an indus-
try leader in EJB tools, services, and middleware. This has some ramifications
for developers working with WebSphere Studio.

As we have seen throughout this book, models can be used to describe the
parts of an application that aren’t code, but describe the code and how it fits
together with other code. A model can contain information about a resource,
such as an EJB or servlet, and information about how it can be used by other
J2EE resources. In this way, models are used to represent meta data. An exam-
ple of meta data is the EJB 1.1 Deployment Descriptor, which is described in
the Enterprise JavaBeans Specification (Sun Microsystems, 1999).

Let’s say you’re building a simple EJB .jar file for deployment to WebSphere
4.0. The .jar file contains a single container-managed persistence (CMP) entity
bean that represents a person. CMP means that the EJB’s container manages
how the bean is stored, or persisted, in a relational database. The deployment
descriptor in XML Example 11.3 (named ejb-jar.xml) is contained in the META-
INF directory of our EJB .jar file and describes a Person EJB.

This simple deployment descriptor defines the parts of this EJB—such as the
home interface, the remote interface, the bean class, and the CMP fields—the
fields in the bean class that will be container-managed. In other words, they
will be stored and retrieved from a relational database by code generated

362 Chapter 11

A Real-World Use of XMI: WebSphere Studio Application Developer 363

<!DOCTYPE ejb-jar PUBLIC "-//Sun Microsystems, Inc.//DTD Enterprise

JavaBeans 1.1//EN" "http://java.sun.com/j2ee/dtds/ejb-jar_1_1.dtd">

<ejb-jar>

<enterprise-beans>

<entity>

<ejb-name>PersonEJB</ejb-name>

<home>com.ibm.demo.ejbs.PersonHome</home>

<remote>com.ibm.demo.ejbs.Person</remote>

<ejb-class>com.ibm.demo.ejbs.PersonBean</ejb-class>

<persistence-type>Container</persistence-type>

<prim-key-class>java.lang.Integer</prim-key-class>

<reentrant>False</reentrant>

<cmp-field><field-name>id</field-name></cmp-field>

<cmp-field><field-name>name</field-name></cmp-field>

<cmp-field><field-name>age</field-name></cmp-field>

<cmp-field><field-name>educationLevel</field-name></cmp-field>

<primkey-field>id</primkey-field>

</entity>

</enterprise-beans>

<assembly-descriptor>

<security-role>

<description>

Everyone can gain access to this EJB.

</description>

<role-name>everyone</role-name>

</security-role>

<method-permission>

<role-name>everyone</role-name>

<method>

<ejb-name>PersonEJB</ejb-name>

<method-name>*</method-name>

</method>

</method-permission>

<container-transaction>

<method>

<ejb-name>PersonEJB</ejb-name>

<method-name>*</method-name>

</method>

<trans-attribute>Required</trans-attribute>

</container-transaction>

</assembly-descriptor>

</ejb-jar>

XML Example 11.3 An EJB deployment descriptor.

during deployment. Finally, the deployment descriptor contains other infor-
mation such as the container transaction settings and the EJB security roles
defined for this bean.

This information is used by WebSphere in a number of ways, such as deter-
mining how to handle transactions (an example would be deciding whether to
start a new transaction for each method or to “flow” existing transactions
through each EJB method). It’s also used by the WebSphere security system to
determine if a user (who is mapped by WebSphere to one or more J2EE roles)
can access a particular EJB method. However, the part we are interested in is
that WebSphere also uses the meta data to determine how to generate the code
for CMP persistence that will actually do the work of storing and retrieving
information from a relational database.

So far, this section has presented examples of deployment descriptors that
you can find in other books and articles. We won’t rehash what all the various
tags in a deployment descriptor mean. Instead, let’s find out what other meta
data WebSphere uses in conjunction with EJBs, and how you can use that meta
data in your own projects.

Meta Data in WebSphere Studio

Let’s begin by examining what happens when you generate the deployment
code for this EJB using the WebSphere Application Assembly Tool (AAT).
Remember that there are two forms of an EJB JAR:

Undeployed form. This contains only the remote and home interfaces,
the bean implementation class, and the deployment descriptor.

Deployed form. This contains the classes that are necessary to support
persistence, transactions, and distribution, as well as the classes that are
generated by the application server during deployment.

We won’t cover how deployment is done in WebSphere in this chapter, since
that is covered in the product documentation as well as in Brown, 2001. What
we want to do here is to examine some of the information that WebSphere uses
in this deployment process. WebSphere Studio supports three methods for
mapping CMP EJBs to a database:

Top-down. Here the information in the EJB is used to create a database
table that corresponds to the managed fields of the CMP EJB.

Meet-in-the-middle. Here the mapping is between existing EJBs and
RDB schemas.

Bottom-up. EJB fields are created for the columns in a database table.

364 Chapter 11

The key point here is that WebSphere requires additional meta data beyond
the EJB deployment descriptor to perform these mappings. The meta data is
used to drive the code generation process for the classes that actually execute
specific SQL statements and then copy information out of the database tables
into the EJB and vice versa. If you can understand the meta data generated for
a top-down mapping, then you are well on your way to understanding how to
use WebSphere to map CMP EJBs to database tables via the meet-in-the-
middle or bottom-up method.

If you use the WebSphere AAT to generate deployment code for an EJB JAR
file, or deploy an undeployed EJB JAR file using the WebSphere Administra-
tion Console without specifying any additional information about database
mapping, it will perform a top-down mapping. So, if you open the JAR file
that contains this descriptor (attached) in AAT, generate the deployment code,
and then expand the JAR into a directory, you will see that the META-INF
directory now contains the following files:

/META-INF

ejb-jar.xml

MANIFEST.MF

Map.mapxmi

Table.ddl

/Schema/schema.dbxmi

One of these files is expected, the MANIFEST file, which is part of any JAR
file, so we won’t pay special attention to it. The other files are the interesting
ones:

ejb-jar.xml. The same as the one we saw before, but it is modified by
AAT to contain additional identification tags.

/Schema/schema.dbxmi. Contains an XMI representation of the database
schema and table that the CMP EJB maps to.

Map.mapxmi. Contains XMI that shows how the CMP fields in the ejb-
jar.xml file map into the database schema in the schema file.

Table.ddl. Contains the necessary SQL to create the table described in the
schema file.

In WebSphere Studio, we have models of all these key parts: Enterprise
JavaBeans, relational databases, and generalized mapping.

Let’s begin by looking at what changed in the ejb-jar.xml file. The part of the
file here shows what has changed:

<ejb-jar id="ejb-jar_ID">

<enterprise-beans>

A Real-World Use of XMI: WebSphere Studio Application Developer 365

<entity id="ContainerManagedEntity_1">

<ejb-name>PersonEJB</ejb-name>

<home>com.ibm.demo.ejbs.PersonHome</home>

<remote>com.ibm.demo.ejbs.Person</remote>

<ejb-class>com.ibm.demo.ejbs.PersonBean</ejb-class>

<persistence-type>Container</persistence-type>

<prim-key-class>java.lang.Integer</prim-key-class>

<reentrant>False</reentrant>

<cmp-field id="CMPAttribute_1">

<field-name>id</field-name>

</cmp-field>

<cmp-field id="CMPAttribute_2">

<field-name>name</field-name>

</cmp-field>

<cmp-field id="CMPAttribute_3">

<field-name>age</field-name>

</cmp-field>

<cmp-field id="CMPAttribute_4">

<field-name>educationLevel</field-name>

</cmp-field>

<primkey-field>id</primkey-field>

</entity>

</enterprise-beans>

...

</ejb-jar>

As you can see, a few things have been added. AAT has added an id
attribute to the following tags:

■■ ejb-jar

■■ entity

■■ cmp-field

These id attributes uniquely identify each CMP field within each Entity EJB
contained in the JAR. As we will see in a moment, this unique identification is
crucial for WebSphere to operate correctly on the other meta data files.

The next file to become familiar with is not really a meta data file, but a file
that WebSphere generates for your convenience. This is the Table.ddl file, which
contains the SQL to create the table for the top-down mapping:

CREATE TABLE PERSONEJB

(ID INTEGER NOT NULL,

NAME VARCHAR(250),

AGE INTEGER,

EDUCATIONLEVEL INTEGER);

ALTER TABLE PERSONEJB

ADD CONSTRAINT PERSONEJBPK PRIMARY KEY (ID);

366 Chapter 11

If you carefully compare this file to the previous EJB deployment descriptor,
you will see that the table that corresponds to this EJB has the same name spec-
ified in the content of the ejb-name element in the deployment descriptor, and
that the columns of the table match the names in the previous cmp-field ele-
ments. Finally, the column corresponding to the content of the primkey-field
elements has been declared NOT NULL (since it will be the key for this table),
and a primary key constraint has been added for this column as well.

You may be wondering how WebSphere knows what datatypes to use to cre-
ate this table. The answer is simple: There is a fixed mapping of datatypes in the
database to the Java language types of the container-managed attributes defined
in the code of your EJB Bean class. This mapping varies from database to data-
base, which is why you must select the database type in either the AAT or the
WebSphere Administration Console when you deploy the EJB to WebSphere.

Now that you’ve seen the Table.ddl file and understand how WebSphere
derived it from the code of your CMP EJB and the meta data in the EJB
deployment descriptor, the next file to investigate is the schema.dbxmi file held
in the Schema subdirectory of the META-INF directory. The schema.dbxmi file is
shown in XMI Example 11.2.4

This file uses XMI. In fact, what it’s describing is WebSphere’s internal
means of representing the database schema for this EJB.5 Although it may ini-
tially appear complicated, it’s not that hard to understand once you study it
for a few minutes. Immediately after the opening XMI tag that describes the
version and namespaces used by this file, you see the following tags:

<RDBSchema:RDBDatabase xmi:id="RDBDatabase_1" name="TopDownDB"

tableGroup="RDBTable_1">

<dataTypeSet href="UDBV7_Primitives.xmi#SQLPrimitives_1"/>

</RDBSchema:RDBDatabase>

The only important thing about this group of tags is that it specifies that this
particular schema uses the DB2 UDB 7 mapping to map Java types to database
types.

The next segment gets more interesting. Notice that these tags have the fol-
lowing structure, as shown in Figure 11.6.

As you can see, there is a RDBSchema:RDBtable element that corresponds to
the table defined in the previous CREATE TABLE SQL. There are columns ele-
ments for each of the columns defined in the table as well. Finally, each
columns element contains type information that describes both the originating
type and the type of the column. The originatingType element provides infor-
mation on the primitive database type (numeric and so on), while the type ele-
ment shows how the originating type is extended for this particular column
(by providing length, scale, or precision information).

Here we have an XML definition of the table. At first glance, this doesn’t
seem useful, because it is very similar to the information in the Table.ddl file.

A Real-World Use of XMI: WebSphere Studio Application Developer 367

368 Chapter 11

<xmi:XMI xmi:version="2.0" xmlns:xmi="http://www.omg.org/XMI"

xmlns:RDBSchema="RDBSchema.xmi">

<RDBSchema:RDBDatabase xmi:id="RDBDatabase_1" name="TopDownDB"

tableGroup="RDBTable_1">

<dataTypeSet href="UDBV7_Primitives.xmi#SQLPrimitives_1"/>

</RDBSchema:RDBDatabase>

<RDBSchema:RDBTable xmi:id="RDBTable_1" name="PERSONEJB"

primaryKey="SQLReference_1" database="RDBDatabase_1">

<columns xmi:id="RDBColumn_1" name="ID" allowNull="false"

group="SQLReference_1">

<type xmi:type="RDBSchema:SQLExactNumeric"

xmi:id="SQLExactNumeric_1">

<originatingType xmi:type="RDBSchema:SQLExactNumeric"

href="UDBV7_Primitives.xmi#SQLExactNumeric_1"/>

</type>

</columns>

<columns xmi:id="RDBColumn_2" name="NAME">

<type xmi:type="RDBSchema:SQLCharacterStringType"

xmi:id="SQLCharacterStringType_1" length="250">

<originatingType xmi:type="RDBSchema:SQLCharacterStringType"

href="JavatoDB2UDBNT_V71TypeMaps.xmi#SQLCharacterStringType_250"/>

</type>

</columns>

<columns xmi:id="RDBColumn_3" name="AGE">

<type xmi:type="RDBSchema:SQLExactNumeric"

xmi:id="SQLExactNumeric_2">

<originatingType xmi:type="RDBSchema:SQLExactNumeric"

href="UDBV7_Primitives.xmi#SQLExactNumeric_1"/>

</type>

</columns>

<columns xmi:id="RDBColumn_4" name="EDUCATIONLEVEL">

<type xmi:type="RDBSchema:SQLExactNumeric"

xmi:id="SQLExactNumeric_3">

<originatingType xmi:type="RDBSchema:SQLExactNumeric"

href="UDBV7_Primitives.xmi#SQLExactNumeric_1"/>

</type>

</columns>

<namedGroup xmi:type="RDBSchema:SQLReference"

xmi:id="SQLReference_1"

name="PERSONEJBPK" members="RDBColumn_1" table="RDBTable_1"

constraint="Constraint_PERSONEJBPK"/>

<constraints xmi:id="Constraint_PERSONEJBPK" name="PERSONEJBPK"

type="PRIMARYKEY" primaryKey="SQLReference_1"/>

</RDBSchema:RDBTable>

</xmi:XMI>

XMI Example 11.2 The schema.dbxmi file.

However, the next file, map.mapxmi, brings everything together and helps all
this make sense. This provides another instance of the mapping we described
in the previous section. The map.mapxmi file is shown in XMI Example 11.3.6

A few things are key to understanding how WebSphere EJB to RDB map-
ping works. We wouldn’t expect that you would be able to generate this file
from scratch, but we’ll explain what it does so that you’ll be able to make small
changes to this file (and the others we’ve covered) in order to handle simple
challenges in CMP mappings with WebSphere.

Let’s start several lines down in this file:

<inputs xmi:type="ejb:ContainerManagedEntity"

href="META-INF/ejb-jar.xml#ContainerManagedEntity_1"/>

<outputs xmi:type="RDBSchema:RDBTable"

href="META-INF/Schema/Schema.dbxmi#RDBTable_1"/>

Here we have the first indication of what is going on. As you can see, these
two lines link a specific EJB reference in the ejb-jar.xml file (ContainerManaged-
Entity_1, which was the id of the PersonEJB we saw earlier) with a particular
database table defined in the schema (RDBTable_1, which is the PERSONEJB

A Real-World Use of XMI: WebSphere Studio Application Developer 369

Table

Type information

Column

1..*

1

Figure 11.6 Database tag structure.

370 Chapter 11

<ejbrdbmapping:EjbRdbDocumentRoot xmi:version="2.0"

xmlns:xmi="http://www.omg.org/XMI"

xmlns:ejbrdbmapping="ejbrdbmapping.xmi" xmlns:ejb="ejb.xmi"

xmlns:RDBSchema="RDBSchema.xmi" xmlns:Mapping="Mapping.xmi"

xmi:id="EjbRdbDocumentRoot_1" outputReadOnly="false"

topToBottom="true">

<helper xmi:type="ejbrdbmapping:RdbSchemaProperies"

xmi:id="RdbSchemaProperies_1" primitivesDocument="DB2UDBNT_V71">

<vendorConfiguration

href="RdbVendorConfigurations.xmi#DB2UDBNT_V71_Config"/>

</helper>

<inputs xmi:type="ejb:EJBJar" href="META-INF/ejb-jar.xml#ejb-jar_ID"/>

<outputs xmi:type="RDBSchema:RDBDatabase"

href="META-INF/Schema/Schema.dbxmi#RDBDatabase_1"/>

<nested xmi:type="ejbrdbmapping:RDBEjbMapper" xmi:id="RDBEjbMapper_1">

<helper xmi:type="ejbrdbmapping:PrimaryTableStrategy"

xmi:id="PrimaryTableStrategy_1">

<table href="META-INF/Schema/Schema.dbxmi#RDBTable_1"/>

</helper>

<inputs xmi:type="ejb:ContainerManagedEntity"

href="META-INF/ejb-jar.xml#ContainerManagedEntity_1"/>

<outputs xmi:type="RDBSchema:RDBTable"

href="META-INF/Schema/Schema.dbxmi#RDBTable_1"/>

<nested xmi:id="PersonEJB_id---PERSONEJB_ID">

<inputs xmi:type="ejb:CMPAttribute"

href="META-INF/ejb-jar.xml#CMPAttribute_1"/>

<outputs xmi:type="RDBSchema:RDBColumn"

href="META-INF/Schema/Schema.dbxmi#RDBColumn_1"/>

<typeMapping

href="JavatoDB2UDBNT_V71TypeMaps.xmi#Integer-INTEGER"/>

</nested>

<nested xmi:id="PersonEJB_name---PERSONEJB_NAME">

<inputs xmi:type="ejb:CMPAttribute"

href="META-INF/ejb-jar.xml#CMPAttribute_2"/>

<outputs xmi:type="RDBSchema:RDBColumn"

href="META-INF/Schema/Schema.dbxmi#RDBColumn_2"/>

<typeMapping

href="JavatoDB2UDBNT_V71TypeMaps.xmi#String-VARCHAR"/>

</nested>

<nested xmi:id="PersonEJB_age---PERSONEJB_AGE">

<inputs xmi:type="ejb:CMPAttribute"

href="META-INF/ejb-jar.xml#CMPAttribute_3"/>

<outputs xmi:type="RDBSchema:RDBColumn"

href="META-INF/Schema/Schema.dbxmi#RDBColumn_3"/>

<typeMapping

href="JavatoDB2UDBNT_V71TypeMaps.xmi#int-INTEGER"/>

</nested>

XMI Example 11.3 The map.mapxmi file.

table previously seen in the schema file). In fact, if this were a multiple-table
mapping (one where some columns came from two or more tables), you’d see
multiple outputs elements, each referring to a different schema file and table
within that file.7 This same principle continues throughout the rest of the file,
as the next section indicates:

<nested xmi:id="PersonEJB_id---PERSONEJB_ID">

<inputs xmi:type="ejb:CMPAttribute"

href="META-INF/ejb-jar.xml#CMPAttribute_1"/>

<outputs xmi:type="RDBSchema:RDBColumn"

href="META-INF/Schema/Schema.dbxmi#RDBColumn_1"/>

<typeMapping href="JavatoDB2UDBNT_V71TypeMaps.xmi#Integer-INTEGER"/>

</nested>

In this segment you see the connection between a particular container-
managed field defined in the ejb-jar.xml file (CMPAttribute_1, which is the field
id) and a particular database column defined in the schema (RDBColumn_1,
which is the ID column). After the input and output mappings are defined, the
final piece to this puzzle is the type mapping, which (as you can see) maps a
Java type (Integer) to a relational database type (INTEGER). This kind of map-
ping is repeated for all of the CMP fields in the EJB.

If you’re familiar with converters in VisualAge for Java EJB support, you’ll
recognize that the typeMapping element is used to pick the default converter. If
you need a different conversion than what is specified (say, a specialized con-
verter that knows how to convert the special Strings Yes and No to a boolean),
you can specify this through a helper element at this point.

Figure 11.7 shows the interaction between these three primary XML files
and their constituent parts.

A Real-World Use of XMI: WebSphere Studio Application Developer 371

<nested xmi:id="PersonEJB_educationLevel---PERSONEJB_EDUCATIONLEVEL">

<inputs xmi:type="ejb:CMPAttribute"

href="META-INF/ejb-jar.xml#CMPAttribute_4"/>

<outputs xmi:type="RDBSchema:RDBColumn"

href="META-INF/Schema/Schema.dbxmi#RDBColumn_4"/>

<typeMapping

href="JavatoDB2UDBNT_V71TypeMaps.xmi#int-INTEGER"/>

</nested>

</nested>

<typeMapping xmi:type="Mapping:MappingRoot"

href="JavatoDB2UDBNT_V71TypeMaps.xmi#Java_to_DB2UDBNT_V71_TypeMaps"/>

</ejbrdbmapping:EjbRdbDocumentRoot>

XMI Example 11.3 The map.mapxmi file. (Continued)

EJB XMI Mapping Example

Now that you know about the existence, structure, and interrelationships of
these XML files, the question is, what do you do with them? If you are a tool
builder who wants to generate your own entity EJBs using this information,
consider using the documented Application Developer tool APIs to construct
these files.

There are a couple of instances where directly changing the XML can be the
easiest way of updating your EJBs. For example, many corporate environ-
ments have different database tables set up to support development, testing,
and production. In some cases, these databases may be hosted on the same
instance of DB2 or Oracle, and only differ by schema name (you might have
DEV.PERSONEJB, TEST.PERSONEJB, and PROD.PERSONEJB). How would
you write your code so that it doesn’t have any dependencies on a certain
environment? In the case of CMP Entity EJBs, WebSphere makes it simple. All

372 Chapter 11

Column Def.

Output

Input

CMP field Output

Input

Output

Input

Nested Mapping

EJB Def.

map.mapxmi

 EJB Def.

ejb-jar.xml

Table

Schema

schema.dbxmi

Figure 11.7 Meta data file relationships.

you need to do is change the name of the schema in the schema tag, and then
deploy the EJB JAR file to the different WebSphere instances used for the three
environments. For example, for DEV, your tag might look like this:

<RDBSchema:RDBDatabase xmi:id="RDBDatabase_1"

name="DEV" tableGroup="RDBTable_1">

While for PROD, your tag might look like this:

<RDBSchema:RDBDatabase xmi:id="RDBDatabase_1"

name="PROD" tableGroup="RDBTable_1">

The great thing about this simple substitution is that you can automate it
with tools like AWK, SED, or even ANT, which could also be used to invoke
the appropriate WebSphere command-line tool (SEAppInstall on Advanced
Single Server Edition, or WSCP on Advanced Edition) to generate the deploy-
ment code and install the resulting application.

In this case, you’d start with an undeployed EJB JAR file, deploy it once, and
then copy the meta data files described previously back into the build tree of
your project so that they become part of the undeployed JAR file. When you
deploy the JAR, WebSphere picks up the meta data files and generates the
deployment code appropriately.

Another simple change you can make is to update the XML to perform a
minimal meet-in-the-middle mapping when either the EJB definition or the
database schema changes. For instance, suppose you decide later in the project
to change the name of the educationLevel CMP field to edLevel. You’d only need
to update the ejb-jar.xml file to change the field like this:

<cmp-field id="CMPAttribute_4">

<field-name>edLevel></field-name>

</cmp-field>

Keep the id the same, because (as we saw earlier) the id is actually used to
map the CMP field to the corresponding column in the schema. As you can
imagine, a corresponding change in the database would involve keeping the
ejb-jar.xml the same while updating the schema.dbxmi file appropriately. Again,
in either case, redeploy the EJB JAR file after editing the XML.

Summary

The example we saw with the XML to XML mapping editor shows just one use
of XMI in WebSphere Studio. However, from this example you have seen how
XMI is being used in a real-world product, and how the models corresponding
to the XML to XML mapping editor demonstrate the use of the MDA approach

A Real-World Use of XMI: WebSphere Studio Application Developer 373

in its design. Similar to the example we presented in Chapter 10, this demon-
strates another way that the expressive power of XMI enables it be used to rep-
resent many different kinds of information in a programming application.

In the example with EJBs, we examined the use of XMI in model-based
enterprise architectures using EJB, Java, and a relational database, as well as
the mappings between these models. We described how the ejb-jar, schema, and
map files interoperate, and how the tools that operate on these files function.
This information can help you make better use of the WebSphere tools for
CMPs and plan the best way to handle automated configuration and deploy-
ment issues involving CMPs.

We encourage you to try out the XML to XML mapping editor, the EJB cre-
ation and deployment tools, and the other tools that are included in the copy
of WebSphere Studio on the CD-ROM. This is the best way for you to see the
benefits that XMI and MDA are already bringing to the world of software
development.

374 Chapter 11

375

The purpose of this appendix is to describe the Framework capabilities in a
systematic way so you can effectively use the Framework. It provides you with
information about all the Framework capabilities, not just the ones used by the
programs in this book. Some of the material in this appendix will be familiar to
you if you have read Chapters 7, 8, and 9. Sometimes we refer back to material
already covered in those chapters, rather than repeating it here.

You do not need to read this appendix to understand the programs in Chap-
ters 7 through 9; those chapters explain enough about the Framework for you
to understand the programs in them. For example, this appendix describes
how to use the Framework with XML Metadata Interchange (XMI) 1.0 and
XMI 1.1, as well as XMI 2.0, but the rest of the book only discusses XMI 2.0. In
addition, in this appendix we explain parts of the Framework object model
that are not covered in the rest of this book because they are not used by the
programs in the book.

We begin our explanation of the Framework by explaining its purpose, and
then we provide an overview of some of the most important aspects of the
Framework. After that, we provide advice on how to use it. Then we explain
the Framework object model, which enables you to represent your objects and
classes in a generic way. Once you understand the object model, you can begin
to learn how to load and save XMI files, generate Document Type Definitions
(DTDs) and schemas, and generate code from models.

The XMI Framework:
Supplemental Documentation

A P P E N D I X

A

Other sources of Framework information are Chapters 7 through 9, the
Javadocs for the Framework application programming interfaces (APIs), and
the examples that are provided with the Framework (the Javadocs and Frame-
work examples are included on the CD-ROM). This appendix supplements
those sources of information. Depending on how you learn best, you might
want to examine the Framework examples, and then consult this appendix or
the Javadocs for further information.

Purpose

The purpose of the Framework is to enable you to learn about XMI. The
Framework is designed to let you begin to work with XMI without becoming
an XMI expert.

The primary capabilities of the Framework are as follows:

■■ Reading and writing XMI files

■■ Creating XMI DTDs

■■ Creating XMI schemas

You can use the Framework to learn about the following topics:

■■ XMI 1.0, XMI 1.1, and XMI 2.0, and how XMI has evolved

■■ The capabilities that XMI software provides

■■ How to use XMI in your applications

You can even get ideas for how to implement your own XMI software.
The Framework is designed to enable you to work with XMI at a higher

level of abstraction than Extensible Markup Language (XML) elements and
attributes. The Framework uses an XML parser, but you can use the Frame-
work without being an XML expert. You do not need to learn how to use the
Simple API for XML (SAX) and the Document Object Model (DOM) to use
most of the Framework functionality, although some advanced Framework
capabilities enable you to use SAX if you understand it.

You should be aware of some basic XML issues though, especially what a
legal XML tag name for an XML element is, and what a legal name for an XML
attribute is. It is possible to use the Framework to create illegal XMI files,
DTDs, and schemas. If you do so, XML parser errors occur when those files,
DTDs, and schemas are used. The Framework reports parser errors to you.

376 Appendix A

Overview

The numerous classes and interfaces in the Framework are grouped into four
major parts. The four parts are as follows:

■■ The Framework object model

■■ Classes that represent XMI files, DTDs, and schemas

■■ Adapters

■■ Helper classes

We provide a brief summary of each of these parts of the Framework in this
section. Figure A.1 contains the entire Framework object model. Figure A.2
contains the most important classes for the other parts of the Framework.

Framework Object Model
The Framework object model is a generic representation of objects and classes.
This generic representation enables you to specify all the information necessary
to serialize objects using XMI and to create XMI DTDs and schemas from classes.
There are two major parts of the object model. The first part supports objects and
their values. The second part supports packages, classes and their features, and
datatypes. Packages, classes, features, and datatypes are called declarations.

Both parts of the Framework object model consist of interfaces and imple-
mentations of the interfaces. The names of the interfaces are related to the
names of the classes that implement the interfaces. Each class that implements
an interface has a name that consists of the name of the interface followed by
the suffix Impl. For example, you will learn that the XMIObject interface repre-
sents an object. The class that implements this interface is named XMIOb-
jectImpl.

You use the Framework interfaces and implementation classes representing
objects and their values to create XMI files. The Framework uses the interfaces
and implementation classes by default to create objects and values when it
loads XMI files. However, the Framework is capable of creating instances of
other classes when it loads XMI files, as we explain later. You can use the
Framework to make objects without making corresponding classes.

Packages, classes and their features, and datatypes are Framework declara-
tions. You can put declarations into a Framework model. You can create XMI
DTDs and schemas from Framework models.

The XMI Framework: Supplemental Documentation 377

The XMI Framework: Supplemental Documentation 379

File, Schema, and DTD Classes

XMIFile

XMIDTD

XMISchema

XMIFiles

Adapter Classes

ReaderAdapter

WriterAdapter

Helper Classes

DeclarationFactory

XMIContainer

Workspace

Figure A.2 The parts of the Framework apart from the object model.

Adapters
Adapters enable you to connect your Java objects and classes with the Frame-
work. By implementing an object writer adapter, you enable the Framework to
write your Java objects to an XMI file. By implementing an object reader adapter,
you enable the Framework to restore your Java objects from an XMI file. In
both of these cases, the adapters you write enable you to work with your Java
objects rather than representations of them based on Framework objects and
values. Finally, by implementing a declaration writer adapter, you enable the
Framework to use your Java classes to create XMI DTDs and schemas.

You do not need to write an adapter to work with XMI files, DTDs, and
schemas, but you can do so if you want to avoid representing your objects
using the interfaces in the Framework object model.

Helper Classes
Helper classes provide useful functionality when using the Framework. One
helper class is the XMIContainer class. You can put XMIObjects into an XMI-
Container and print the container. Doing so gives you a list of the objects and
their values. This capability is useful for determining which objects and values
the Framework created when it loaded an XMI file. The XMIContainer class
also enables you to obtain an XMIObject by using its uuid and obtain all con-
structs with a given XMI name.

Another important helper class is the Workspace class. It enables you to reg-
ister one or more models with the Framework so they are available when the
Framework saves and loads XMI files. By using this class, you can ensure that
the Framework properly interprets the contents of an XMI file. We explain this
topic in more detail later.

Suggestions for Using the Framework

There are several ways to use the Framework. This section presents some pos-
sible ways of using the Framework and the pros and cons of each way.

If you want to work with XMI files that contain data conforming to a spe-
cific model, create a Unified Modeling Language (UML) model for your data,
and then use the UML2Java class in the Framework to generate Java classes
that you can use to work with your data. (You can also generate a DTD and
schema from your model if you wish.) Generating classes this way enables
you to work with XMI 1.0, XMI 1.1, and XMI 2.0 files if you load the XMI files
using a workspace. A major additional advantage of using this approach is
that your users do not need to keep track of XMI names; the generated Java
classes hide details about XMI names and the Framework Data hierarchy

380 Appendix A

from your users. This approach is best for people that do not want to learn a
lot about XMI.

If you know about XMI, you can use the implementation classes provided
for the Data hierarchy to make XMI files regardless of your problem domain.
You can also use the Data hierarchy to represent objects from XMI files even if
you do not know the model they conform to. You can use the XMIClass and
Package implementations to create XMI DTDs.

You should use a workspace for loading XMI files if you want to preserve
the value types of object values; otherwise, when you load an XMI file, the
value types of the new Value objects will not match the original value types.
You need to create a model for your objects and add the model to the work-
space before loading XMI files for this approach to work.

You can implement adapters if you want to connect your objects or classes
to the Framework without having those objects or classes inherit from the
Framework or implement Framework interfaces.

Framework Object Model

The Framework object model provides a generic representation of objects and
classes. The purpose of the object model is to provide the Framework with the
information it needs to save and load XMI files and create XMI DTDs and XMI
schemas. Although it is not a standard, the object model has concepts that are
similar to the concepts in the UML and Meta Object Facility (MOF) object mod-
els, so learning it can help you learn those standards. You can also learn what
information is required by XMI by learning the Framework object model.

As explained previously in this appendix, there are two major parts to the
Framework object model: objects (and their values) and declarations. Declara-
tions consist of packages, classes and their features, and datatypes.

We explain how to represent objects and their values first. Next we explain
how to represent classes and their features, and then packages. We explain details
about the interfaces that are used to represent these concepts. Finally, we explain
aspects of the object model that apply to many of the parts of the object model;
some of these aspects are XMI names, namespaces, tag values, and definers.

Objects and Values
The root interface of the Framework object model is called Data. All the other
interfaces in the object model directly or indirectly extend the Data interface.
The Data interface contains methods for getting and setting an XMI name, a
definer, a namespace, and sets of tag values, which can be used to store addi-
tional information for a construct. We explain more details about these con-
cepts later in this appendix.

The XMI Framework: Supplemental Documentation 381

The XMIObject interface represents objects. Objects have values, which are
either object values or data values. The XMIObject interface does not let you
represent the behavior of objects, so there is no Method or Operation interface in
the object model. The purpose of the object model is to represent the state of an
object so the Framework can save the state in an XMI file and restore it when
loading an XMI file (it also represents the structural features of classes so XMI
DTDs and schemas can be generated). Because methods and operations are
not part of an object’s state, they are not included in the Framework object
model.

The Value interface represents one or more values for an object. It enables
you to specify all the information required by XMI to save a value in an XMI
file: the name of the feature corresponding to the value, the kind of value, and
the data values and object values themselves. Data values are represented by
Java String objects, and object values are XMIObjects. A Value object holds one
or more data values and object values, as we explain later.

The interfaces for objects and values extend the Data interface, as shown in
Figure A.3.

XMIObjects

Unlike Java, which requires you to make a class before you can make an
instance of the class, you can make an XMIObject and set values for it without
making a corresponding XMIClass, the Framework representation of a class.
The reason you can do this is to make it easy for you to create a Framework
representation for your objects and save them in an XMI file so you can learn
how XMI handles your objects.

382 Appendix A

«interface»
Value

«interface»
XMIObject

«interface»
Data

Figure A.3 Framework interfaces for objects and their values.

You can make XMIObjects using the Framework in several ways:

■■ You can make instances of the XMIObjectImpl class.

■■ You can load an XMI file.

■■ You can invoke one of the makeXMIObject() methods in the Facto-
ryAdapter class.

■■ You can create instances of Java classes that implement the XMIObject
interface. You can create these classes yourself, or you can use the
Framework to generate Java classes that implement the XMIObject
interface from your models.

You use the XMIObject interface methods to add, get, remove, and set val-
ues; set the XMI identity for an object; and work with XMI extensions. The
XMI identity of an object consists of the XMI id, uuid, and label. XMI exten-
sions are described in the XMI Extension section of Chapter 8.

Attribute Values

As explained previously, each Value object enables you to specify the kind of
value. The Framework has several interfaces that extend the Value interface.
Some of these correspond to different kinds of UML attribute values, and some
correspond to UML link ends. The AttributeValue interface represents three
kinds of UML attribute values. Each AttributeValue object represents one or
more attribute values. In both UML and MOF, you can specify a multiplicity
for an attribute that defines the number of legal values that a attribute can
have in an object. An AttributeValue object represents all the attribute values for
a particular attribute in an object if the multiplicity is greater than 1.

Three interfaces extend the AttributeValue interface. These three interfaces
correspond to three different kinds of UML attribute values. The DataValue
interface represents data values for an attribute in an object. The EnumValue
interface extends the DataValue interface and represents enumeration literals
in an object. The ObjectValue interface represents object values for an attribute
in an object. These interfaces and the relationships among them are shown in
the hierarchy in Figure A.4.

The types of values are specified using constants in the Value interface. The
type of a DataValue is Value.DATA. The type of an EnumValue is Value.ENUM.
The type of an ObjectValue is Value.OBJECT.

The EnumValue interface is included in the Framework object model so the
Framework can support XMI 1.0 and 1.1. In those versions of XMI, enumera-
tion literals are saved in a different format than other data values. In XMI 2.0,
enumeration literals are saved in the same format as other data values.

Each AttributeValue object represents one or more attribute values. In both
UML and MOF, you can specify a multiplicity for attributes to define the

The XMI Framework: Supplemental Documentation 383

number of legal values that an attribute can have in an object. An AttributeValue
object represents all the attribute values for a particular attribute in an object.

Link Ends

We saw previously the three kinds of Framework values that represent
attribute values. The other category of Framework values is represented by
the LinkEnd interface. A link end is an instance of an association end. A Link-
End object represents all the instances of a particular association end in an
object. Each LinkEnd object relates one or more linked objects to the object that
has the LinkEnd. The relationship may have composition semantics. By com-
position, we mean that the linked objects are parts of the object that has the

384 Appendix A

«interface»
DataValue

«interface»
AttributeValue

«interface»
Value

«interface»
EnumValue

«interface»
ObjectValue

Figure A.4 Framework interfaces for attribute values.

LinkEnd, and if the object that has the LinkEnd is deleted, the linked objects are
deleted as well.

There are three kinds of link ends, each represented by an interface. The
Reference interface represents one or more link ends with no composition
semantics. The Contained interface represents one or more link ends with com-
position semantics; the linked objects are contained in the object that has the
link end. The Container interface represents a link end whose linked object is
the container for the object that has the link end; it is the link end across from
a Contained link end in an object diagram. An object can only have one con-
tainer, so an XMIObject can only have one Container link end, and that Con-
tainer link end can have only one linked object. These interfaces are shown in
Figure A.5.

The XMI Framework: Supplemental Documentation 385

«interface»
Contained

«interface»
Reference

«interface»
LinkEnd

«interface»
Value

«interface»
Container

Figure A.5 Framework interfaces for link ends.

Each link end has a Framework value type that indicates what kind of link
end it is. The type of a Reference link end is Value.REFERENCE. The type of a
Contained link end is Value.CONTAINED. The type of a Container link end is
Value.CONTAINER.

Creating and Setting Values

You can create Value objects and set the values for an XMIObject in several
ways. A given XMIObject can have many Value objects, but each must have a
unique name. It is not legal for more than one Value object for an XMIObject to
have the same name. Here are the ways you can get and set Value objects in the
Framework:

■■ You can create an instance of the ValueImpl class yourself (or one of its
subclasses) and add it to an XMIObject.

■■ You can use the setXMIValue() and addXMIValue() methods of the
XMIObject interface to create any of the six kinds of values, add addi-
tional values to a Value object, or replace values of a Value object. In this
way, the XMIObject interface serves as a factory for creating values.

■■ You can use the makeValue() method of the FactoryAdapter class to make
a Value object and then add it to an XMIObject.

■■ You can use the getXMIValues() method in the XMIObject interface to
obtain all the Value objects for an XMIObject.

■■ You can use the getXMIValue() method in the XMIObject interface to get
the Value object with a given name belonging to the XMIObject.

■■ You can use the getXMIValueOfValue() method in the XMIObject inter-
face to obtain the data values, object values, or linked objects for a Value
object with a given name.

We recommend that you use the setXMIValue() and addXMIValue() methods
in the XMIObject interface to create values.

Here are some examples of using objects and values. How do you create two
dogs, one named Sparky and one named Lassie? Here’s the code:

XMIObject dog1 = new XMIObjectImpl("Dog");

XMIObject dog2 = new XMIObjectImpl("Dog");

dog1.setXMIValue("name", "Sparky", Value.DATA);

dog2.setXMIValue("name", "Lassie", Value.DATA);

In the previous example, dog1 is named Sparky and dog2 is named Lassie.
Note that you do not need to have an XMIClass to make objects. You might use
the following code to obtain the two names, assuming the names have already
been set:

386 Appendix A

System.out.println("dog1 name: " + dog1.getXMIValueOfValue("name"));

System.out.println("dog2 name: " + dog2.getXMIValueOfValue("name"));

Note that in the previous example, if you used the getXMIValue() method
rather than the getXMIValueOfValue() method, the Value object that holds the
dog’s name is returned rather than the dog’s name itself.

Using the XMIObject interface, the Value objects for each dog can be
obtained and then processed as in the following example for getting the name
value of dog1:

Iterator values = dog1.getXMIValues().iterator();

while (values.hasNext()) {

Value v = (Value) values.next();

if (v.getXMIName().equals("name"))

System.out.println("dog1 name: " + v.getXMIValue());

}

Consider how to represent a car, its owner, and its engine in the Framework.
This code creates a car that contains an engine and is owned by a person:

XMIObject car = new XMIObjectImpl("Car");

XMIObject engine = new XMIObjectImpl("Engine");

XMIObject person = new XMIObjectImpl("Person");

car.setXMIValue("engine", engine, Value.CONTAINED);

engine.setXMIValue("car", car, Value.CONTAINER);

car.setXMIValue("owner", person, Value.REFERENCE);

This example demonstrates the use of all three types of values that corre-
spond to UML link ends. Since the engine is physically contained inside the
car, the car has a Value whose type is Value.CONTAINED, and the engine has a
Value whose type is Value.CONTAINER. Finally, the car is related to its owner
by a Value of type Value.REFERENCE.

To obtain the objects related to the car object created previously, you can use
the getXMIValueOfValue() method of XMIObjectImpl as follows:

XMIObject carOwner = (XMIObject) car.getXMIValueOfValue("owner");

XMIObject carEngine = (XMIObject) car.getXMIValueOfValue("engine");

You can also use the getXMIValues() method in the XMIObject interface to
obtain the Value objects for the car and then process each one if you wish.

The following example shows how to represent a person that has two cars,
and how to obtain the objects representing the cars from the object represent-
ing the person:

XMIObject person = new XMIObjectImpl("Person");

XMIObject car1 = new XMIObjectImpl("Car");

XMIObject car2 = new XMIObjectImpl("Car");

The XMI Framework: Supplemental Documentation 387

person.setXMIValue("car", car1, Value.REFERENCE);

person.addXMIValue("car", car2);

Collection cars = (Collection) person.getXMIValueOfValue("car");

The getXMIValueOfValue() method in the previous example obtains the
linked objects for the car reference of the person object.

The addXMIValue() method obtains an existing Value object with the given
name, if one exists, and adds the given value to that Value object, creating a
Collection to hold the values if necessary. If a Value object with the given name
does not exist, one is created. In the previous example, the cars collection con-
tains car1 and car2.

You can also create values yourself and then add them to objects. The previ-
ous example could also be created with the following code:

XMIObject person = new XMIObjectImpl("Person");

XMIObject car1 = new XMIObjectImpl("Car");

XMIObject car2 = new XMIObjectImpl("Car");

List l = new ArrayList();

l.add(car1);

l.add(car2);

Value reference = new ReferenceImpl("car");

reference.setXMIValue(l);

person.add(reference);

Classes and Features
Classes and their features are represented by the XMIClass interface and the
Feature interface, respectively. The features of a class define the legal values
that objects that are instances of the class can have. Figure A.6 shows part of
the Framework interface hierarchy containing the XMIClass and Feature inter-
faces. We explain the Classifier interface later.

Features

There are two kinds of features: attributes and association ends. Attributes are
represented by the Attribute interface; association ends are represented by the
AssociationEnd interface. A Framework attribute corresponds to a UML
attribute, and a Framework association end corresponds to a UML association
end. Both of these interfaces are shown in the part of the Framework interface
hierarchy in Figure A.7.

Each feature has a name, a multiplicity, a type, and a value type. The multi-
plicity defines the number of values the feature can have in an object. The type
is a Classifier; there are two kinds of Classifiers in the Framework: XMIClass and
Datatype. A Framework Datatype corresponds to a UML datatype. In addition,
the Enum interface represents an enumeration and extends the Datatype inter-

388 Appendix A

face. These interfaces are in the part of the Framework interface hierarchy
shown in Figure A.8.

Because a feature has a type, you may wonder why it needs to have a value
type as well. There are several reasons. First, it is not always possible to deter-
mine what kind of value a particular feature has in an object based on its type
alone. Consider an XMIClass named C with an AssociationEnd named end. The

The XMI Framework: Supplemental Documentation 389

«interface»
Feature

«interface»
Classifier

«interface»
Data

«interface»
XMIClass

Figure A.6 Framework interfaces for classes and features.

«interface»
AssociationEnd

«interface»
Attribute

«interface»
Feature

Figure A.7 Framework interfaces for attributes and association ends.

type of the AssociationEnd is another XMIClass, C2. From this information
alone, you cannot determine whether link ends in an object corresponding to
this association end have types of Value.REFERENCE, Value.CONTAINER, or
Value.CONTAINED. Second, in some cases you can save the effort of setting an
attribute’s type if you set its value type first. Rather than creating a datatype
and then setting an attribute’s type to that datatype, you can simply set the
value type of the attribute to Value.DATA. The values of this attribute in objects
will be correctly written. This attribute will be treated correctly when the
Framework generates an XMI DTD for a model that contains the attribute. The
attribute’s type is mapped to the schema string datatype when a schema is
generated for a model that includes the attribute. You can set the type of an
attribute to a datatype you create, if you wish.

The following example demonstrates how to create a class for dogs if each
dog has a feature for the name of the dog:

XMIClass dog = new XMIClassImpl("Dog");

Feature name = new AttributeImpl("name");

name.setXMIValueType(Value.DATA);

dog.add(name);

Since the value type of the attribute is Value.DATA, it is not necessary to set
the attribute’s type, although you can create a datatype and set the type of the

390 Appendix A

«interface»
Datatype

«interface»
XMIClass

«interface»
Classifier

«interface»
Enum

Figure A.8 Framework interfaces for classifiers.

attribute to it if you wish. We could also have used the FeatureImpl class in the
previous example rather than the AttributeImpl class.

The following example illustrates how to create features corresponding to
UML association ends and how to add them to classes. The classes represent a
car, a person, and an engine. A car contains an engine, an engine is related to
the car it is in, and a car is related to the person(s) that owns it. The classes are
shown in Figure A.9.

In this example, note how the type, value type, and multiplicity are set for the
features that represent the relationships among the three classes. You should
see that the way these are set corresponds to the relationships that the classes
have to each other through the association ends that the features represent:

XMIClass carClass = new XMIClassImpl("Car");

XMIClass engineClass = new XMIClassImpl("Engine");

XMIClass personClass = new XMIClassImpl("Person");

Feature engineFeature = new FeatureImpl("engine");

engineFeature.setXMIValueType(Value.CONTAINED);

engineFeature.setXMIType(engineClass);

engineFeature.setXMIMultiplicity("1");

carClass.add(engineFeature);

Feature carFeature = new FeatureImpl("car");

carFeature.setXMIValueType(Value.CONTAINER);

carFeature.setXMIType(carClass);

carFeature.setXMIMultiplicity("1");

engineClass.add(carFeature);

Feature ownerFeature = new FeatureImpl("owner");

ownerFeature.setXMIValueType(Value.REFERENCE);

The XMI Framework: Supplemental Documentation 391

CarPerson

Engine

owner

1..*

car1

engine1

Figure A.9 Person, Car, and Engine classes.

ownerFeature.setXMIType(personClass);

ownerFeature.setXMIMultiplicity("1..*");

carClass.add(ownerFeature);

Inheritance

Framework classes may have subclasses and superclasses. You add super-
classes and subclasses to Framework classes using the addSuperclass() and
addSubclass() methods in the XMIClass interface.

If you are working with animals, mammals, dogs, and cats, and mammals
inherit from animals, while dogs and cats inherit from mammals, the follow-
ing code creates Framework classes representing the situation:

XMIClass animalClass = new XMIClassImpl("Animal");

XMIClass mammalClass = new XMIClassImpl("Mammal");

XMIClass dogClass = new XMIClassImpl("Dog");

XMIClass catClass = new XMIClassImpl("Cat");

animalClass.addSubclass(mammalClass);

mammalClass.addSuperclass(animalClass);

mammalClass.addSubclass(dogClass);

mammalClass.addSubclass(catClass);

dogClass.addSuperclass(mammalClass);

catClass.addSuperclass(mammalClass);

Definers
So far, we have explained objects, values, classes, and features. Although you
don’t need to create an XMIClass to create an XMIObject, you can relate an
object to its class. You can also relate a value to its feature in a class. You do so
by using the setXMIDefiner() method in the Data interface. Table A.1 shows the
definers for objects and their values.

If the definer is set for a construct, the Framework uses the XMI name of the
definer as the XMI name of the construct.

Setting the definer for an object or a value makes it possible for semantic
checking to be performed for that object or value. Currently, the Framework

392 Appendix A

Table A.1 Definers

CONSTRUCT DEFINER

XMIObject XMIClass

AttributeValue Attribute

LinkEnd AssociationEnd

does not perform semantic checking, but you can write code that does. For
example, if the definer for a value is set to a feature, you can determine
whether the values are legal ones by checking the type of the feature. You can
also examine the number of values and compare it to the multiplicity of the
feature to determine whether the number of values is legal.

When you register a model with a workspace and then load an XMI file, the
Framework matches the objects and values in the XMI file to the classes and
features in the model, setting the definers in the process.

Packages
The Framework Package interface represents a UML package. A package can
contain classes, datatypes, or other packages. You use packages to group
related classes and datatypes.

Models
The Framework Model class represents a model. It contains Framework decla-
rations, which are packages, classes, features, and datatypes. The toString()
method of the Model class creates a String that enables you to see the contents
of a model. The Model class contains methods that enable the Framework to
match objects and values in an XMI file with the classes and features that
define them when an XMI file is loaded. A Model contains packages, classes,
and datatypes. You add models to a workspace to register the models with the
Framework.

XMI Names
Each package, class, feature, datatype, object, and value has an XMI name; if a
construct has a definer, its XMI name is the XMI name of its definer. In the fol-
lowing discussion, we indicate how to create the XMI name for a construct
from its name in a model.

In XMI 1.1 and 2.0, it is no longer necessary to use fully qualified names of
constructs as their XMI names, because you can use namespaces to distinguish
constructs with the same names. In the Framework, you can attach a name-
space to any construct in the Framework object model, and the Framework
will use the namespace prefix as appropriate in XMI 1.1 files, XMI 1.1 DTDs, or
XMI 2.0 files and schemas. The namespace prefix may be the empty string, but
cannot be null.

In XMI 1.0, the XMI name of a construct is fully qualified, similar to the
fully qualified name of a Java class. The fully qualified name includes
the name of the construct, the name of the construct’s owner, and the name of
the construct owner’s owner, and so on, up the ownership chain. These

The XMI Framework: Supplemental Documentation 393

names are then written in a dot-separated sequence beginning with the name
of the uppermost construct in the ownership chain. For example, for a class C
contained in a package p2, which itself is contained in a package p1, the fully
qualified name would be p1.p2.C. The XMI name of an object is the XMI name
of its class.

In XMI 1.0, the XMI name of a feature is the fully qualified name of the class
that the feature belongs to, followed by a period (.) and the name of the feature.
The fully qualified name of a local value of an object is the fully qualified name
of the object followed by a period and the name of the value. However, the
fully qualified name of an inherited value of an object is the fully qualified
name of the class the value’s definer belongs to followed by a period and the
name of the value. For example, consider a class Sub that inherits from class
Super. Class Super has a feature whose name is a. What is the fully qualified
name of value a belonging to an instance of class Sub? The fully qualified name
of the value is not Sub.a, but rather Super.a. This is because the definer of value
a, which is feature a, belongs to class Super, not class Sub.

As another example, to represent a dog, you might create an XMI object and
give it an XMI name Dog. If you create another dog, its XMI name is Dog also.
Each XMI object is an instance of the Dog class. If the Dog class was in a pack-
age called Mammals, which was in another package called Animals, the XMI
name of each object for XMI 1.0 would be Animals.Mammals.Dog. For XMI 1.1
and 2.0, the XMI name would just be Dog if there were no other packages or
classes named Dog.

Now consider a model containing a package p that contains two other pack-
ages, p1 and p2. Both p1 and p2 contain classes named C. In XMI 1.0, the XMI
names of the two classes are p.p1.C and p.p2.C. In XMI 1.1 and 2.0, the name C
cannot be used as the XMI name because that is not unique. You should assign
a different namespace to both packages and set their XMI names to C; this way,
the namespace prefixes in the XMI names of the classes enable you to distin-
guish between the two classes.

If objects and values have definers, they can be saved in either XMI 1.0, XMI
1.1, or XMI 2.0 files. If an object and its values do not have definers, and the
XMI 1.1 (and XMI 2.0) names for that object and its values differ from their
XMI 1.0 names, it is not possible to save that object in all XMI formats without
changing its XMI name.

To support all XMI versions whenever possible, set the XMI names of con-
structs as follows (some of these rules are rather complicated if you do not set
the definers for an object and its values):

■■ For a class or a package, use its name as the XMI name, and use name-
spaces to distinguish among classes and packages with the same
names. When working with XMI 1.0, the Framework computes the fully
qualified name of a package or a class using its sequence of owners. For

394 Appendix A

XMI 1.1 and 2.0, the Framework uses the XMI name you assign to each
class or package, ignoring its owners.

■■ For a feature, use its name as the XMI name. The Framework will use
the feature’s sequence of owners to compute the fully qualified name, if
necessary.

■■ For an object that does not have a definer, use the fully qualified name
of the class for XMI 1.0. Use the class name for XMI 1.1 and XMI 2.0.

■■ For a local value that does not have a definer, use the value’s name as
the XMI name. The Framework will use the XMI name of the object that
holds the value (the value’s owner) to compute the name if necessary.

■■ For an inherited value that does not have a definer, and whose type is
either Value.OBJECT or Value.CONTAINED, use the XMI name of the
class that the value’s definer (a feature) belongs to, which is followed by
a period and the value’s name. Set the value’s owner to null so the
Framework does not use the XMI name for the object that has the value.

■■ For an inherited value that does not have a definer, and whose type is
neither Value.OBJECT nor Value.CONTAINED, use the value’s name as
the XMI name for XMI 1.1. For XMI 1.0, use the XMI name of the class
that the value’s definer (a feature) belongs to, followed by a period and
the value’s name. Also, for XMI 1.0, set the value’s owner to null so the
Framework does not use the XMI name of the object that has the value.

When using XMI 1.1 and 2.0, set the namespace if desired to enable the
Framework to use XML namespaces.

The Framework automatically assigns the correct XMI names to classes and
packages if it makes them from a UML model. Then you can make objects and
set the definers of the objects and their values to the ones the Framework cre-
ated to ensure that the XMI names are correct. The Framework also assigns
correct XMI names to objects and values when you use the classes generated
by the UML2Java program. The Framework sets the definers for objects and
their values when loading XMI files if you use the Workspace class.

Because the XMI name of a construct becomes either an XML tag name or an
XML attribute name when the construct is saved in an XMI file, the XMI name
must be a valid XML tag or attribute name. See the XML 1.0 specification for
more details. In general, letters and numbers are allowed in names, but spaces
and punctuation marks, except for hyphens and periods, are not allowed.

Namespaces
The use of namespaces in the Framework is covered in the Namespaces section
of Chapter 8. Please refer to that section for details on using namespaces with
the Framework.

The XMI Framework: Supplemental Documentation 395

Encoding Non-XMI Information
There are two ways to specify additional information for constructs in the
Framework object model. One way is to use tag values; the second way, which
applies only to XMIObjects, is to use XMI extensions.

You use tag values as a shortcut rather than using the Extension interface to
create XMI extensions for XMIObjects. You also can use them to specify the
XMI file an object will be saved in. A possible future use for them is to tailor
schemas by setting tag values for declarations. The current version of the
Framework does not do this, but a future version might.

The XMI Extensions section of Chapter 8 discusses using tag values to create
XMI extensions for XMIObjects, and also describes the use of the Extension
interface.

Implementing Framework Object
Model Interfaces
All the interfaces and implementation classes for the data hierarchy are public,
so you may extend and implement any of them. Although you can use the
code-generation capability of the Framework to generate subclasses for you,
we include an example here to help you write your own subclasses. The fol-
lowing is an example that demonstrates how you can write subclasses of
XMIObjectImpl being used to represent cars engines, and persons, where each
car has a value for the model of the car, and a value for the engine. Each engine
has a value for the car it is in, and each person has a value for the cars the per-
son owns. This situation is illustrated in Figure A.10.

The classes that implement this functionality are displayed in Source Code A.1.

396 Appendix A

CarPerson

Engine

owns

0..*

car1

engine1

model[1]

Figure A.10 A second model containing Person, Car, and Engine classes.

The XMI Framework: Supplemental Documentation 397

// Car.java

import com.ibm.xmi.framework.*;

public class Car extends XMIObjectImpl {

public Car() {

super("Car");

}

public void setEngine(Engine e) {

setXMIValue("engine", e, Value.CONTAINED);

}

public Engine getEngine() {

return (Engine) getXMIValueOfValue("engine");

}

public String getModel() {

return (String) getXMIValueOfValue("model");

}

public void setModel(String model) {

setXMIValue("model", model, Value.DATA);

}

}

// Engine.java

import com.ibm.xmi.framework.*;

public class Engine extends XMIObjectImpl {

public Engine() {

super("Engine");

}

public Car getCar() {

return (Car) getXMIValueOfValue("car");

}

public void setCar(Car c) {

setXMIValue("car", c, Value.CONTAINER);

}

}

// Person.java

import java.util.*;

import com.ibm.xmi.framework.*;

public class Person extends XMIObjectImpl {

Source Code A.1 Subclasses that inherit from XMIObjectImpl.

This example demonstrates that you can write your own subclasses of the
XMIObjectImpl class. This enables you to use the methods that you implement,
rather than using only those in the Framework interfaces.

XMI Files

This section describes how to create XMI files using the Framework. It focuses
on the XMIFile class. Many aspects of creating XMI files were covered in ear-
lier chapters. Rather than repeating those discussions here, we provide refer-
ences to them so that you can review them if you like. The two primary things
to do with an XMI file are to create a new one or to load an existing one. We
start by discussing how to create simple files and load them; then we discuss
how to work with information that describes a document and how to create
more advanced XMI files.

Creating Single XMI Files
To create an XMI file, make an instance of the XMIFile class and then use the
write() method to write your XMI objects to the file. Before calling the write()
method, call the setXMIVersion() method if you want to create an XMI 1.0 or 1.1
file; the default is XMI 2.0.

398 Appendix A

public Person() {

super("Person");

}

public void addCar(Car c) {

addXMIValue("owns", c, Value.REFERENCE);

}

public Collection getCars() {

java.lang.Object v = getXMIValueOfValues("owns");

if (v instanceof Collection)

return (Collection) v;

List l = new ArrayList(1);

if (v instanceof XMIObject)

l.add(v);

return l;

}

}

Source Code A.1 Subclasses that inherit from XMIObjectImpl. (Continued)

When you create an XMIFile object, you indicate the file to create, the entry
to make in a ZIP file, or the output stream to use. This enables you to write a
new XMI file, create an entry in a ZIP file, or write objects to an open output
stream, respectively. If you want to create an entry in a ZIP file, you are respon-
sible for opening a ZIP output stream and providing the name of the entry for
the ZIP file. The Framework will create an entry in the ZIP output stream,
write the objects in that entry, and then close the entry. It will not close the ZIP
output stream though, because you might want to save other files in the ZIP
file. If you specify an open output stream when creating an XMIFile object, the
Framework will not close the output stream after it writes the objects. This
enables you to write additional information to the output stream after the
Framework uses the output stream.

The write() method takes two parameters: an iterator for the objects to write
to the file, and an option. Chapters 7 and 8 provide examples of using the
write() method with the XMIFile.DEFAULT option. This method throws an
exception if the file cannot be written.

Default Write Option

When using the XMIFile.DEFAULT write option, the Framework does the fol-
lowing things when the write() method is invoked:

■■ Writes all top-level objects to the file.

■■ Writes values of type Value.OBJECT (attribute values) or Value.CON-
TAINED (link ends with composition semantics) to the file. This is done
recursively.

■■ Creates an XMI identifier (the value of the xmi:id attribute) for each
object if it has not already been given one.

■■ Identifies itself as the creator of the XMI file by specifying XMI Frame-
work for the exporter and 1.2 for the exporter version.

■■ Throws an exception if an object is referenced, but is not written to the
file.

■■ Throws an exception if an object is written twice.

We present some examples of this behavior and some errors that can occur.
Consider a container that has a part. We can represent the container and the part
as XMIObjects. The XMIObject for the container has a value whose value type is
Value.CONTAINED with the part as the linked object. Here is a segment of code
where we create the objects and the value, and serialize them in an XMI file:

// Create the two objects, and make the container contain the part.

XMIObject container = new XMIObjectImpl("Container");

The XMI Framework: Supplemental Documentation 399

XMIObject part = new XMIObjectImpl("Part");

container.setXMIValue("part", part, Value.CONTAINED);

// Prepare to write the objects in this example by putting them

// in an ArrayList. We only need to put the container object in

// the list, since it already contains the part object.

ArrayList myObjects = new ArrayList();

myObjects.add(container);

// Write the objects.

XMIFile f = new XMIFile("container.xmi");

f.write(myObjects.iterator(), XMIFile.DEFAULT);

Notice that we did not add the XMIObject for the part to the collection. The
reason is because it is serialized when the Container is serialized. The file con-
tainer.xmi has the following contents:

<?xml version="1.0" encoding="UTF-8"?>

<xmi:XMI xmi:version="2.0" xmlns:xmi="http://www.omg.org/XMI">

<xmi:Documentation>

<exporter>XMI Framework</exporter>

<exporterVersion>1.2</exporterVersion>

</xmi:Documentation>

<Container xmi:id="_1">

<part xmi:id="_1.1" xmi:type="Part"/>

</Container>

</xmi:XMI>

Now consider what happens if both the part and the container are in the col-
lection of objects to write. To do this, we add the part to myObjects and also add
the container:

// Create the two objects, and make the container contain the part.

XMIObject container = new XMIObjectImpl("Container");

XMIObject part = new XMIObjectImpl("Part");

container.setXMIValue("part", part, Value.CONTAINED);

// Prepare to write the objects in this example by putting them

// in an ArrayList.

List myObjects = new ArrayList();

myObjects.add(container);

myObjects.add(part);

// Write the objects.

XMIFile f = new XMIFile("container.xmi");

f.write(myObjects.iterator(), XMIFile.DEFAULT);

The Framework throws a ContainmentException in this case because part
would be written twice, once as a value of container and once as a top-level
object.

400 Appendix A

Now consider the case where a Car object and a Person object are related via
a reference, but only the Car object is added to the collection of objects to be
written to an XMI file. Here is a segment of Java code showing how we would
do this:

XMIObject car = new XMIObjectImpl("Car");

XMIObject person = new XMIObjectImpl("Person");

car.setXMIValue("owner", person, Value.REFERENCE);

List myObjects = new ArrayList();

myObjects.add(car);

XMIFile f = new XMIFile("car.xmi");

f.write(myObjects.iterator(), XMIFile.DEFAULT);

In this case, the Framework throws a NoIdException. The Framework assigns
an XMI identifier to each object to be written, in this case the Car object. When
it serializes the owner value, it attempts to create a cross-file reference to the
Person object because the Person object is not included in the car.xmi file.
Because the Person object does not have an XMI identifier, and the Framework
does not assign one (because the Person object is not in car.xmi), it throws the
exception. Cross-file references are explained in the Cross-file References section
of Chapter 8.

When you use the default write option, it is your responsibility to make sure
that objects are not included twice in the file. You also need to ensure that ref-
erenced objects are in the collection of objects to write, or that you provide
enough information for them so the Framework can create cross-file references
to them.

Other Write Options

There are other write options in addition to the default option. The options are
OBJECTS_ONLY, PRESERVE_WHITESPACE, and REFERENCES_AT_TOP.
These options are not mutually exclusive. You can specify more than one by
using the logical OR operator (|). For example, the following invocation of the
write() method specifies both the PRESERVE_WHITESPACE option and the
REFERENCES_AT_TOP option:

xmiFile.write(someCollection.iterator(),

XMIFile.PRESERVE_WHITESPACE | XMIFile.REFERENCES_AT_TOP);

The OBJECTS_ONLY option suppresses the serialization of the XMI XML
element and the header information. You will probably use this option most
often when you want to serialize objects to an open output stream, and you
want to serialize only the objects, not the header information.

If you use the PRESERVE_WHITESPACE option, then any attribute value
that has whitespace in it will be serialized in the content of an XML element,

The XMI Framework: Supplemental Documentation 401

even if it could be serialized as the value of an XML attribute. By default, the
Framework serializes attribute values in XML attributes when it can. This can
result in the loss of whitespace because the XML specification requires that an
XML parser normalize XML attribute values and eliminate whitespace. If you
want to preserve whitespace in your applications, you should specify this
write option.

The REFERENCES_AT_TOP option causes the Framework to serialize all
objects related to the objects in the collection of objects to write, not just
those objects and objects contained in them. The Framework serializes related
objects that ordinarily would not be serialized as top-level objects. This option
enables you to serialize all objects related to a given object in an XMI file with-
out regard for whether the related objects are contained or not.

We saw in the previous section a Car object that was related to a Person
object with an owner reference value. If the default write option is used, and
only the Car object is in the collection of objects to write, the Framework
throws an exception. However, if you use the REFERENCES_AT_TOP option,
the Framework serializes the Person object as a top-level object. Here is a seg-
ment of code to create the objects, set the value, and serialize the objects in an
XMI file using the REFERENCES_AT_TOP option:

XMIObject car = new XMIObjectImpl("Car");

XMIObject person = new XMIObjectImpl("Person");

car.setXMIValue("owner", person, Value.REFERENCE);

ArrayList l = new ArrayList();

l.add(car);

XMIFile f = new XMIFile("car.xmi");

f.write(l.iterator(), XMIFile.REFERENCES_AT_TOP);

The contents of car.xmi are as follows:

<?xml version="1.0" encoding="UTF-8"?>

<xmi:XMI xmi:version="2.0" xmlns:xmi="http://www.omg.org/XMI">

<xmi:Documentation>

<exporter>XMI Framework</exporter>

<exporterVersion>1.2</exporterVersion>

</xmi:Documentation>

<Car xmi:id="_1" owner="_1.1"/>

<Person xmi:id="_1.1"/>

</xmi:XMI>

Note that the Person object is serialized as a top-level object.

Loading Single XMI Files
You use the static load() method of the XMIFile class to load a single XMI file;
the Framework creates an instance of the XMIFile class for you that you can

402 Appendix A

use to get the top-level objects from the file. To load from a file, you use the
load() method with three parameters:

■■ The file name.

■■ The load option; the default option is DEFAULT.

■■ A boolean value indicating whether to perform validation.

When you use the default option, the Framework loads the file and reports
any XML errors. If you specify true for the validation parameter, it reports any
validation errors the parser detected when it loaded the file.

To properly interpret the contents of an XMI file, you need to know the
model that defines the objects and values in the file. Chapter 7 contains a code
example of how to do this. The Framework makes assumptions when it loads
a file without knowledge of the model. These assumptions are as follows:

■■ Each XML attribute value is a data value of value type Value.DATA.

■■ Each contained object is a value of value type Value.OBJECT.

■■ Each XML element that has String content is a value of value type
Value.DATA.

Notice that the Framework does not create values with value types other
than Value.DATA or Value.OBJECT if it does not know the model. Consider the
following file:

<?xml version="1.0" encoding="UTF-8"?>

<xmi:XMI xmi:version="2.0" xmlns:xmi="http://www.omg.org/XMI">

<xmi:Documentation>

<exporter>XMI Framework</exporter>

<exporterVersion>1.2</exporterVersion>

</xmi:Documentation>

<Car xmi:id="_1" owner="_1.1"/>

<Person xmi:id="_1.1"/>

</xmi:XMI>

We created this file by creating an owner value of value type Value.REFERENCE
and setting the linked object to be the Person object. However, when the Frame-
work loads this file without knowing the model, a Value object is created for the
owner value with a value type of Value.DATA and with a value of the string _1.1.
If the Framework knows the model, the Value object that is created would be of
value type Value.REFERENCE, and the linked object would be the Person object.

Header Data
XMI defines header data that can be put in each XMI file. For XMI 1.0 and 1.1,
this information was put in an XMI.header XML element; for XMI 2.0, this

The XMI Framework: Supplemental Documentation 403

information is put in the xmi:Documentation XML element. To put header data
into an XMI file, use the accessor methods in Table A.2 to set the header data
before calling the write() method of the XMIFile class. To get header data from
an XMI file, use the accessor methods of the XMIFile class to get the header
data after loading the XMI file. Table A.2 shows the accessor methods for each
kind of information.

For XMI 1.0 and 1.1 files, you can use the setDTD() method before calling the
write() method so the Framework writes a reference to the DTD in the XMI file.
You can also use the setTimestamp() and getTimestamp() methods to set and get
the timestamp in an XMI 1.0 or 1.1 file. By default, the Framework sets the
timestamp to the current time when it writes an XMI 1.0 or 1.1 file.

For any version of XMI, you can use the setEncoding() method to set the XML
encoding for an XMI file, and you can use the setIndent() method to control the
indentation of nested XML elements. By default, the encoding is UTF-8, and
the Framework indents nested XML elements two spaces from the containing
XML elements. If you invoke setIndent() with a parameter of 0, the Framework
does not indent nested XML elements.

Related XMI Files
You can write your objects in multiple XMI files with cross-file references
between related objects in different files. The Cross-file References section of
Chapter 8 explains how to create these files and how to load them.

Registering Models
with the Framework
You register models with the Framework using the Workspace class. The Read-
ing an XMI Document section of Chapter 7 explains how to do this.

404 Appendix A

Table A.2 Header Data Accessor Methods

DATA ACCESSOR METHODS

Exporter getExporter(), setExporter()

Exporter version getExporterVersion(), setExporterVersion()

Notice getNotice(), setNotice()

Contact getContact(), setContact()

Owner getOwner(), setOwner()

Long description getLongDescription(), setLongDescription()

Short description getShortDescription(), setShortDescription()

XMI DTDs

To create XMI DTDs, you create classes and packages and pass them to the
write() method of an XMIDTD instance. If you want to create an XMI 1.1 DTD,
call the setXMIVersion() method with a parameter of 1.1 before using the write()
method. Here is a code segment that shows how to use the XMIDTD class:

XMIClass dog = new XMIClassImpl("Dog");

XMIClass cat = new XMIClassImpl("Cat");

Feature name = new FeatureImpl("name");

name.setXMIValueType(Value.DATA);

dog.add(name);

Feature friend = new FeatureImpl("friend");

friend.setXMIValueType(Value.REFERENCE);

friend.setXMIType(cat);

dog.add(friend);

ArrayList classes = new ArrayList();

classes.add(dog);

classes.add(cat);

XMIDTD dtd = new XMIDTD("dog.dtd");

dtd.write(classes.iterator());

XMI Schemas

XMI schemas are more powerful than XMI DTDs. The Framework contains an
XMISchema class, which produces XMI schemas using the final version of the
W3C schema specification. The use of the XMISchema class is similar to the use
of the XMIDTD class, as illustrated by the following code segment:

XMIClass dog = new XMIClassImpl("Dog");

XMIClass cat = new XMIClassImpl("Cat");

Feature name = new FeatureImpl("name");

name.setXMIValueType(Value.DATA);

dog.add(name);

Feature friend = new FeatureImpl("friend");

friend.setXMIValueType(Value.REFERENCE);

friend.setXMIType(cat);

dog.add(friend);

ArrayList classes = new ArrayList();

classes.add(dog);

The XMI Framework: Supplemental Documentation 405

classes.add(cat);

XMISchema schema = new XMISchema("dog.xsd");

schema.setURI("http://MyCompany.com/dog.xsd");

schema.write(classes.iterator());

Code Generation

The UML2Java class has been significantly improved from previous versions of
the Framework. It correctly handles packages in UML models and provides
more options for generating code. It also handles multiple inheritance in UML
models if the -interfaces option is used. UML2Java will then generate both a
class and an interface for each class in the UML model; the interfaces will
extend each other to reflect inheritance in the UML model, but the generated
implementation classes do not inherit from each other. This enables one gen-
eration pattern to support multiple inheritance.

The UML2Java class produces subclasses of XMIObjectImpl from UML mod-
els. This capability will help you create subclasses of XMIObjectImpl automat-
ically, so users of your code can work with your classes, rather than the
Framework classes. The UML2Java class also creates a factory that can be reg-
istered with the Framework, so the generated subclasses are instantiated by
the Framework when loading XMI files.

To use the UML2Java class, invoke it with the following options from the
command line:

-model. Use this option to indicate which XMI file to use. The file must be
an XMI 1.0 file containing a UML 1.1 model. If you get no output, check
whether the uml11i.dtd file is in the directory the file is in. An example of
the use of this option is java com.ibm.xmi.framework.
UML2Java -model umlModel.xmi.

-dir. The directory to put the generated code in. If not present, the current
directory will be used. An example would be java com.ibm.xmi.
framework.UML2Java -model umlModel.xmi -dir e:\generatedCode.

-package. The top-level Java package. All the code will be generated into
this package or in packages within this package. If you do not specify
this option, Java classes corresponding to UML classes that are not in a
package are put in the default Java package. An example of specifying a
package would be java com.ibm.xmi.framework -model umlModel.xmi -pack-
age com.mycompany.mypackage.

-namespaceName. The namespace name for the model. XMI 1.1 and 2.0
enable you to assign a namespace name to a model. You do not need to
specify this option. If you specify this option, the Framework will attach

406 Appendix A

a namespace to each construct in the model in the generated UserFactory
class.

-namespaceURI. The namespace URI for the namespace you assign to
your model. It will be used when writing XMI 1.1 and 2.0 files.

-interfaces. If present, an interface and an implementation class will be
generated from each class in the UML model. For example, if there is a
class A in your UML model, the Framework will generate A.java and
AImpl.java for class A. A.java will contain an interface for the class;
AImpl.java will implement the interface. An example of this option’s use
is as follows: java com.ibm.xmi.framework.UML2Java -model umlModel.xmi -
interfaces.

-ignorePackages. If present, any packages in the UML model will be
ignored. All the generated code will be put in the default Java package,
with classes renamed as necessary to avoid name conflicts. You only
need to use this option if you do not want the Framework to make Java
packages from the UML packages in your model.

-oneConstructor. If present, the Framework will only create one construc-
tor for each generated class. By default, the Framework makes two con-
structors, one of which lets you set each attribute of the class. If a class
has a large number of attributes, it is not likely that this constructor will
be used though. If you specify this option, only a no-argument construc-
tor will be made for each generated Java class.

The Code Generation section of Chapter 8 contains more information about
using the Framework to generate Java code.

Using the Framework by
Implementing Adapters

The Framework adapters are explained in detail in the Creating an XMI Docu-
ment and Reading an XMI Document sections in Chapter 7. The Java Object
Bridge (JOB) is an example of adapters.

DeclarationFactory Class

The Framework converts UML models saved in XMI files into classes and
packages if you use the DeclarationFactory class. The Framework converts
UML packages into Framework packages, UML classes into Framework
classes, UML attributes into features of Framework classes, and UML associa-
tion ends into features of Framework classes.

The XMI Framework: Supplemental Documentation 407

If the type of a UML attribute is an enumeration, the Framework sets the
value type of the corresponding Feature to Value.ENUM and the type of the
Feature to an Enum. If the attribute type is a UML class, the Framework sets the
value type of the corresponding Feature to Value.OBJECT and the type of the
Feature to the XMIClass corresponding to the UML class that is the type of the
UML attribute. If the attribute type is not an enumeration or a UML class, the
Framework sets the value type of the corresponding Feature to Value.DATA
and the type of the Feature to a Framework Datatype corresponding to the UML
datatype.

The Framework makes features from UML association ends. For UML asso-
ciation ends that are compositions, the Framework sets the value type of the
Feature to Value.CONTAINED, and the value type of the Feature corresponding
to the opposite association end to Value.CONTAINER; otherwise, it sets the
value type to Value.REFERENCE. The Framework sets the type of the corre-
sponding Feature to the XMIClass corresponding to the UML class that is
attached to the association end.

Table A.3 summarizes the mapping from UML to the Framework.
The Framework assigns subclasses and superclasses of Framework classes

to reflect the inheritance between classes in the UML model. It also assigns
XMI names to the packages, classes, and features based on the names in the
UML XMI file.

Currently, the DeclarationFactory class supports UML 1.1 models saved in
XMI 1.0 format.

To create Framework classes and packages from a UML XMI file, load the
XMI file and get the top-level objects, as explained in the XMI Files section.
Then make an instance of the DeclarationFactory class and invoke one of the
makeDeclarations() methods, passing the objects from the XMI file. See the
Framework example provided on the CD-ROM in the UML2Classes directory
for more details.

408 Appendix A

Table A.3 UML to Framework Mapping

UML FRAMEWORK

Class XMIClass

Package Package

Attribute Attribute

Association end AssociationEnd

Datatype Datatype

Enumeration Enum

409

Chapter 1

1. As explained in the Introduction, XMI works with Meta Object Facility
(MOF) models. As this book is being written, there is ongoing work in the
OMG to align UML and MOF. If this work proceeds as we expect, UML mod-
els can be transformed into equivalent MOF models transparently to users of
XMI. If this alignment does not succeed, UML models need to be transformed
into MOF models for use with XMI. In this book, we treat MOF and UML as if
they are aligned. We refer primarily to UML.

Chapter 5

1. The XMI specification describes how to reverse engineer Meta-Object
Facility (MOF) models from XML documents, DTDs, and schemas. We
describe how to reverse engineer UML models from XML. As we explain in the
Introduction, we believe that UML and MOF will be aligned by the time this
book is published. If this happens, the UML models created by the algorithms
in this section will be equivalent to the MOF models created using the proce-
dure specified in the XMI specification. If this does not happen, the UML mod-
els need to be transformed into MOF models. Also, please note that some of

Notes

the refinements to the basic algorithms presented here are not included in the
XMI specification. We describe them to help you make the most useful models
possible.

Chapter 6

1. The Option object is an object value of the option attribute in the Car object,
so the tag name in the XMI file is option and not Option.

2. We set the object attribute value option in CRAHandler4, where we also
set references.

Chapter 7

1. Splitting the lines as we have done does not change the semantics of the
XML document, but we mention it so that you are aware of the difference
between the output shown in the book and the output of the book software. In
general, if you observe that software output has longer lines than the output
shown in this book, it is because we formatted the output to fit the page width.

2. In the Framework, a reference is one kind of link end. Since it is the only
kind of link end that we will use, we will not explain the other kinds.

3. Attribute values and references are the types of Framework values that
we use in this chapter. The classes that implement the Framework interfaces
that represent attribute values and references include fields for a name, a type,
and a value. Because the term value could be used in a couple different ways,
if the meaning is not clear by context, we specifically state which value we are
referring to.

Chapter 8

1. Splitting the lines as we have done does not change the semantics of the
XML document, but we mention it so that you are not surprised if you run the
program and see slightly different output. In general, if you run the book soft-
ware and observe longer lines than that shown in this book, it is because we
formatted the output to fit the page width.

Chapter 9

1. Splitting the lines as we have done does not affect the semantics of the
XML document, but we mention it so that you are not surprised by differences

410 Notes

between the output of the book software and the output shown in this book. In
general, if you run the book software and observe differences in the length of
lines, it is because the output shown in this book has been formatted to fit the
page width.

Chapter 10

1. The terms model and metamodel are sometimes used loosely. Strictly
speaking, the models we’re referring to here would be considered metamodels
as we’ve described them in this example.

2. The Web Services Definition Language is a specification that has been
submitted to the W3C.

3. We provide an explanation of this record later so you do not need to be a
COBOL programmer to understand the ideas in this chapter.

Chapter 11

1. For a complete discussion of the capabilities of the XML to XML mapping
editor, refer to the documentation contained with the version of WebSphere
Studio included on the CD-ROM.

2. As you have seen earlier in this book, using XMI helps to solve this prob-
lem.

3. The href attribute values are based on some historical code in the imple-
mentation.

4. In the schema.dbxmi file shown, we have made minor changes in the
indentation so that the information is easier for you to read.

5. The format of the schema.dbxmi file has changed slightly between the beta
and initial versions of WebSphere Studio Application Developer. The format
shown here is for the beta version.

6. In the map.mapxmi file shown, we have made minor changes in the inden-
tation so that the information is easier for you to read.

7. This is because the current schema file only contains a single table in each
file.

Notes 411

413

Architecture Board MDA Drafting Team. “Model Driven Architecture, A
Technical Perspective.” Review Draft Version 00-17(frame). Document
Number ab/2001-01-01. www.omg.org/cgi-bin/doc?ab/2001-01-01.
January 29, 2001.

Biron, P., and A. Malhotra (editors). “XML Schema Part 2: Datatypes.”
W3C recommendation. World Wide Web Consortium,
www.w3.org/TR/xmlschema-2. May 2001.

Booch, G., J. Rumbaugh, and I. Jacobson. The Unified Modeling Language
User Guide. Reading, MA: Addison Wesley, 1999.

Bray, T., J. Paoli, C. M. Sperberg-McQueen, and E. Maler (editors). “Exten-
sible Markup Language (XML) 1.0 (Second Edition).” W3C recommen-
dation. World Wide Web Consortium, www.w3.org/TR/REC-xml.
October 2000.

Brown, K. “EJB Metadata in Websphere 4.0—A Tale of Four Files.” Interna-
tional Business Machines Corporation, www7.boulder.ibm.com/wsdd.
2001.

———. WebSphere 4.0 AEs Workbook for Enterprise JavaBeans, 3rd Ed. Min-
neapolis, MN: Titan Books, 2001.

References

Christensen, E., F. Curbera, G. Meredith, and S. Weerawarana. “Web Ser-
vices Description Language (WSDL) 1.1.” W3C Note. World Wide Web
Consortium, www.w3.org/TR/wsdl. March 2001.

DeRose, S., E. Maler, and D. Orchard (editors). “XML Linking Language
(Xlink) Version 1.0.” W3C recommendation. World Wide Web Consor-
tium, www.w3.org/TR/xlink. June 2001.

Fowler, M., and K. Scott. UML Distilled. Reading, MA: Addison-Wesley.
1997.

Gosling, J., B. Joy, G. Steele, and G. Bracha. The Java Language Specification,
2nd Ed. Palo Alto, CA: Sun Microsystems, Inc., 2000.
java.sun.com/books/jls.

Gudgin, M., M. Hadley, J. Moreau, and H. F. Nielsen (editors). “SOAP Ver-
sion 1.2.” W3C working draft. World Wide Web Consortium,
www.w3.org/TR/soap12. July 2001.

Internet Engineering Task Force (IETF). “Uniform Resource Identifiers
(URI): Generic Syntax.” RFC 2396. www.ietf.org/rfc/rfc2396.txt. 1998.

Iyengar, S. ”JSR 40, The Java Metadata Interface (JMI) Specification.” Java
Community Process, www.jcp.org/jsr/detail/40.jsp. 2001.

Le Hors, A., P. Le Hégaret, L. Wood, G. Nicol, J. Robie, M. Champion, and
S. Byrne (editors). “Document Object Model (DOM) Level 2 Core Speci-
fication, Version 1.0.” W3C recommendation. World Wide Web Consor-
tium, www.w3.org/TR/DOM-Level-2-Core. November 2001.

Levitt, T. “Marketing Myopia.” Harvard Business Review, Volume 38 (July-
August 1960): 45-56.

Matena, V., and M. Hapner. “Enterprise JavaBeans Specification.” Version
1.1 Final Release. Sun Microsystems, Inc.
java.sun.com/products/ejb/docs.html. 1999.

Object Management Group, Inc. “Common Warehouse Metamodel (CWM)
Specification.” Version 1.0. www.omg.org/cgi-bin/doc?formal/01-10-01.
October 2001.

———. “Meta Object Facility (MOF) Specification.” Version 1.4 RTF. July
16, 2001.

———. “OMG Unifed Modeling Language Specification (draft).” Version
1.4 draft. February 2001.

———. “OMG XML Metadata Interchange (XMI) Specification.” Version
1.1. www.omg.org/cgi-bin/doc?formal/2000-11-02. November 2000.

———. “OMG XML Metadata Interchange (XMI) Specification.” Version
1.2. August 2001.

414 References

———. “UML™ for EAI, UML™ Profile and Interchange Models for Enter-
prise Application Integration (EAI), ad/2001-09-17.” OMG EAI SIG joint
submission. OMG Document Number ad/2001-09-17.
www.omg.org/cgi-bin/doc?ad/2001-09-17. September 2001.

———. “A UML Profile for Enterprise Distributed Object Computing.”
Joint final submission, Part I, Version 0.29. OMG Document Number
ad/2001-06-09. www.omg.org/cgi-bin/doc?ad/2001-06-09. June 2001.

———. “XML Metadata Interchange (XMI) Response to the RFP ad/2000-
01-04 for XMI Production of XML Schema.” Joint revised submission.
OMG Document ad/2001-06-12. www.omg.org/cgi-bin/doc?ad/2001-
06-12. June 2001.

Rumbaugh, J., I. Jacobson, and G. Booch. The Unified Modeling Language
Reference Manual. Reading, MA: Addison Wesley, 1999.

SAX Official Web site, sax.sourceforge.net.

Soley, R. and the OMG Staff Strategy Group. “Model Driven Architecture.”
Object Management Group, White Paper, Draft 3.2. November 27, 2000.

Thompson, H. S., D. Beech, M. Maloney, and N. Mendelsohn (editors).
“XML Schema Part 1: Structures.” W3C recommendation. World Wide
Web Consortium, www.omg.org/TR/xmlschema-1. May 2001.

References 415

A

AAT (Application
Assembly Tool), 364

abstraction, MOF
metalevels, 332–334

Accept Bid node, car
broker
program, 340

accessor methods,
XMIFile class, 261

adapter factories,
225, 252

AddCar() method, 293
AddNamespace()

method, 257, 308
AddXMIValue()

method, 220–221
Administration

Console,
WebSphere
Studio, 365

advanced XMI
documents, XML
namespaces, 251

aggregation, UML
container-part

relationships, 46
notation, 46
property

associations, 44
Aggregation

property, 147
algorithms, DOM tree,

170–172
anonymous types, 27
Any elements, 28–29
Any type, 79–80
AnyAttribute

element, 31
APIs, XML, 5
application design,

modeling, 330

Application Developer
tool APIs, EJB XMI
mapping, 372

application
example, 131

code generation,
138–139, 141

defining objects,
132–133

file designs, 138
implementation, 141
schemas, 135, 137

ArrayLists, Java, 214
arrow notation,

UML, 42
Assess Bid node, car

broker program,
340

AssignNamespace()
method, 254

AssignXMIFileTags()
method, 283

417

Index

association ends, UML,
43, 57, 80–81,
95, 147

AssociationEnd
interface,
Framework object
model, 233

AssociationManager
class, UML, 46

associations
containment, 150–151
UML, Java

representations, 44
Attr nodes, DOM

API, 169
Attribute element, 31
attribute groups,

32, 77
Attribute interface,

Framework object
model, 233

attribute tags, 88, 96
attribute values

Framework object
model, 218–219

objects, 62
UML, 48

AttributeGroup
element, 32

attributes, 31, 145
available, 89
criticalPart, 37
declaring, 31
form, 34
id, renaming, 77
illegal values,

323–324
invalid, 313
Java, multiplicities, 40
namespace, 35
nillable, 90
noncriticalPart, 37
object values, 64

schemaLocation,
33–35, 312–313,
322

schemas, 87
style, 79
targetNamespace, 32
title, 18
UML, 57, 62
values, serializing,

63, 252
XMI

data values, 63
declarations, 105
default

representation,
78–79

XML, 5
declarations, 24–25
default, 31
driver, 69
elements, 21–22
extender, 72–73
extenderID, 72–73
fixed, 31
href, 69–71
id, 62
idref, 71
label, 62
names, 19, 144
processContents, 31
representing

references, 68
type, 65
use, 31
uuid, 62

AttributeValue
interface, 217–218

AttributeValues,
Framework objects,
218

Author elements, 19
Available attribute, Car

class, 89, 167, 272

B

behavioral features,
UML, 40–41

Bid node, car broker
program, 340

Bid OK? node, car
broker program,
340

Bid Response node, car
broker program, 340

bottom-up CMP EJB
database mapping,
364

C

car broker (rental
agency) program,
166

CAR-VIN entries, 343
COBOL INV-REQ-IN

record, 346–347,
350

FCM example,
336–338

Accept Bid node, 340
Assess Bid node, 340
Bid node, 340
Bid OK? node, 340
Bid Response node,

340
Car Available? node,

340
Check Availability

node, 340
Check Request node,

342
control flow logic,

338
FCMCompositions,

340
Inventory Request

node, 342

418 Index

inventory requests,
339

Inventory Response
node, 342

negotiation
component, 339

Send Counteroffer
node, 340

INV-REQ-OUT
records, 344

INV-REQ-TYPE
entries, 343

queries, 344
Car class, 188, 207

available attribute, 167
car rental agency

program, 166
vin attribute, 167

Car interface, option
object methods, 294

Car object, available
attribute, 272

CAR-VIN entries, car
broker program,
343

car.xmi file, cross-file
references, 283

CD mapping document
source document, 354
source schema, 354
target document, 356
target schema, 354
XML to XML mapping

editor example,
353

Check Availability
node, car broker
program, 340

Check Inventory node,
car broker program,
342

checking syntax, XML
schemas, 314–315

child nodes, DOM API
Element node, 169

Choice element, XML,
28, 85–86

ChoiceContent types,
28–30

class inheritance,
100–101

class instances, car
rental agency
program, 166

class.forName()
method, 297

classes
Car, 188, 207
complex type

declarations, 76
CRAFactory, 208, 252
CrossFileHelper, 283
DeclarationFactory,

267
DefaultObjectWriter

Adapter, 224
Documentation, 108,

263
element

declarations, 76
Extension, 273
features, 233
fully qualified

names, 59
implementation, 301
Java, 38
LMAdapterFactory,

267, 270
LoadModelAdapter,

267–269
MetaModel, 106
Model, 106, 233
Namespace, 253
object values, 65
ObjectInfo, 241
Option, 189, 209

OptionImpl, 295
Person, 187, 211
Repository, 267–268
serializing

instances, 61
Style, 185–186, 210
UML, 41

Association
Manager, 46

instances, 45
interfaces, 43
namespaces, 44
unidirectional

associations, 157
UserFactory, 295–300
ValueInfo, 241
ValueWriteData,

225–226
Workspace, 238, 253,

266
XMI, 115
XMI tags, 83
XMIContainer, 231
XMIDocument, 176
XMIFile, 216, 221, 252
XMIFile.Model, 264
XMISchema, 308

Classifier interface, 233
CMP EJBs

id attributes, 366
independence of

environment, 372
mapping to databases,

364
top-down database

mapping, 365–366
CMP entities,

EJBs, 362
cmp-field element, 367
COBOL INV-REQ-IN

record, car broker
program, 346–347,
350

Index 419

code generation, XMI
process example,
129, 138–141

collections, Iterators,
252

color tag, 275
Columns elements, 367
Comment elements, 19
complex flow

modeling, FCM, 336
complex types, 27, 76
ComplexContent

element, 34
ComplexType elements,

27–29
composition

relationships
object values, 281
UML, 46

object attributes,
41–42

constructors, Java, 38
Contained elements, 19
Container elements,

19, 36
containment

associations,
150–151

containment
representation,
36–37

ContentHandler, SAX
interface, 180

ContentType tags, 84
control flow logic, car

broker program, 338
conversion options,

CMP EJB mapping,
371

coordinates tag, 275
cra.xsd file, 309–311
CRAAdapterFactory

class, 229, 248, 252

CRAFactory class,
192–196, 208, 252

CRAFactory methods,
CRAReaderAdapter
class, 243–244

CRAFactory.java file,
221

CRAHandler interface,
SAX interface,
190–192

CRAHandler1, 193
CRAHandler2, 192, 195
CRAHandler3, 196, 198
CRAHandler4, 199–203
CRAModel program,

234–237
cramodel.xmi

file, 267
CRAObjectWriter

Adapter class,
227–229

CRAReaderAdapter
class, 243–247

CRASchema program,
309, 312

CreateObject() method,
240

CreateReaderAdapter()
method, 242

creating schemas, XMI
process, 123–125

CriticalPart attribute, 37
cross-file references,

280–281
car.xmi file, 283
demo programs, 286
identifiers, 281
Person object, 282
person.xmi file, 284
proxy objects, 285
setting xmiFile tags,

282
XMI process, 126

CrossFileHelper class,
283

CrossRead program,
287–288

CrossRead2 program,
289–290

CrossRead3 program,
289, 291

CrossWrite program,
283–284

CWM (Common
Warehouse
Metamodel), 328

D

data attributes, UML,
41, 57

Data interface, 218
data level, information

abstraction, 333
data values, 252

nil, 64
saving multiple, 64
UML, 57
XMI attributes, 63

datatypes, 146
mapping, 294
predefined schema, 87
UML, 48–50

DataValue interface,
218

DeclarationFactory
class, 267, 272

declarations
attributes, 24–25, 31
elements, 23–24
Framework models,

267
default attribute, 31
default schemas, 75
DefaultObjectWriter

Adapter class, 224
DefaultValue tags, 94

420 Index

definers, objects or
values, 240

defining content order,
XML, 6

defining objects, XMI
process, 122,
132–133

delete methods,
UML, 47

demand loading, 285
deployed EJBJAR form,

364
deployment

descriptors, EJBs,
362–363

describing documents,
XMI process, 126,
261

designing applications,
modeling, 329–330

designing files, XMI
process, 125

Document nodes, DOM
API, 169

documentation
application design,

330
XMI documents, 262

Documentation class,
108, 263

Documentation
element, 128, 261

Documentation object,
263

documentation.xmi
file, 262

DocumentationRead
program, 263

DocumentationWrite
program, 262

documents. See also
XMI documents.

writing namespaces
to, 256

XMI process
cross-file references,

126
extensions, 127

DOM API, 168
Attr nodes, 169
Document nodes, 169
Element nodes, 169
NodeFilters, 176
NodeIterators, 176
root Element

nodes, 169
Text nodes, 169
trees

creation algorithm,
170–171

nodes, 168
object algorithm, 172

XMIDocument class,
176

DOM XML parser, 36
DOMRead program,

177–179
DOMWrite program,

174–176
DOMWrite.xmi file, 213
DoubleContent type, 29
driver attribute,

XML, 69
DTDs (Document Type

Definitions),
XML, 23

E

EAI (Enterprise
Application
Integration), 328

EDOC (Enterprise
Distributed Object
Computing), 328

ejb-jar.xml file, 365

Ejb-name element, 367
EJBs (Enterprise

JavaBeans), 328
CMP entities, 362
deployment

descriptors,
362–363

EJB to RDB mapping,
369

transaction handling,
364

updating, 372
WebSphere Studio,

361–362
XMI mapping

example, 372
Element nodes, DOM

API, 169
Element tabs, 96
Element tags, 88
elements

anyAttribute, 31
attributeGroup, 32
cmp-field, 367
columns, 367
complexContent, 34
container, 36
declarations,

classes, 76
Documentation,

128, 261
ejb-name, 367
exporter, 221
exporterVersion, 221
extension, 34, 105
FCMFunction, 342
FCMOperation, 342
helper, 371
import, 35
inbound, 342
ixafs, 274
ixaftv, 274
languageElement, 342

Index 421

elements (Continued)
locally declared, 34
MetaModel, 128
Model, 128, 261–263
NoClass, 317
object

correspondences,
179

option, 221, 256
outbound, 342
outputs, 371
primkey-field, 367
representing

references, 69
root, XML docu-

ments, 59
type, 367
typeMapping, 371
XML, 5, 18

any, 28–29
attributes, 21–22, 31
author, 19
choice, 28, 85–86
comment, 19
complexType, 27–29
contained, 19
container, 19
content, 27
declarations, 23–24
enumeration, 78
extension, 72–73, 85
names, 144
schema, 26–28
sequence, 28, 85
specification, 18
text1, 24

embedding XMI into
XML documents,
128

end tags, 5, 18
EnforceMaximum

Multiplicity tags,
90–92, 97, 317

EnforceMinimum
Multiplicity tags,
90–92, 96, 317

entities, XML, 19
enumeration

element, 78
enumerations, UML,

50, 78
environmental

independence, CMP
EJBs, 372

equals() method,
Java, 52

error detection
tailored XMI schemas,

317–325
XMI schemas, 316
XML parsers, 315

error1.xmi file, 316
error2.xmi file, 317
ErrorHandler, SAX

interface, 180
example application,

131
code generation,

138–141
defining objects,

132–133
file designs, 138
implementation, 141
schemas, 135, 137

exchanging data,
XML, 5

Exporter element, 221
ExporterVersion

element, 221
exporting XMI

documents, 261
expressing differences

in XMI documents,
108, 111–114

extender attribute
XMI extensions, 274
XML, 72–73

ExtenderID attribute,
72–73

extenders,
Program2UIInfo,
275

extension1.xmi file,
loading via
FrameRead
program, 275

Extension class, 273
Extension element, 34,

72–73, 85, 105
Extension interface, 275
Extension1 program,

273–274
Extension2 program,

275–276
extensions, XMI

process, 127

F

fatalError() method, 181
FCM

car broker program,
336–338

Accept Bid node, 340
Assess Bid node, 340
Bid node, 340
Bid OK? node, 340
Bid Response node,

340
Car Available? node,

340
Check Availability

node, 340
Check Request node,

342
control flow logic,

338

422 Index

FCMCompositions,
340

Inventory Request
node, 342

inventory requests,
339

Inventory Response
node, 342

negotiation
component, 339

Send Counteroffer
node, 340

complex flow
modeling, 336

hierarchical
composition, 342

macroflows, 335
microflows, 335
modeling, 332, 335

FCMCompositions, 340
FCMConnections, 340
FCMControlLinks, 340
FCMDataLinks, 340
FCMDecisionNodes,

340
FCMFunction element,

342
FCMFunctions, 340
FCMNodes, 340
FCMOperation

element, 342
FCMSinks, 340
FCMSources, 340
Feature interface,

Framework object
model, 233

features, classes, 233
fields, Java, 38
files

car.xmi, 283
cra.xsd, 309–311
cramodel.xmi, 267

designs, XMI process
example, 138

documentation.xmi,
262

DOMWrite.xmi, 213
ejb-jar.xml, 365
error1.xmi, 316
error2.xmi, 317
frame1.xmi, 238
generated.xmi, 295
invalid.xmi, 313
job.xmi, 208
map.mapxmi, 369–370
model.xmi, 264
my.zip, 278
namespace.xmi, 312
namespace2.xmi, 258
person.xmi, 284
schema.dbxmi,

367–368
Table.ddl, 366
valid.xmi, 313
XMI process, 125

fixed attribute, XML, 31
font tag, 275
form attribute, 34
form tags, 93, 98, 254
formatting data into

files, XML, 18
forms of EJB JARs, 364
forName() method, 190
frame1.xmi file, 238
FrameRead program,

259, 275
FrameRead2 program,

238–239
Framework

enumerations,
DeclarationFactory,
Boolean datatypes,
272

Framework models, 267

Framework object
model, 217

adapter factories, 225
AssociationEnd

interface, 233
Attribute interface, 233
attribute values,

218–219
AttributeValue

interface, 217
Classifier interface,

233
cross-file references,

280
Data interface, 218
datatype mapping,

294
DataValue interface,

218
demand loading, 285
Java code generation,

290–292
object writer adapters,

223
ObjectValue interface,

218
ObjectWriterAdapter

interface, 224
Package interface, 233
reader adapters,

240–242
ReaderAdapter

interface, 242
reading XMI files, 230
Reference interface,

218
references, 218–220
schemas, 307
tag values, 273
validating XMI

documents via
schemas, 311

Index 423

Framework object
model (Continued)

Value interface, 217,
252

writing objects to XMI
documents, 224

XMI extensions, 273
XMIClass interface,

233
XMIObject interface,

217, 252
Framework objects, 218
FrameWrite program,

232, 252
FrameWrite2 program,

230, 252
fully qualified names,

classes, 59

G

generated Java
interfaces, 293

generated.xmi file, 295
GeneratedRead

program, 300–301
GeneratedWrite

program, 295–296
generating code, 129,

290–292
generating schemas

from models, 74–75
generic mapping

model, WebSphere
Studio, 352

getCar() method, 293
getExporter() method,

261
getId() method, 224–225
getModel() method,

264–265, 300
getNamespace()

method, 225–256

getObjects() method,
190–192, 253

getPerson() method,
286

getType() method, 225,
240

getValue() method, 225
getValues() method,

224–225
getXMIName() method,

224, 257
getXMIValues()

method, 305

H

handlers, 185
Java class instances,

190
SAX interface, 180

handling proxy objects,
286

HashMaps, ixafntc, 297
Helper element, 371
hierarchy of model

information,
333–334

href attribute
Model element, 264
XML, 69–71

href tags, 99

I

id attributes
CMP EJBs, 366
renaming, 77
XML, 62

identifiers, cross-file
references, 281

identities, objects, 61
idName tags, 83
idref attribute, 71
IDREFS type, 68

illegal attribute values,
323–324

illegal characters, XML
names, 144

implementation
classes, 301
XMI process example,

141
Import element, 35
import statements,

CRAFactory.java
file, 221

importing schemas, 35
Inbound elements, 342
includeNils tags, 90
independence of

environment, CMP
EJBs, 372

information abstraction,
333–334

information
representations,
modeling, 331

inheritance, 81, 100–101
representing

via schema
extension, 67

UML, 42
init() method, 297
InputStream, 279
instance variables,

Java, 39
instances

Java, 38
UML, 45
ValueInfo, 241

interfaces
AttributeValue,

217–218
Car, 294
DataValue, 218
Extension, 275
Java-generated, 293

424 Index

ObjectValue, 218
Option, 295
Person, 293
ReaderAdapter, 268
Reference, 218
Style, 294
UML classes, 43
Value, 217
XMIObject, 217, 301
XMLElement, 275

-interfaces option, Java
code generation,
292

INV-REQ-OUT records,
344

INV-REQ-TYPE entries,
invalid attribute,
313

invalid.xmi file, 313
Inventory Request

node, car broker
program, 339, 342

Inventory Response
node, car broker
program, 342

Iterators
Collections, 252
schemas, 308

ixafntc HashMap, 297
Ixafs element, 274
Ixaftv element, 274

J

Java
ArrayLists, 214
attributes,

multiplicities, 40
class instances,

handlers, 190
classes, 38
code generation,

290–292, 295

constructors, 38
equals() method, 52
fields, 38
instance variables, 39
instances, 38
methods, 38
object identities, 51
object model, 38
objects, 39
packages, 38

namespaces, 214
qualified names, 38
reflection, 214–216
Security Manager, 216
single inheritance

between
classes, 38

Style class, 185
java.util package, 40
JMI (Java Metadata

Interface), 328
JOB (Java Object

Bridge), 205–207
references, 214
XMI documents, 206
XML namespaces for

Java packages, 214
job.xmi file, 208
JOBRead program, 215
JOBWrite program,

213–215

L

label attribute, 62
LanguageElement

element, 342
LastWashed tag, 273
lax validation,

Extension elements,
316

link ends, UML, 48. See
also references.

LMAdapterFactory
class, 267–270

Load() method, 230, 266
loading

Framework models
from files, 267

XMI files with actual
object of proxy
object, 285–286

LoadModel program,
267, 270–272

LoadModelAdapter
class, 267–269

locally declared
elements, 34

Location tag, 273

M

macroflows, FCM, 335
makeExample()

method, 208, 212,
226, 252

makeFeature() method,
300

makeFOMExample()
method, 220,
252–254

makeXMIObject()
method, 297

management,
application design
modeling, 331

map.mapxmi file,
369–370

mapping CMP EJBs to
databases, 364

mapping data to XML,
35–36

mapping datatypes,
Framework object
model, 294

Index 425

mapping metamodel,
WebSphere Studio,
361

MappingRoots,
WebSphere Studio,
361

MaxOccurs attribute, 29
MDA (Model Driven

Architecture), 12,
327–329

meet-in-the-middle
CMP EJB database
mapping, 364, 373

meta data
models, 362
WebSphere Studio,

364–365
XMI, 15

metalevels, MOF
abstraction, 332–334

MetaModel class, 106
MetaModel element,

128
Metamodels, 328
methods

addCar(), 293
addNamespace(), 257,

308
addXMIValue(),

220–221
assignNamespace(),

254
assignXMIFileTags(),

283
Class.forName(), 297
createObject(), 240
createReader

Adapter(), 242
equals(), 52
fatalError(), 181
forName(), 190
getCar(), 293
getExporter(), 261

getId(), 224–225
getModel(), 264–265,

300
getNamespace(), 225,

256
getObjects(), 190–192,

253
getPerson(), 286
getType(), 225, 240
getValues(), 224–225
getXMIName(), 224,

257
getXMIValues(), 305
init(), 297
Java, 38
load(), 230, 266
makeExample(), 208,

226, 252
makeFeature(), 300
makeFOMExample(),

220, 252–254
makeXMIObject(), 297
newInstance(),

190–192, 242
removeCar(), 293
resolve(), 241
setAttribute(), 198, 242
setExporter(), 261–262
setExporterVersion(),

262
setId(), 224–225
setReference(), 242
setShortDescription(),

262
setTargetNamespace(),

308
setValue(), 240–242
setXMIFile(), 268
setXMINamespace(),

253
setXMITagValue(), 273
startElement(), 192

toString(), 185, 231,
237

write(), 221, 252
microflows, FCM, 335
MinOccurs attribute, 29
Mixed attribute, 29
MixedContent type, 29
Model class, 106, 233,

237
Model element, 128,

261–264
model level,

information
abstraction, 334

model.xmi file, 264
modeling, 12, 330–331

FCM, 332, 336
MDA approach, 329
MOF, 332–334

models
creating schemas, 8, 12
FCM, 335
generating schemas,

74–75
meta data, 362
tagged values, 74
UML, 13

ModelWrite program,
264

MOF (Meta Object
Facility), 328

metalevels, 332–334
object model, 38

multiple data values,
saving, 64

multiplicities, 145
attributes, Java, 40
UML

associations, 43
attributes, 145

XML, 24
attributes, 63

multiplicity tags,
90–91, 96

426 Index

my.zip file, 278
MyBase complex

type, 34
MyExtension type, 34

N

name attribute, 36
Option object, 168
Person object, 168
XML elements, 26

named sets, tag values,
281

names
collisions, XML

documents, 253
namespace attribute, 35
Namespace class, 253
Namespace objects,

obtaining from XMI
documents, 259

namespace prefixes,
67, 253

objects, 257
references, 69
tag names, 66

namespace URIs
schemas, 308
XML documents, 66

namespace.xmi file, 312
namespace2.xmi

file, 258
-namespaceNameCRA

option, Java code
generation, 292

namespaces, 253
associating with Model

elements, 263
Java packages, 214
Option object, 260
packages, 75
schemas, 32

assigning for
declarations, 308

target, schemas, 75–76
UML classes, 44
URI, 33
writing to documents,

256
XMI, writing objects,

58
XML, 10, 20

advanced XMI
documents, 251

schema, 26
writing XMI

objects, 59
-namespaceURI option,

Java code
generation, 292

NamespaceWrite
program, 254

NamespaceWrite2
program, 258

navigabilities, UML
associations, 43

negotiation component,
car broker program,
339

newInstance() method,
190–192, 242

nil data values, XML
elements, 64

nillable attribute, 90
NoClass element, 317
NodeFilters, DOM API,

176
NodeIterators, DOM

API, 176
nodes, DOM API,

168–169
NoncriticalPart

attribute, 37
NsPrefix tags, 253
NsURI tags, 253

O

object algorithm, DOM
trees, 172

object attributes, UML,
41–42, 46, 57

object identities, Java,
51, 61

object models
Java, 38
MOF, 38
UML, 37–39

object values, 252
attributes, 64
classes, 65
composition

relationships, 281
in different

documents, 70
UML, 57

object writer adapters,
223, 252, 258

ObjectAttribs attribute
group, 77

ObjectInfo class, 241
objects, 4, 13

attribute values, 62
definers, 240
Documentation, 263
element

correspondences,
179

Framework, 218
Java, 39
JOB, writing for XMI

documents, 207
namespace prefixes,

257
referenced, 67
saving in different

documents, 70
serializing, 262

attribute values, 63
references, 252

Index 427

objects (continued)
UML, 47
Value, 302
writing, 257
XMI, writing, 58–60

ObjectValue interface,
218

ObjectWriterAdapter
interface, 224

OMA (Object
Management
Architecture), 328

OMG (Object
Management
Group), 4

-oneConstructor option,
Java code
generation, 292

Option class, 166,
189, 209

option element, 221, 256
Option interface, 295
Option object

name attribute, 168
namespace, 260

option object methods,
Car interface, 294

OptionImpl class, 295
ordered tags, 75, 85–86
OrderedContent2

type, 30
originating types,

columns
elements, 367

outbound elements, 342
outputs elements, 371
overview algorithm,

DOM trees, 170

P

-package cra option,
Java code
generation, 292

Package interface, 233
packages, 82, 233

Java, 38
java.util, 40
schemas, 76
UML, 43
XML namespaces, 75

parsers, 36
validating, 23
validation errors, 316
XML4J, 173

Person class, 166, 187,
211

Person interface, 293
Person object

cross-file references,
282

name attribute, 168
person.xmi file, cross-

file references, 284
predefined schema

datatypes, 87
prefixes, namespaces,

67, 253
preserving whitespace,

XML elements, 63
primkey-field element,

367
PrintHandler, SAX

interface, 181–184
printing XMIObjects

and values, 259
PrintModel program,

266
process for XMI,

119–120
creating schemas,

123–125

cross-file references,
126

defining objects, 122
describing files, 126
designing files, 125
extensions, 127

process of software
design, 329

ProcessContents
attribute, 28, 31

processing instructions,
XMI documents, 58

Program1 program, 273
Program2 program, 275
Program2UIInfo

extender, 275
Proxy objects, 285

Q

qualified names,
Java, 38

qualified value, form
tags, 254

queries, car broker
program, 344

R

RDBSchema:RDBtable
element, 367

reader adapters, 231,
240–242

ReaderAdapter
interface, 242, 268

reading XMI
documents

Framework object
model, 230

InputStream, 279
ref attribute, 28
Reference interface, 218

428 Index

referenced objects, 67
in different

documents, 71
UML, 57

references, 67, 252
cross-file, 280–281
Framework object

model, 218–220
handling via

CRAHandler4,
199–201

JOB, 214
namespace

prefixes, 69
representing via XML

attributes or
elements, 68–69

serializing for objects,
252

UML, 48, 57
RefObjects, WebSphere

Studio, 361
registering object writer

adapters, 258
RemoteOnly tags, 98
RemoveCar()

method, 293
renaming id

attributes, 77
Repository class,

267–268
representing

containment, 36–37
representing references,

68–69
Resolve() method, 241
resolving proxy objects,

285
reverse engineering

updating model, 330
models from XML,

147–148

UML models
from XMI DTDs,

157–161
from XMI schemas,

163
from XML schemas,

162
from XML DTDs,

152–156
Root Element nodes,

DOM API, 169
Root elements, XML

documents, 59

S

saving
multiple data

values, 64
objects in different

documents, 70
SAX interface (Simple

API for XML), 36
ContentHandler, 180
CRAHandler

interface, 190–192
ErrorHandler, 180
handlers, 180
PrintHandler, 181–184
reading XML

documents, 181
XMLReader interface,

181
SAX XML parser, 36
SAXPrint program, 183
SAXRead program,

190–192
Schema elements, 26–28
schema extension,

67, 80
schema instance

namespace, 313
schema namespaces, 26

schema types
declarations, 26–27
mapping UML

datatypes to, 77
schema.dbxmi file,

367–368
SchemaLocation

attribute, 33–35,
312–313, 322

schemas, 307
attributes, 87
creating

from models, 8, 12
via write() method,

308
default, 75
generating from

models, 74–75
importing, 35
iterators, 308
namespace URIs, 308
namespaces, 32, 308
packages, 76
string datatypes, 311
tailored XMI, error

detection, 317–325
tailoring, 74, 82
target namespaces, 33,

75–76, 253, 308
validating, 311–313
XMI

error detection, 316
process, 123–125,

135–137
xmi20.xsd, 312
XML, 7, 25

syntactic checking,
314–315

SchemaType tag, 86,
317, 325

Security Manager, Java
reflection, 216

Index 429

semantic checking,
314–315

Send Counteroffer
node, car broker
program, 340

Sequence element,
28, 85

serialize tags, 88, 95
serializing

attribute values,
63, 252

class instances, 61
objects, 63, 262
references, 252

SetAttribute() method,
198, 242

SetExporter() method,
261–262

SetExporterVersion()
method, 262

SetId() method, 224–225
SetReference() method,

242
SetShortDescription()

method, 262
SetTargetNamespace()

method, 308
SetValue() method,

240–242
SetXMIFile() method,

268
SetXMINamespace()

method, 253
SetXMITagValue()

method, 273
simple types, 27
single inheritance

between classes,
Java, 38

software for XMI
implementation,
129–130

source document, CD
mapping
document, 353–354

source schema, 353
CD mapping

document, 354
mapping to target

schema, 356, 360
Specification

elements, 18
start tags, 5, 18
StartElement()

method, 192
stereotypes, 50, 75
strict validation, 316
String datatypes,

schemas, 311
String type, 31
StringBuffers, 190
strings, tag values, 281
structural features of

UML, 40
style attribute, 79
Style class, 166,

185–186, 210
Style interface, 294,

302–304
superclasses, UML, 42
SuperClassFirst tag, 86
syntactic checking,

314–315

T

table.ddl file, 366
tables, XML definitions,

367
tag names, XML, 19
tag values, 273, 281
tagged values, 47, 74
tags

attribute, 88, 96
color, 275

contentType, 84
coordinates, 275
defaultValue, 94
element, 88, 96
enforceMaximum

Multiplicity,
90–92, 97, 317

enforceMinimum
Multiplicity,
90–92, 96, 317

font, 275
form, 93, 98, 254
href, 99
idName, 83
includeNils, 90
lastWashed, 273
location, 273
multiplicity, 90–91, 96
nsPrefix, 253
nsURI, 253
ordered, 75, 85–86
remoteOnly, 98
schemaType, 317, 325
serialize, 88, 95
stereotypes, 75
superClassFirst, 86
useSchema

Extensions, 86, 317
value, 94
XMI, 101
xmiFile, 281
xmiName, 83, 88

tailoring schemas, 74,
82, 317–325

target document, CD
mapping
document, 353, 356

target namespaces, 33,
75–76, 253,
308, 312

target schema, 353
CD mapping

document, 354

430 Index

mapping from source
schema, 356, 360

TargetNamespace
attribute, 32

technical documents,
application
design, 330

Text nodes, DOM API,
169

Text1 elements, 24
textual containment

representing logical
containment, 36

title attribute, 18
top-down CMP EJB

database mapping,
364–366

ToString() method, 185,
231, 237

transaction handling,
EJBs, 364

transformation code,
XML, 8

trees, DOM API
creation algorithm,

170–171
nodes, 168
object algorithm, 172

type attribute, 27, 65–67
Type element, 367
type extensions,

XML, 34
TypeMapping

element, 371
types, XML schema,

26–27

U

UML (Unified
Modeling
Language), 4, 17

aggregation

container-part
relationships, 46

notation, 46
arrow notation, 42
association ends,

43, 57
AssociationManager

class, 46
associations, Java

representations, 44
attributes, 62
attribute values, 48
behavioral features,

40–41
classes, 41

instances, 45
interfaces, 43
namespaces, 44
unidirectional

associations, 157
composition

relationships, 46
data attributes, 41, 57
data values, 57
datatypes, 48–50

mapping to schema
types, 77

delete methods, 47
enumerations, 50, 78
inheritance, 42
link ends, 48. See also

references.
models, 13, 144

aggregation
property, 147

association ends, 147
attributes, 145
containment

associations,
150–151

creating from XML
documents, 149

datatypes, 146

multiplicities, 145
names, 144–145
reverse engineering,

147–148, 152–163
object attributes,

41–42, 46, 57
object model, 37–39
object values, 57
objects, 4, 47
packages, 43
referenced objects, 57
references, 48, 57
stereotypes, 50
structural features, 40
superclasses, 42
tagged values, 47

UML2Java program,
292

undeployed EJB JAR
form, 364

unidirectional
associations, UML
classes, 157

updating EJBs, 372
URI namespace, 33
use attribute, 31
UserFactory class,

295–300
UseSchemaExtensions

tag, 86, 317
UTF-8 encoding,

character
encoding, 58

uuid attribute, 62

V

valid.xmi file, 313
ValidateRead program,

313, 317, 320
validating, 5

parsers, XML
DTDs, 23

Index 431

validating (Continued)
schemas, 313
XMI documents via

schemas, 311
Value interface, 217, 252
Value objects, 302
value tags, 94
ValueInfo class, 241
ValueInfo instances, 241
values

attributes, 62
definers, 240
objects, 257

ValueWriteData class,
225–226

version attribute,
Model element, 263

vin attribute, Car class,
167

W

WebSphere Studio,
351–352

AAT (Application
Assembly Tool),
364

Administration
Console, 365

EJBs, 361–362
EJB to RDB mapping,

369
generic mapping

model, 352
mapping metamodel,

361
MappingRoots, 361
meta data handling,

364–365
RefObjects, 361
visual mapping editor,

355

XML to XML mapping
editor, 352

well-formed document
checking, XML
schemas, 315

whitespace, preserving,
XML elements, 63

Workspace class, 238,
253, 266

Write() method, 221,
252, 308

writer adapter, XMI
Framework, 217

writing
namespaces to

documents, 256
objects

to XMI documents,
Framework
object model, 224

values, 257
XMI documents to

ZipOutputStream,
278

XMI objects, 58–60

X

XLinks, 22, 70
XMI (XML Metadata

Interchange), 3–4
association ends,

80–81, 95, 147
attribute tags, 88
attributes, 63, 78–79,

145
contentType tags, 84
datatypes, 146
defaultValue tags, 94
Documentation

element, 128
element tags, 88, 96

enforceMaximum
Multiplicity tags,
90–92, 97

enforceMinimum
Multiplicity tags,
90–92, 96

form tags, 93, 98
href tags, 99
idName tags, 83
includeNils tags, 90
inheritance, 81,

100–101
metadata, 15
MetaModel element,

128
Model element, 128
multiplicities, 145
multiplicity tags,

90–91, 96
namespaces, 58
objects, 58–60
ordered tags, 85–86
references, 67
remoteOnly tags, 98
saving objects, 70
schemas, 12, 74–75
serialize tags, 88, 95
superClassFirst tag, 86
tagged values, 47
tags, 101
useSchemaExtensions

tag, 86
value tags, 94
xmiName tags, 83, 88

XMI class, 115
XMI documents

creating, 165–166, 206,
217

documentation info,
262

exporting, 261

432 Index

Namespace objects,
259

placing multiples in
ZIP files, 278

processing
instructions, 58

reading, 215, 230, 279
writing to

ZipOutputStream,
278

XML APIs, 168
ZIP files, 277

XMI DTDs, 157–161
XMI extensions,

273–274
XMI files

actual proxy object,
285–286

cross-file references,
280–281

XMI Framework, 205,
216, 252. See also
Framework object
model.

creating XMI
documents, 217

writer adapter, 217
XMIFile class, 216

XMI model, 104–108,
143

XMI schemas
error detection, 316
reverse engineering

UML models, 163
XMI tags, 82–83
xmi20.xsd schema,

target namespace,
312

XMIClass interface, 233
XMIClasses, 233, 237
XMIContainer class,

231, 259

XMIDocument class,
176

XMIFile class, 216, 221,
252, 261

XmiFile tag, 281–282
XMIFile.DEFAULT

write option, 252
XMIFile.Model class,

264
XMIFiles instance, 267
XmiName tags, 83, 88
XMIObject interface,

217, 252, 301
XMIObjects, 233, 273
XMISchema class, 308
XML (Extensible

Markup Language),
3, 17

any elements, 28–29
anyAttribute

element, 31
APIs, 5
attributeGroup

element, 32
attributes, 5, 31

declarations, 24–25
names, 19, 144

author elements, 19
choice element, 28,

85–86
comment elements, 19
complexContent, 34
complexType

elements, 27–29
contained elements, 19
container elements, 19
content, 5
default attribute, 31
documents

creating UML
models, 149

exchanging via XMI,
13–14

name collisions, 253
namespace URLs, 66
reading, 181
root elements, 59
semantic checking,

315
driver attribute, 69
DTDs, 23
elements, 5, 18

attributes, 21–22, 31
content, 27
declarations, 23–24
names, 144

end tags, 5, 18
entities, 19
enumeration

element, 78
exchanging data, 5
extender attribute,

72–73
extenderID attribute,

72–73
extension element, 34,

72–73, 85, 105
fixed attribute, 31
formatting data into

files, 18
href attribute, 69–71
id attributes, 62
idref attribute, 71
import element, 35
label attribute, 62
mapping data to,

35–36
modeling, 12
multiplicities, 24
namespace

attribute, 35
namespaces, 20, 59
processContents

attribute, 31

Index 433

XML (Continued)
related standards, 17
reverse engineering

models, 147–148
schema elements,

26–28
schema

namespaces, 26
schemaLocation

attribute, 35
schemas, 7, 25

importing, 35
specification, 7
type declarations,

26–27
schemaType tags, 86
sequence element,

28, 85
specification

elements, 18
start tags, 5, 18
style attribute, 79
table definitions, 367
tag names, 19
text1 elements, 24

transformation code, 8
type attribute, 65
type extensions, 34
use attribute, 31
uuid attribute, 62
validation, 5

XML APIs, 165–168
XML DTDs, reverse

engineering UML
models, 152–156

XML elements
attributes, object

values, 64
nil data values, 64
preserving

whitespace, 63
representing

references, 69
saving multiple data

values, 64
XML namespaces,

10, 75
XML parsers, 36, 315
XML schemas

reverse engineering
UML models, 162

syntactic checking,
314–315

XML to XML mapping
editor, 352–356, 360

XML4J parser, 173
XMLElement interface,

275
XMLReader interface,

SAX interface, 181
XSLT scripts (eXtensible

Stylesheet
Language:
Transformations),
352

Z

ZIP files, XMI
documents, 277

ZipIn program, 279
ZipIn2 program, 280
ZipOut program, 278
ZipOutputStream,

writing XMI
document to, 278

434 Index

